×
27.07.2019
219.017.b9bd

Результат интеллектуальной деятельности: Способ нанесения износостойкого покрытия на сталь

Вид РИД

Изобретение

Аннотация: Изобретение относится к формированию функциональных покрытий на стальной поверхности, обладающих высокой стойкостью к коррозионному разрушению и износу. Способ включает последовательное сверхзвуковое холодное газодинамическое напыление композиционных частиц порошка сверхзвуковой газовой струей на стальную поверхность и микродуговое оксидирование. На стальную поверхность сверхзвуковым холодным газодинамическим напылением наносят порошок, состоящий на 20% из корунда с размером частиц 50-100 мкм и на 80% из порошка алюминия с размером частиц менее 15 мкм, армированного на 70% наноразмерными частицами корунда. Затем осуществляют микродуговое оксидирование поверхности с образованием керамического алюмооксидного покрытия. В частных случаях осуществления изобретения в качестве рабочего газа при напылении используют воздух. Для исключения образования на покрытии технологической аморфной пленки микродуговое оксидирование напыленного подслоя проводят в электролите на основе борной кислоты, содержащем 20-30 г/л борной кислоты и 3-7 г/л гидроксида калия. Обеспечивается износо- и коррозионно-стойкое покрытие, обладающее низкой пористостью, высокой адгезией и имеющее на поверхности упрочненный слой, сформированный микродуговым оксидированием. 1 ил., 2 з.п. ф-лы, 2 пр.

Изобретение относится к области создания функциональных покрытий на поверхности стали, обладающих высокой стойкостью к коррозионному разрушению и износу.

Известна полезная модель RU 90440 U1, С23С 28/00, C25D 11/02, согласно которой защитное покрытие формируют плазменным напылением алюминия на поверхность стали с последующим оксидированием. При этом пористость предварительно наносимого слоя алюминия составляет 5-10%. Столь высокая пористость предварительного слоя значительно снижает коррозионную стойкость сформированного на нем микродуговым оксидированием (МДО) покрытия.

В способе RU 2417146 C1, В23Р 6/00 предлагается для формирования предварительного слоя использовать электродуговую металлизацию со сверхзвуковой скоростью истечения воздуха из распылительной головки металлизатора. Электродуговая металлизация проводится с использованием присадочной проволоки АМц-3. При осуществлении данного способа происходит нагрев поверхности защищаемого материала, который приводит к нежелательному изменению структуры и свойств этого материала.

Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ RU 2486044 C1, В23Р 6/00, выбранный в качестве прототипа.

Способ включает предварительную подготовку поверхности, приращение этой поверхности, механическую обработку и упрочнение микродуговым оксидированием, при этом предварительную подготовку проводят, используя кубический нитрид бора зернистостью 125-150 мкм при давлении сжатого воздуха 0,60-0,65 МПа и дистанции обработки 80-90 мм до шероховатости поверхности Rz=100-110 мкм, приращение поверхности осуществляется сверхзвуковым газодинамическим напылением, где в качестве рабочего газа используется гелий под давлением 0,40-0,45 МПа, а в качестве напыляемого материала - алюминиевый порошок с размером частиц 110-125 мкм, причем МДО ведут в силикатно-щелочном электролите, содержащем 2 г/л едкого калия и 8 г/л жидкого стекла при плотности тока 26-27 А/дм2 в течение 70-75 мин.

Недостатки прототипа заключаются в следующем:

1. Использование порошка фракцией 100-120 мкм не позволяет получать покрытия с минимальной пористостью, что значительно ухудшает стойкость покрытия к коррозии и износу.

2. Требуется дополнительное проведение предварительной подготовки поверхности кубическим нитридом бора, который, внедряясь в обрабатываемую поверхность, значительно снижает адгезию покрытия.

3. Экономически нецелесообразно использование гелия при сверхзвуковом газодинамическом напылении алюминия, ввиду его более высокой стоимости (в десять раз)по сравнению с воздухом.

4. Жидкое стекло содержит органические вещества, состав которых меняется в зависимости от производителя, в результате меняется состав жидкого стекла и, соответственно, состав электролита.

5. Процесс МДО в силикатно-щелочном электролите приводит к образованию пленки диоксида кремния на поверхности покрытия.

Таким образом, целью данной работы являлось устранение указанных недостатков прототипа.

Техническим результатом изобретения является создание износо- и коррозионностойкого покрытия на стали, обладающего низкой пористостью, высокой адгезией и имеющего на поверхности упрочненный слой, сформированный МДО.

Для достижения поставленной цели использовался способ «холодного» газодинамического напыления (ХГДН), основанный на разгоне частиц до высокой скорости порядка 900 м/с, благодаря сверхзвуковому потоку газа, вследствие чего они осаждаются из-за интенсивной пластичной деформации при ударе в твердом состоянии и при температуре, значительно ниже температуры плавления распыляемого материала

Технический результат достигается за счет того, что при ХГДН используется порошок, состоящий на 20% из корунда фракцией 50-100 мкм и на 80% из порошка алюминия фракцией 15-50 мкм, армированного на 50% наноразмерными частицами корунда.

