×
23.07.2019
219.017.b6ea

Результат интеллектуальной деятельности: Способ измерения ионосферных предвестников землетрясений

Вид РИД

Изобретение

Аннотация: Изобретение относится к области сейсмологии и может быть использовано для прогнозирования землетрясений. Сущность: регистрируют волны плотности электронной концентрации зондируемого слоя ионосферы на частоте ниже критической в виде дискретных цифровых отсчетов сигналов. Причем регистрацию осуществляют во взаимно ортогональных плотностях в двух разнесенных на измерительной базе пунктах. Обрабатывают зарегистрированные выборки сигналов. Рассчитывают направляющие косинусов вектора волн плотности электронной концентрации каждого пункта. Отождествляют проекцию точки пересечения направляющих на земную поверхность с гипоцентром очага землетрясения. Используя зарегистрированные выборки сигналов, рассчитывают время удара и ожидаемую магнитуду землетрясения. Технический результат: повышение чувствительности способа, увеличение интервала времени упреждающего прогноза сейсмического удара. 5 ил.

Изобретение относится к радиофизике и может найти применение в национальных системах сейсмологического контроля при мониторинге природных сред для прогнозирования землетрясений.

Предсказание землетрясений базируется на измерениях различных геофизических полей, изменяющих свои характеристики в потенциальном поле механических напряжений земной коры в области подготавливаемого землетрясения. Одним из чувствительных признаков - предвестников землетрясения являются электродинамические процессы, протекающие в околоземной плазме (ионосфере).

По параметрам переходного колебательного процесса (как вариации плотности электронной концентрации в слоях ионосферы) определяют гипоцентр проекции очага на ионосферу и характеристики ожидаемого сейсмического удара [см., например, «Краткосрочный прогноз катастрофических землетрясений с помощью радиофизических наземно-космических методов», Доклады конференции ОИФЗ им. О.Ю. Шмидта, РАН, М, 1998 г., стр. 64-65, 109, 127-129, 138].

Известен «Способ предсказания землетрясений» путем измерения волн плотности электронной концентрации при полете космического аппарата непосредственно на высотах соответствующих слоев ионосферы, Патент Ru №2 205 430, 2003 г - аналог. В способе аналога регистрируют волновой процесс, возникающий в среде накануне удара, вычисляют фазовый центр волнового процесса и его период, рассчитывают характеристики предстоящего удара по их зависимостям от периода, дополнительно получают серию регистрограмм дискретных отсчетов A(Li) электростатического потенциала внешней поверхности космических аппаратов при их полете по орбитам Li непосредственно через область ионосферного образования, находят фазовый центр процесса как точку пересечения траверз восходящих и нисходящих витков космических аппаратов, проведенных к участкам регистрограмм, где допплеровская частота измеряемого процесса равна нулю, отождествляют эту точку с проекцией гипоцентра очага на ионосферу, вычисляют период Т, магнитуду М и время ожидаемого удара tx из соотношений:

где ΔL=L2-L1 - разница пространственных периодов двух симметричных относительно траверзы полуволн регистрограммы;

- отношение пространственных периодов двух симметричных, относительно траверзы, полуволн регистрограммы,

v - скорость акустических волн в ионосфере;

Vr - радиальная скорость движения измерителя относительно фазового центра волнового процесса.

К недостаткам аналога следует отнести:

- все существующие космические аппараты имеют внутренние источники питания, «заземленные» на корпус. Создание дополнительного внешнего корпуса (в качестве обкладки конденсатора) изолированного от «заземленного» представляет технические трудности;

- невысокая чувствительность измерений из-за малой емкости создаваемого конденсатора.

Известны дистанционные методы измерений плотности электронной концентрации ионосферы N [1/м3], путем ее зондирования на частоте ниже критической [см., например, «Космонавтика», Энциклопедия, М, Изд. Сов. энциклопедия, 1986 г., стр. 161, Ионозоид] - ближайший аналог.

В ближайшем аналоге задающий генератор плавно изменяет частоту настройки приемно-передающего устройства в диапазоне от 1 до 20 МГц для получения амплитудно-частотной характеристики (АЧХ) отраженного от ионосферы сигнала. Ионозоид включает импульсный ВЧ передатчик, приемник, электронно-лучевой индикатор, задающий генератор передатчика является гетеродином приемника, чем достигается сопряжение и синхронизация приемника и передатчика. Высоту до отражающей поверхности ионосферы определяют по времени запаздывания отраженного сигнала. Плотность электронной концентрации слоя определяют пересчетом из АЧХ значений критической частоты и времени запаздывания.

