×
19.07.2019
219.017.b678

Результат интеллектуальной деятельности: Способ определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях

Вид РИД

Изобретение

Аннотация: Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей движения твердых частиц в жидкости. Способ включает введение частиц в кювету с вязкой жидкостью, выполненную в виде правильной призмы с прозрачными стенками, и измерение скорости их гравитационного осаждения в жидкости. В кювету вводят с нулевой начальной скоростью одновременно две частицы одинакового диаметра, выполненные из одного материала. Одну из частиц непосредственно перед введением в жидкость нагревают или охлаждают до температуры, отличающейся от температуры другой эталонной частицы, равной температуре жидкости, не менее чем на ±20 К. Скорость осаждения каждой из частиц измеряют времяпролетным методом с помощью видеосъемки процесса осаждения через прозрачные стенки кюветы. Время предварительного нагрева или охлаждения одной из частиц, расстояние, на котором измеряют скорость осаждения частиц в жидкости и коэффициент сопротивления нагретой или охлажденной частицы, определяются по заданным алгебраическим соотношениям. Технический результат – повышение достоверности получаемых результатов. 3 ил., 5 табл.

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей движения твердых частиц в жидкости.

Процесс движения частиц в поле силы тяжести имеет важное практическое значение в задачах экологии (очистка водоемов от примесей), в угольной промышленности (гидроподавление пыли в угольных шахтах), при ликвидации последствий катастрофических явлений техногенного или природного характера (извержение вулканов, промышленные взрывы и т.п.), в теплоэнергетике (сжигание водоугольных суспензий), в процессах химической технологии (осадительные колонны) и в целом ряде других отраслей техники и технологии [1].

Одной из основных характеристик, определяющих закономерности движения частиц в двухфазном потоке, является входящий в уравнение движения коэффициент сопротивления среды движению частиц Сх [2]. Обработка многочисленных опытных данных по коэффициенту сопротивления твердой сферы представлена в виде так называемой стандартной кривой сопротивления - зависимости Сх от числа Рейнольдса [2].

Стандартная кривая сопротивления и подавляющее большинство зависимостей для Сх, приведенных в литературе для усложненных условий обтекания частиц (обзорные публикации [3, 4]), получены в изотермических условиях (равенство температур частиц и несущей среды).

В ряде технических систем и технологических процессов движение частиц в несущей среде происходит в неизотермических условиях. При этом температура частиц может быть существенно выше или ниже температуры среды (плазмохимический синтез керамических порошков, тушение пожаров с применением авиации, процессы нагрева или охлаждения частиц в аппаратах химической технологии и т.п. [5, 6]). В этих условиях использование стандартной кривой сопротивления приводит к существенным погрешностям при расчете скорости движения частиц. Это связано с изменением физических свойств (в первую очередь вязкости) среды в пограничном слое вблизи частицы, входящих в число Рейнольдса.

Известен способ определения зависимости коэффициента сопротивления сферических частиц в неизотермических условиях от разности температур ΔT частицы и среды [7]. Этот способ основан на аппроксимации зависимости Cx(ΔT), полученной при численном решении задачи обтекания сферы. Показано, что уточнение зависимости Cx(ΔT) реализуется при расчете чисел Рейнольдса для параметров обтекающей среды при «пленочной» температуре где Тр и - температура частицы и среды соответственно. Недостатком данного способа является необходимость оценки его адекватности путем сравнения с экспериментальными данными, которые в литературе отсутствуют.

Известен способ оценки зависимости Cx(ΔT) путем измерения скорости свободно падающих горящих капель пентана, гептана и бензола в холодной атмосфере [8]. Недостатком данного способа является влияние вдува продуктов испарения капель и изменение размера капель за счет горения в процессе осаждения на коэффициент сопротивления.

Наиболее близким по технической сущности к заявляемому изобретению является способ, основанный на введении в кювету с вязкой жидкостью твердых сферических частиц и измерение скорости их гравитационного осаждения в стационарном режиме с последующим расчетом коэффициента сопротивления из уравнения движения частицы [9]. Указанный способ применим только для изотермических режимов осаждения частиц.

Техническим результатом настоящего изобретения является разработка способа определения коэффициента сопротивления твердых сферических частиц при их гравитационном осаждении в вязкой жидкости в неизотермических условиях.