Установлено, что частицы размером менее 5 мкм «отскакивают» при соударении с поверхностью, так как имеют малую массу и не обладают достаточной кинетической энергией для закрепления. При использовании порошка фракцией более 50 мкм формируемое покрытие не обладает высокой адгезионной и когезионной прочностью. Частицы корунда размером 50-100 мкм в составе порошка при попадании на напыляемую стальную поверхность отлетают от нее, очищая ее при этом от загрязнений, и далее таким же образом устраняют оксидный слой только что сформированного покрытия, тем самым значительно повышая его когезию.

Установлено, что армирование порошка алюминия фракцией 15-50 мкм на 50% наноразмерными частицами корунда приводит к образованию композиционного порошка конгломератного типа, в результате после напыления существенно повышаются функциональные свойства покрытия, такие как твердость и износостойкость. Армирование достигается при помощи механосинтеза смеси порошков в чашевом вибрационном истирателе, в течение 30 минут. Введение в порошок алюминия фракцией 15-50 мкм свыше 50% наноразмерных частиц корунда не приводит к дальнейшему улучшению функциональных свойств покрытия.

В процессе напыления скопившиеся в агломераты частицы наноразмерного корунда ликвидируют образующиеся поры, в результате происходит снижение пористости покрытия с 5% до 3% от общего объема. На рисунке 1 показана схема упаковки частиц алюминия в поперечном сечении после холодного газодинамического напыления механической смеси порошков с армированием наноразмерным корундом и без армирования.

В соответствии с предлагаемым изобретением, в качестве рабочего газа используется воздух.

Процесс микродугового оксидирования в электролите на основе борной кислоты исключает образование пленки диоксида кремния на поверхности покрытия.

Сущность метода заключается в следующем. На стальную поверхность методом сверхзвукового «холодного» газодинамического напыления наносится порошок, состоящий на 20% из корунда фракцией 50-100 мкм и на 80% из порошка алюминия фракцией менее 15 мкм, армированного на 50% наноразмерными частицами корунда. При этом в качестве рабочего газа используется воздух. Далее проводится микродуговое оксидирование напыленного подслоя в электролите на основе борной кислоты, содержащем: 20-30 г/л борной кислоты, 3-7 г/л гидроксида калия.

Пример 1

Для получения износостойкого покрытия на пластину площадью 1 дм2 из стали марки Ст45 методом ХГДН с использованием робота равномерно напыляли композиционный порошок, состоящий на 20% из корунда фракцией 50-100 мкм и на 80% из порошка алюминия фракцией 15-50 мкм, армированного на 50% наноразмерными частицами корунда. Толщина покрытия составила 100 мкм. Образованный подслой подвергался микродуговому оксидированию в электролите на основе борной кислоты, содержащем: 20-30 г/л борной кислоты, 3-7 г/л гидроксида калия, в течение 60 минут. Толщина оксидного слоя составила 40 мкм.

Полученное покрытие имеет микротвердость 17-20 ГПа, пористость не более 3%, адгезия покрытия к металлической основе не менее 70 МПа.

Пример 2

Для получения износостойкого покрытия на пластину площадью 1 дм2 из стали марки Ст45 методом ХГДН с использованием робота напыляли композиционный порошок, состоящий на 20% из корунда фракцией 50-100 мкм и на 80% из порошка алюминия фракцией 15-50 мкм, армированного на 50% наноразмерными частицами корунда. Толщина покрытия составила 120 мкм. Образованный подслой подвергался микродуговому оксидированию в электролите на основе борной кислоты, содержащем: 20-30 г/л борной кислоты, 3-7 г/л гидроксида калия, в течение 90 минут. Толщина оксидного слоя составила 60 мкм.

Полученное покрытие имеет микротвердость 21-23 ГПа, пористость не более 3%, адгезия покрытия к металлической основе не менее 70 МПа.