Недостатками ближайшего аналога являются:

- невозможность по параметрам регистрируемого сигнала рассчитать ионосферные предвестники землетрясения;

- для пеленгации гипоцентра очага землетрясения необходимо измерять волновой процесс в двух, взаимно ортогональных, плоскостях.

Задача, решаемая заявленным способом, состоит в измерении динамики волнового процесса плотности электронной концентрации, реализуемой путем пеленгации фазового центра волн двумя пунктами с диаграммами направленности антенн в двух взаимно-ортогональных плоскостях на каждом пункте.

Технический результат достигается тем, что способ измерений ионосферных предвестников землетрясений включает регистрацию волн плотности электронной концентрации зондируемого слоя ионосферы на частоте ниже критической в виде дискретных цифровых отсчетов сигналов во взаимно ортогональных плоскостях Ax(t), Ay(t) в двух, разнесенных на измерительной базе пунктах посредством антенн, с диаграммами направленности каждого из пунктов в ортогональных плоскостях, оси симметрии диаграмм направленности антенн по координате (х) ориентируют по направлению базы, обработку зарегистрированных выборок измерений сигналов, расчет направляющих косинусов вектора волн плотности электронной концентрации каждого пункта:

отождествление координат гипоцентра очага как проекции точки пересечения направляющих на земную поверхность, по изменениям амплитуд выборок измерений на интервале Δt вычисляют постоянную времени Т сейсмического процесса как

рассчитывают время удара tу=4,7T и ожидаемую магнитуду как

где А0 - установившееся значение амплитуды сигнала предвестника, равное

Δt=(t2-t1)=(t3-t2) интервал времени между отсчетами измерений A1, А2, A3.

Изобретение поясняется чертежами, где:

фиг. 1 - плотность электронной концентрации в слоях ионосферы;

фиг. 2 - суточный ход критической частоты (плотности электронной концентрации) в слое F2 а) невозмущенном состоянии, б) возмущенном, накануне сейсмического удара;

фиг. 3 - пеленгация фазового центра волн плотности электронной концентрации двумя пунктами, разнесенными на измерительной базе;

фиг. 4 - функция изменения амплитуды регистрируемого сигнала во времени;

фиг. 5 - функциональная схема устройства, реализующего способ.

Техническая сущность изобретения заключается в следующем. Накануне сейсмического удара в атмосфере происходит раскачка очага землетрясения [см., например, Патент Ru №2170446 кл. G.01.V, 9/00, 2001 г.] В приповерхностном слое атмосферы возникают акустолитосферные волны, которые, при их распространении вверх, служат «спусковым крючком» для возникновения плазменных волн электронной концентрации в слоях ионосферы. Исходная электронная концентрация N[1/m3] в слоях ионосферы иллюстрируется фиг. 1 [см., например, «Космонавтика», Энциклопедия, под ред. В.П. Глушко, М, Сов. энциклопедия, 1985 г., стр. 143]. Зарегистрированные в ряде экспериментов волны плотности электронной концентрации в ионосфере иллюстрируются графиками фиг. 2 [см., например, «Краткосрочный прогноз катастрофических землетрясений с помощью радиофизических наземно-космических методов», Доклады конференции ОИФЗ им. О.Ю. Шмидта, РАН, М, 1998 г., стр. 109]. За несколько часов до сейсмического удара, изменение критической частоты слоя F2 из-за изменения плотности электронной концентрации может достигать 40…50%. Для измерения пространственных волн в ионосфере предлагается осуществлять ее зондирование с двух, разнесенных на измерительной базе, пунктов. Признаками предвестниками землетрясения являются: гипоцентр (координаты) очага, ожидаемое время сейсмического удара (ty) и ожидаемая магнитуда (М).

Пеленгация фазового центра ионосферных волн иллюстрируется фиг. 3. Фазовый центр ионосферных волн находят как точку пересечения радиус-векторов. Положение радиус-векторов в пространстве полностью определяется косинус-направляющими. В прямоугольной системе координат, задаваемой ортогональными парами измерителей (13, 14), (15, 16), (17, 18), (19, 20) косинус-направляющая вектора равна отношению его проекции (Пр) на данную ось к длине вектора. Длины векторов R1, R2 фиг. 3 находятся как корень квадратный из суммы проекций:

Проекции радиус-векторов пропорциональны сигналам на входе приемников в ортогональных плоскостях х, у.

