×
28.07.2019
219.017.ba2c

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ВЛАЖНОСТИ МАТЕРИАЛОВ НА СВЧ И УСТРОЙСТВО ДЛЯ ЕГО ПРИМЕНЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, а именно к измерительной технике, и может быть использовано в СВЧ-влагомерах дискретного и непрерывного действия. Техническим результатом изобретения является повышение точности измерений влажности материалов. Данный технический результат достигается тем, что в способе измерения влажности проводят многократные измерения амплитуды прошедшего через материал СВЧ-сигнала при постоянном перемешивании материала под действием собственного веса во вращающейся цилиндрической кювете с последующим вычислением среднего значения измеряемой величины, при этом по результатам многократных измерений определяют среднеквадратическое отклонение результатов измерений, затем определяют величину влажности по предварительно найденной с помощью эталонов влажного материала градуировочной зависимости с учетом среднего значения и среднеквадратического отклонения выходного сигнала, после чего определяют величину влажности материала. Предложено также устройство для измерения влажности материалов, содержащее СВЧ-генератор, соединенный с передающей антенной, и детектор СВЧ-сигнала , соединенный с приемной антенной. 2 н. и 1 з.п. ф-лы, 3 ил., 1 табл.

Предлагаемый способ относится к области измерительной техники и может быть использовано в СВЧ-влагомерах дискретного и непрерывного действия.

Известны СВЧ-способы измерения влажности материалов, основанные на измерении электрофизических параметров материала с применением радиочастотных датчиков: патенты РФ G01N 22/04 (1995.01), №2 096768; РФ G01N 22/04 (1995.01), №2 096 768, РФ G01N 22/04, №2084877, Авторское свидетельство СССР N 654886, кл. G01G 22/04, 1979.

Недостатком этих способов-аналогов измерения влажности на СВЧ является низкая точность результатов измерения влажности из-за влияния форм связи воды с материалом на его диэлектрические характеристики, в частности, диэлектрическую проницаемость и тангенс угла диэлектрических потерь.

Наиболее близким (прототип) способом измерения влажности на СВЧ, заключающийся в многократных измерениях амплитуды прошедшего через материал СВЧ-сигнала при постоянном перемешивании материала под действием собственного веса во вращающейся цилиндрической кювете с последующим определением среднего значения измеряемой величины. При этом для обеспечения надежного перемешивания кювета заполняется не полностью. Степень заполнения кюветы выбирается в зависимости от свойств материала (угол откоса, гранулометрический состав). [Авторское свидетельство №1419302, 22.04.1988 г.]

Основным недостатком прототипа также является низкая точность результатов измерения влажности из-за влияния форм связи воды с материалом на его диэлектрические характеристики, в частности, диэлектрическую проницаемость и тангенс угла диэлектрических потерь.

Техническим результатом предполагаемого изобретения является повышение точности измерений влажности материалов.

Данный технический результат достигается тем, что в способе измерения влажности на СВЧ, заключающемся в многократных измерениях амплитуды прошедшего через материал СВЧ-сигнала при постоянном перемешивании материала под действием собственного веса во вращающейся цилиндрической кювете с последующим вычислением среднего значения измеряемой величины, дополнительно по результатам многократных измерений определяют среднеквадратическое отклонение результатов измерений, затем определяют величину влажности по предварительно найденной градуировочной зависимости с учетом среднего значения и среднеквадратического отклонения выходного сигнала.

При этом для обеспечения надежного перемешивания кювета заполняется не полностью. Степень заполнения кюветы выбирается в зависимости от свойств материала (угол откоса, гранулометрический состав).

Сущность предлагаемого способа измерения влажности на СВЧ заключается в следующем:

Вода содержится в материалах как в свободном, так и в связанном состояниях. Формы связи влаги с материалом могут быть различными: физико-механическая (капиллярная), адсорбционная (мономолекулярная и полимолекулярная), химическая. Каждой форме связи соответствует своя определенная энергия связи влаги с материалом. Наименьшую энергию связи имеет свободная вода, наибольшую - химически связанная. (Берлинер М.А. Измерение влажности. - М.: Энергия, 1973, с. 48-50).