Способ нанесения износостойкого покрытия на сталь
Способ нанесения износостойкого покрытия на сталь
Источник поступления информации: Роспатент

Showing 41-50 of 77 items.
29.03.2019
№219.016.ecdc

Способ извлечения родия из многокомпонентных хлоридных растворов

Изобретение относится к гидрометаллургии родия. Способ извлечения родия из многокомпонентного хлоридного родийсодержащего раствора включает выдержку раствора при температуре 70-80°С в течение 3-7 часов и приведение его в контакт с анионитом, содержащим полиэтиленполиаминные функциональные...
Тип: Изобретение
Номер охранного документа: 0002682907
Дата охранного документа: 22.03.2019
29.03.2019
№219.016.ed6a

Фотокаталитический микрореактор и способ его эксплуатации

Изобретение относится к аппаратам для проведения гетерогенных фотокаталитических реакций в системах жидкость-газ или жидкость-жидкость, в том числе в присутствии твердых частиц катализатора, и может быть использовано в химической, нефтехимической, фармацевтической, пищевой, биотехнологической и...
Тип: Изобретение
Номер охранного документа: 0002683108
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.edc0

Способ получения смесей высокодисперсных гетерофазных порошков на основе карбида бора

Изобретение относится к керамической технологии и порошковой металлургии и предназначено для получения высокодисперсных гетерофазных порошковых композиций, которые могут быть использованы для производства керамических бронеэлементов, материалов, работающих в условиях абразивного износа,...
Тип: Изобретение
Номер охранного документа: 0002683107
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.ee9f

Способ производства штрипсовой стали для труб подводных морских газопроводов высоких параметров

Изобретение относится к области металлургии, в частности к производству экономнолегированной хладостойкой стали для сварных труб морских газопроводов с рабочим давлением до 19 МПа, эксплуатируемых при пониженных температурах. Техническим результатом изобретения является обеспечение высокой...
Тип: Изобретение
Номер охранного документа: 0002270873
Дата охранного документа: 27.02.2006
08.04.2019
№219.016.fed5

Сталь для корпусных конструкций атомных энергоустановок

Изобретение относится к области металлургии, а именно к конструкционным сталям, используемым для корпусных конструкций атомных энергоустановок. Сталь содержит, мас.%: углерод 0,13-0,18, кремний 0,05-0,10, марганец 0,30-0,60, хром 2,70-3,00, никель 0,60-0,80, молибден 0,60-0,80, ванадий...
Тип: Изобретение
Номер охранного документа: 0002448196
Дата охранного документа: 20.04.2012
27.04.2019
№219.017.3cdc

Струйный микрореактор со сталкивающимися пульсирующими струями и способ управления им

Изобретение относится к микромасштабным реакторам со сталкивающимися микроструями двух потоков жидкости - устройствам для проведения различных быстропротекающих реакций, преимущественно с образованием твердых частиц в качестве продукта, и может быть использовано в химической и других...
Тип: Изобретение
Номер охранного документа: 0002686193
Дата охранного документа: 24.04.2019
29.04.2019
№219.017.3f4e

Сплав на основе титана

Изобретение относится к металлургии сплавов на основе титана, используемых для изготовления различных деталей и конструкций, в том числе для медицинского оборудования, инструментов и деталей, применяемых в травматологии и ортопедии. Задачей изобретения является создание сплава, обладающего...
Тип: Изобретение
Номер охранного документа: 0002293135
Дата охранного документа: 10.02.2007
29.04.2019
№219.017.43bf

Сплав на основе титана

Изобретение относится к металлургии, в частности к сплавам на основе титана, обладающим высокой стойкостью против щелевой и питтинговой коррозии, которые могут быть использованы для изготовления трубопроводов и трубных систем широкой номенклатуры в судостроении и других отраслях промышленности....
Тип: Изобретение
Номер охранного документа: 0002426808
Дата охранного документа: 20.08.2011
09.05.2019
№219.017.4a0e

Способ определения устойчивости органических полимеров к деградации, индуцируемой различными факторами

Изобретение относится к технике исследования механических свойств материалов. Способ включает в себя подготовку стерильной плотной питательной среды (СППС, представляющей собой водный раствор с рН 7,2±0,3, содержащий 13-19 г/л агар-агара + 8-12 г/л сахарозы + 1,3-1,9 г/л NHNO + 0,4-0,6 г/л KHPO...
Тип: Изобретение
Номер охранного документа: 0002687174
Дата охранного документа: 07.05.2019
20.05.2019
№219.017.5cee

Способ определения антибиотических свойств материалов

Изобретение относится к биоизмерительным технологиям. Предложен способ определения антибиотических свойств материалов. Способ включает инкубирование тестового штамма Rhodotorula sp. VКM Y-2993D в количестве от 5×10 до 5×10 жизнеспособных клеток на мл в жидкой питательной среде рН 6,6-7,4 в...
Тип: Изобретение
Номер охранного документа: 0002688119
Дата охранного документа: 17.05.2019
Showing 41-41 of 41 items.
03.06.2023
№223.018.765c

Сплав на основе алюминия для нанесения износостойких покрытий

Изобретение относится к области создания износостойких сплавов на основе алюминия и может быть использовано для получения функциональных покрытий, защищающих элементы прецизионного машино- и приборостроения от действия механических нагрузок. Сплав на основе алюминия содержит, мас.%: олово...
Тип: Изобретение
Номер охранного документа: 0002796583
Дата охранного документа: 25.05.2023
+ добавить свой РИД