Кроме направления в пространстве, ионосферная волна характеризуется периодом (Т) и амплитудой A(t), которая изменяется во времени, фиг. 2. Из математики известно [см., например, Пискунов Н.С., «Дифференциальное и интегральное исчисления для ВТУЗов», учебник т. 1, 5-е издание, М, Наука, 1964 г., стр. 457-458], что сама функция и скорость ее изменения связаны дифференциальным уравнением первого порядка, общим решением которого является экспонента. Экспоненциальная зависимость обладает тем свойством, что по трем ее дискретным отсчетам может быть восстановлена вся функция и определен предел А0, к которому стремится экспонента:

Где A1, А2, А3 - амплитуды сигналов в моменты измерений (отсчетов) соответственно t1, t2, t3 В свою очередь, постоянную времени процесса Т определяют из соотношения:

Δt - интервал времени наблюдений между отсчетами A1, А2.

По постоянной времени переходного процесса прогнозируют характеристики ожидаемого сейсмического удара. Время удара - это интервал времени, за который амплитуда сигнала, с вероятностью близкой к единице, достигает установившегося значения А0, для экспоненты tуст=4,7T (с вероятностью 0,99). Магнитуду удара определяют из соотношения Гутенберга-Рихтера: [см., например, «Краткосрочный прогноз катастрофических землетрясений с помощью радиофизических наземно-космических методов», Доклады конференции ОИФЗ им. О.Ю. Шмидта, РАН, М, 1998 г., стр. 10, стр. 13].

Пример реализации способа

Заявленный способ может быть реализован по схеме фиг. 5. Функциональная схема фиг. 5 содержит два пункта измерителей 1, 2, разнесенных в пространстве на расстояние измерительной базы 3. На каждом из пунктов установлено по две антенны 4, 5 и 6, 7 с диаграммами направленности во взаимно ортогональных плоскостях, оси диаграмм направленности антенн 5, 7 ориентируют по направленности базы 3, с подключенными к антеннам приемниками 8, 9 и 10, 11 соответственно. Гетеродины приемников синхронизированы от единого передатчика 12, работающего в импульсном режиме, подключенного к антенне зондирования ионосферы 4. Выход каждого из приемников подключен к тракту обработки из последовательно включенных порогового устройства и аналогово-цифрового преобразователя соответственно (13, 14), (15, 16), (17, 18) и (19, 20). Все тракты обработки подключены к канальному коммутатору 21, имеющему выход на вход компьютера 22 обработки результатов измерений в составе элементов: процессора 23, оперативно-запоминающего устройства 24, винчестера 25, дисплея 26, принтера 27, клавиатуры 28. В компьютер закладывают программу обработки и программу синхронизации работы элементов измерителей, которую пересылают в программируемую схему выборки измерений 29. Результаты обработки выводят на сайт 30 сети Интернет для передачи потребителям.

Взаимодействие элементов устройства при прогнозировании землетрясений состоит в следующем. Известно «Явление раскачки очага землетрясения перед сейсмическим ударом», Научное открытие №365, 2008 г. [см., Потоцкий В.В., Бюллетень, Научные открытия, РАЕН, М, СПб, 2009 г., стр. 66-68].

Раскачка очага землетрясения сопровождается распространением от гипоцентра очага литосферных волн, которые через механизм передачи в виде акустических волн, возбуждают волны плотности электронной концентрации в ионосфере, как это иллюстрируется графиками фиг. 2.

Применительно к одной из возможных реализаций (фиг. 2, 4) установившееся значение сигнала А0 (в шкале квантования 0…255 уровней) составило величину ~250. Значения A1 и А2 в интервале наблюдений Δt=t2-t1=8 час, соответствовали A1=125, А2=175. Откуда постоянная времени

Ожидаемое время удара ty=4,7T=70 час = 2,9 суток.

Ожидаемая магнитуда удара М≈7,1 балла

Направляющие косинусы гипоцентра очага землетрясения (фиг. 3) для первого пункта α=44°, для второго пункта β=62°.