Рассмотрим модель взаимодействия СВЧ-волны с влажным материалом, содержащим / - форм связи влаги. Запишем амплитуду СВЧ-сигнала в результате такого взаимодействия следующим образом

где: А - амплитуда СВЧ-сигнала, прошедшего через образец материала,

Wi - содержание влаги i-й формы связи, %.

ам - амплитуда СВЧ-сигнала в сухом материале, дБ;

- чувствительность параметра А к влаге i-й формы связи, причем

где W - влажность материала.

В первом приближении зависимость амплитуды СВЧ-сигнала от влажности для всех форм связи влаги с материалом линейная, т.е.

Продифференцируем выражение (1) по Wi и, переходя к конечным приращениям получим

изменение амплитуда суммарного СВЧ-сигнала (ΔА) при изменении количества влаги с формой связи i на ΔWi. Обычно переход осуществляется между близким по энергии связи формам непрерывно, от более слабых связей к более сильным и наоборот. Уменьшение количества воды одной из форм связи на ΔWi, означает увеличение другой на ту же величину. Тогда с учетом этого (3) можно записать в виде

Выражение (4) имеет место после увлажнения материала, когда происходит переход влаги от более слабых связей к более сильным. При интенсивном нагреве материала происходит обратный переход и выражение (4) принимает вид

Как следует из (4) и (5) изменение амплитуды СВЧ-сигнала будет равно нулю при всех Wi≠0 только тогда, когда

Однако, на практике имеет место соотношение

Поэтому с течением времени после увлажнения материала следует ожидать некоторое уменьшение уровня СВЧ-сигнала при постоянной влажности материала (4), т.к. имеем А=А-ΔА, в противном случае - его увеличение (5), т.к. А=А+ΔА, что в конечном счете приводит к дополнительной погрешности измерения влажности, достигающей 20% (относительных).

В настоящее время нет экспрессных методов определения количества влаги по формам связи и эффективных путей уменьшения влияния непостоянства соотношения связанной и свободной воды в материале на погрешность измерения его влажности.

Для определения характера и степени влияния изменения форм связи влаги на результат измерения влажности СВЧ-методом, а также выявления функциональной зависимости среднеквадратичного отклонения результатов наблюдения от среднего значения измеренной величины от предыстории его влажностного состояния были проведены экспериментальные исследования на образцах зерна пшеницы с различным временем выдержки их после увлажнения. Многократные измерения проводились на СВЧ-влагомере через 0.5, 3, 24, 48, 96 часов после увлажнения зерна, параллельно влажность образцов определялась на эталоне.

Результаты экспериментов подтвердили влияние предыстории влажностного состояния материала на результат измерения СВЧ-методом. Они показывают, что ослабление постепенно уменьшается в течение 50 часов после увлажнения и чем больше влажность, тем значительнее меняется ослабление. (фиг. 1).

По данным экспериментов нами рассчитаны уравнения регрессии (градуировочные зависимости) без учета (6) и с учетом среднеквадратического отклонения результатов наблюдений С (7).

В табл. 1 приведены сравнительные характеристики уравнений регрессии.

При измерении влажности амплитудным СВЧ-влагомером без учета среднеквадратического отклонения результатов наблюдений С относительная погрешность от указанного фактора достигает 11,9%, а по предложенному способу, т.е. с учетом С - 4,2%.

Таким образом, предлагаемый способ позволяют уменьшить влияние форм связи влаги примерно в 3 раза.

Способ измерения влажности на СВЧ, можно осуществить практически на любом СВЧ-влагомере, содержащем микропроцессорный блок управления. Реализация способа осуществлена на основе полезной модели (Патент на полезную модель РФ G01N 22/04 (2006.01) №155969, опубликовано 27.10.2015 Бюл. №30.

Структурная схема СВЧ-влагомера приведена на фиг. 2., общий вид на фиг. 3.