Все элементы устройства представляют существующие технические разработки и средства аналогов. В устройстве использованы новые, по отношению к аналогам, элементы измерительной аппаратуры фирмы Bruel & Kjair, ENDEVCO (Дания) следующих моделей: канальный коммутатор, пороговое устройство, аналогово-цифровой преобразователь - многофункциональный блок, модель 3560-L. «Антенна для зондирования ионосферы», Патент Ru №2504054, 2014 г., широкополосная, работающая во всей полосе критических частот ионосферы, из двух, скрещенных в ортогональных плоскостях ромбов, подвешенных на опорной мачте из композитного материала, высотой 32 м, создающей геометрию главной диагонали ромбов, работающих в режиме бегущей волны.

Эффективность способа характеризуется высокой чувствительностью, поскольку отраженный сигнал собирается с большой площади зондируемого участка ионосферы и, соответственно, увеличением интервала времени упреждающего прогноза сейсмического удара.


Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Способ измерения ионосферных предвестников землетрясений
Источник поступления информации: Роспатент

Showing 11-20 of 68 items.
29.12.2017
№217.015.fb97

Способ определения количества порубочных остатков после сортиментных лесозаготовок

Изобретение может быть использовано в лесной промышленности на лесозаготовках. Способ включает выборку порубочных остатков. Выборку порубочных остатков после сортиментной заготовки леса производят по систематически расположенным на участке пробным линиям 4 одинаковой длины, проведенным...
Тип: Изобретение
Номер охранного документа: 0002639895
Дата охранного документа: 25.12.2017
19.01.2018
№218.016.0523

Способ измерения угла места (высоты) низколетящих целей под малыми углами места в радиолокаторах кругового обзора при наличии мешающих отражений от подстилающей поверхности

Изобретение относится к радиолокации и может быть использовано в трехкоординатных радиолокаторах кругового обзора для измерения угла места (высоты) низколетящих целей под малыми углами места, в том числе целей, летящих на предельно малых высотах (десятки метров от поверхности земли), при...
Тип: Изобретение
Номер охранного документа: 0002630686
Дата охранного документа: 12.09.2017
13.02.2018
№218.016.20c2

Модуль проходной фазированной антенной решетки с драйвером управления фазовращателем

Изобретение относится к области радиотехники СВЧ- и КВЧ-диапазонов. Модуль проходной фазированной антенной решетки (ФАР) содержит основание модуля в виде печатной платы и элементы ФАР, соединенные с основанием модуля. На основании модуля в пространстве между элементами ФАР размещены драйверы...
Тип: Изобретение
Номер охранного документа: 0002641506
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.2110

Способ очистки жидких радиоактивных отходов и устройство для его осуществления

Группа изобретений относится к области ядерной энергетики. Способ очистки жидких радиоактивных отходов (ЖРО) предусматривает предварительную фильтрацию, озонирование, дозированное введение в кубовый остаток ЖРО перекиси водорода, обработку кубового остатка импульсным ультрафиолетовым излучением...
Тип: Изобретение
Номер охранного документа: 0002641656
Дата охранного документа: 19.01.2018
13.02.2018
№218.016.231e

Сорбционный материал, способ его получения и способ его применения

Группа изобретений относится к области синтеза сорбентов, которые, в частности, могут быть использованы в медицине. Заявленный сорбционный материал содержит пористый носитель, функциональные группы на поверхности которого ковалентно связаны с лигандом, способным к образованию прочных комплексов...
Тип: Изобретение
Номер охранного документа: 0002641924
Дата охранного документа: 23.01.2018
04.04.2018
№218.016.344c

Электрогидравлическая форсунка аккумуляторной топливной системы дизельного двигателя

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания. Предложена электрогидравлическая форсунка аккумуляторной топливной системы дизельного двигателя, содержащая корпус 1 с группой корпусных деталей 2, 3, в которых имеются каналы высокого давления, каналы...
Тип: Изобретение
Номер охранного документа: 0002646170
Дата охранного документа: 01.03.2018
04.04.2018
№218.016.363d

Устройство фотохимической обработки для установок очистки и обеззараживания воды

Изобретение относится к очистке и обеззараживанию воды с помощью ультрафиолетового излучения. Устройство фотохимической обработки для установок очистки и обеззараживания воды содержит каскад непрерывного облучения в виде фотохимического реактора 2 на основе одной или нескольких ультрафиолетовых...
Тип: Изобретение
Номер охранного документа: 0002646438
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.3660

Гетероструктурный полевой транзистор на основе нитрида галлия с улучшенной стабильностью вольт-амперной характеристики к ионизирующим излучениям

Изобретение относится к области радиотехники и электроники. В гетероструктурном полевом транзисторе на основе нитрида галлия с улучшенной стабильностью вольт-амперной характеристики, включающем подложку из карбида кремния, зародышевый слой, буферный слой, барьерный слой на основе AlGaN, слой...
Тип: Изобретение
Номер охранного документа: 0002646529
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36cc

Гетероструктурный полевой транзистор на основе нитрида галлия с улучшенной температурной стабильностью вольт-амперной характеристики

Изобретение относится к области радиотехники и электроники. В гетероструктурном полевом транзисторе на основе нитрида галлия с улучшенной стабильностью вольт-амперной характеристики, включающем подложку из карбида кремния, канальный слой, буферный слой, барьерный слой на основе AlGaN, слой...
Тип: Изобретение
Номер охранного документа: 0002646536
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.387a

Дистанционный способ обнаружения стрессовых состояний растений

Изобретение относится к измерительной технике и касается дистанционного способа обнаружения участков растительности в стрессовом состоянии путем лазерного возбуждения флуоресценции хлорофилла растения и регистрации интенсивности флуоресценции. Для зондирования растительности используют каналы...
Тип: Изобретение
Номер охранного документа: 0002646937
Дата охранного документа: 12.03.2018
Showing 11-16 of 16 items.
19.08.2018
№218.016.7ddf

Способ идентификации загрязнений морской поверхности

Изобретение относится к способам дистанционных исследований морских акваторий и может быть использовано для идентификации загрязнений морской поверхности. Сущность: с помощью установленных на воздушно-космическом носителе средств осуществляют зондирование прибрежных акваторий, содержащих...
Тип: Изобретение
Номер охранного документа: 0002664255
Дата охранного документа: 15.08.2018
01.03.2019
№219.016.cec2

Способ краткосрочного прогнозирования землетрясений

Изобретение относится к области сейсмологии и может быть использовано для прогнозирования землетрясений. Сущность: на протяженной измерительной базе устанавливают два разнесенных в пространстве измерительных пункта. Каждый измерительный пункт содержит по два заглубленных в грунт датчика,...
Тип: Изобретение
Номер охранного документа: 0002458362
Дата охранного документа: 10.08.2012
10.04.2019
№219.017.09ac

Способ обнаружения очагов землетрясений сетью сейсмостанций

Изобретение относится к области сейсмологии и может быть использовано для прогнозирования землетрясений. Сущность: в сейсмоопасном регионе размещают сеть сейсмических станций с сейсмоприемниками из трехкомпонентных кондукто-метрических датчиков давления. Датчики давления размещают на...
Тип: Изобретение
Номер охранного документа: 0002463631
Дата охранного документа: 10.10.2012
29.04.2019
№219.017.4667

Способ верификации системы наземных измерений состояния атмосферы мегаполисов

Изобретение относится к дистанционным методам мониторинга природных сред и может быть использовано для систем санитарно-эпидемиологического контроля промышленных регионов. Согласно способу получают генерализованное, спектрозональное изображение в красной полосе видимого диапазона, содержащее...
Тип: Изобретение
Номер охранного документа: 0002463556
Дата охранного документа: 10.10.2012
29.05.2019
№219.017.6a3e

Способ определения загрязнения атмосферы мегаполисов вредными газами

Изобретение относится к экологии, а именно к дистанционным методам мониторинга природных сред и санитарно-эпидемиологическому контролю промышленных регионов. Способ включает синхронную съемку цифровой видеокамерой и гиперспектрометром, установленными на космическом носителе с положением входной...
Тип: Изобретение
Номер охранного документа: 0002460059
Дата охранного документа: 27.08.2012
23.07.2019
№219.017.b6ef

Способ измерений содержания парниковых газов в атмосфере

Изобретение относится к области экологии, к дистанционным методам мониторинга природных сред. Способ включает зондирование подстилающей поверхности спектрометром с широким полем зрения во всем интервале полос переизлучений газовых молекул Лаймана, Бальмара, Пашена, определение средневзвешенного...
Тип: Изобретение
Номер охранного документа: 0002695086
Дата охранного документа: 19.07.2019
+ добавить свой РИД