СВЧ-влагомер содержит СВЧ-генератор 1, соединенный с передающей антенной 2, приемную антенну 3, соединенную с детектором СВЧ-сигнала 6, выход которого соединен со входом микропроцессорного блока управления 7, соединенного с индикатором 8, цилиндрическую кювету 4 с исследуемым материалом, размещенную между передающей 2 и приемной 3 антеннами на двух роликах 10 механизма 5 равномерного вращения кюветы 4 с материалом, «п» диэлектрических прямоугольных пластин 9, закрепленных вдоль образующих внутри цилиндрической кюветы и направленных к оси цилиндра.

СВЧ-влагомер работает следующим образом:

Электромагнитная энергия от СВЧ-генератора 1 через передающую антенну 2 поступает в цилиндрическую кювету 4, прошедшая через исследуемый материал электромагнитная волна принимается приемной антенной 3, детектируется детектором СВЧ-сигнала 6, величина амплитуды электромагнитной волны, зависящая от влажности материала измеряется и запоминается микропроцессорным блоком управления 7. При измерениях цилиндрическая кювета 4 с материалом вращается на роликах 10 механизма 5 равномерного вращения кюветы 4, за один оборот производится «п» измерений, микропроцессорным блоком управления 7 определяется среднее значение и среднеквадратическое отклонение результатов измерений, затем микропроцессорным блоком управления 7 определяется величина влажности по предварительно найденной градуировочной зависимости с учетом среднего значения и среднеквадратического отклонения выходного сигнала, результат выводится на индикаторе 8.


СПОСОБ ИЗМЕРЕНИЯ ВЛАЖНОСТИ МАТЕРИАЛОВ НА СВЧ И УСТРОЙСТВО ДЛЯ ЕГО ПРИМЕНЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ВЛАЖНОСТИ МАТЕРИАЛОВ НА СВЧ И УСТРОЙСТВО ДЛЯ ЕГО ПРИМЕНЕНИЯ
Источник поступления информации: Роспатент

Showing 1-3 of 3 items.
20.02.2016
№216.014.cea0

Способ измерения относительной продольной деформации поверхности и экстензометр для его осуществления

Изобретение относится к средствам измерения относительной продольной деформации на поверхности материальных тел. Экстензометр содержит два референтных тела в виде заостренных инденторов, при этом один индентор жестко связан с корпусом прибора, другой установлен с возможностью перемещения, а...
Тип: Изобретение
Номер охранного документа: 0002575795
Дата охранного документа: 20.02.2016
20.04.2016
№216.015.3423

Способ измерения локального радиуса кривизны упругодеформированной эталонной балки и устройство для его осуществления

Изобретение относится к измерительной технике в области метрологического обеспечения эталонов относительной деформации, использующихся для калибровки тензодатчиков или экстензометров. Технический результат заключается в уменьшении веса и габаритов системы контроля деформации, при достижении той...
Тип: Изобретение
Номер охранного документа: 0002581440
Дата охранного документа: 20.04.2016
25.08.2017
№217.015.d2fe

Устройство для получения чистого изгиба эталонной балки

Изобретение относится к области метрологии, а именно к средствам получения чистого изгиба эталонной балки для испытаний тензодатчиков. Устройство содержит основание, эталонную балку постоянного сечения с системой измерения деформаций и механическую систему нагружения балки, включающую два...
Тип: Изобретение
Номер охранного документа: 0002621462
Дата охранного документа: 06.06.2017
Showing 1-1 of 1 item.
04.05.2020
№220.018.1aff

Способ разработки залежей тяжелых нефтей, нефтяных песков и битумов

Изобретение относится к области нефтедобывающей промышленности и может быть использовано при разработке залежей тяжелых нефтей, нефтяных песков и битумов. Для осуществления способа разработки залежей тяжелых нефтей проводят вскрытие пласта по меньшей мере одной нагнетательной скважиной и вокруг...
Тип: Изобретение
Номер охранного документа: 0002720338
Дата охранного документа: 29.04.2020
+ добавить свой РИД