Технический результат достигается тем, что разработан способ определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях, включающий введение частиц в кювету с вязкой жидкостью, выполненную в виде правильной призмы с прозрачными стенками, и измерение скорости их гравитационного осаждения в жидкости. В кювету вводят с нулевой начальной скоростью одновременно две частицы одинакового диаметра, выполненные из одного материала. Одну из частиц предварительно перед введением в жидкость нагревают (или охлаждают) до температуры, отличающейся от температуры другой (эталонной) частицы, равной температуре жидкости, не менее, чем на±20 К. Скорость осаждения каждой из частиц измеряют времяпролетным методом с помощью видеосъемки процесса осаждения через прозрачные стенки кюветы. Время предварительного нагрева (или охлаждения) одной из частиц, расстояние, на котором измеряют скорость осаждения частиц в жидкости и коэффициент сопротивления нагретой (или охлажденной) частицы определяют из соотношений:

где

t1 - время предварительного нагрева (или охлаждения) одной из частиц, с;

Dp - диаметр частицы, м;

- коэффициент температуропроводности материала частиц, м2/с;

- коэффициент теплопроводности жидкости, Вт/(м⋅К);

ρр - плотность материала частиц, кг/м3;

ср - удельная теплоемкость материала частиц, Дж/(кг⋅К);

х1 - расстояние, на котором измеряют скорость осаждения частиц в жидкости, м;

- скорость осаждения нагретой (или охлажденной) частицы, м/с;

ΔT=(Т-To) - величина нагрева (или охлаждения) частицы, К;

Т - температура нагретой (или охлажденной) частицы, К;

To - температура эталонной частицы, К;

Cx(ΔT) - коэффициент сопротивления нагретой (или охлажденной) частицы;

Схо - коэффициент сопротивления эталонной частицы;

- скорость осаждения эталонной частицы, м/с;

g - ускорение свободного падения, м/с2;

- плотность жидкости, кг/м3.

Положительный эффект изобретения обусловлен следующими факторами.

1. Одновременное введение двух частиц одинакового диаметра, выполненных из одного материала, обеспечивает идентичность теплофизических характеристик частиц - эталонной и нагретой (или охлажденной).

2. Введение частиц с нулевой начальной скоростью позволяет строго оценить длину участка установления стационарного режима осаждения.

3. Предварительный нагрев (или охлаждение) одной из частиц перед введением в жидкость снижает погрешность определения температуры частицы за счет ее охлаждения (или нагрева) в воздухе.

4. Нагрев (или охлаждение) одной из частиц до температуры, отличающейся от температуры эталонной частицы, равной температуре жидкости не менее, чем на ±20 К обеспечивает изменение вязкости в пограничном слое жидкости, достаточное для получения разной скорости осаждения эталонной и нагретой (или охлажденной) частицы.

5. Равенство температур эталонной частицы и жидкости позволяет реализовать изотермический режим осаждения и определить опорное значение коэффициента сопротивления Схо при

6. Время t1 предварительного нагрева (или охлаждения) частицы определяется из условия [10]:

При значении числа Фурье Fo=1 частица полностью прогревается (или охлаждается) до равномерной по всему объему температуры. Из (5) следует формула (1) для определения времени нагрева (охлаждения):

7. Изменение температуры нагретой (или охлажденной) частицы во времени T(t) при ее движении в жидкости, температура которой определяется в соответствии с законом Ньютона уравнением теплового баланса [10]:

где Vp - объем частицы, м3;

T(t) - изменение температуры нагретой (или охлажденной) частицы во времени, К;

t - время, с;

α - коэффициент теплоотдачи, Вт/(м⋅К);

Sp - площадь поверхности частицы, м2.

Интеграл уравнения (6) имеет вид

где Тн - начальная температура нагретой (или охлажденной) частицы, К;

- постоянная времени, с.

Для сферической частицы диаметром Dp постоянная времени равна:

Преобразуем уравнение (7) к виду:

где - текущая разность температур частицы и жидкости в процессе охлаждения;

- начальная разность температур частицы и жидкости.

Значения для разных моментов времени t/τ, рассчитанные по уравнению (9), приведены в таблице 1.

Таблица 1 - Значения для разных моментов времени t/τ

Из приведенных в таблице 1 данных следует, что изменение температуры нагретой (или охлажденной) частицы за счет конвективного теплообмена с жидкостью не более, чем на 5%, происходит за промежуток времени

Расстояние, пройденное частицей за время t1 от момента начала осаждения, определяется формулой

Величина коэффициента теплоотдачи α определяется через число Нуссельта [10]

где - число Рейнольдса;

- скорость осаждения частицы, м/с;

- коэффициент динамической вязкости жидкости, Па⋅с.

При осаждении частиц в стоксовском режиме (Re<1) из (11) следует приближенная оценка

При этом с учетом (11, 12) формула (8) для постоянной времени примет вид

Подставляя (13) в формулу (10), получим соотношение (2) для расстояния х1, на котором можно пренебречь изменением температуры частицы (с погрешностью 5%)

8. Уравнение гравитационного осаждения твердой частицы в жидкости имеет вид [9]:

где m - масса частицы, кг;

Sm - площадь миделева сечения частицы, м2;

Сх - коэффициент сопротивления.

При стационарном режиме осаждения из уравнения (14) следует формула для определения коэффициента сопротивления сферической частицы:

При нагреве (или охлаждении) частицы скорость ее гравитационного осаждения изменяется за счет нагрева (или охлаждения) прилегающего к частице пограничного слоя жидкости. При нагреве пограничного слоя вязкость жидкости уменьшается, что приводит к снижению коэффициента сопротивления и увеличению скорости осаждения частицы. При охлаждении пограничного слоя наблюдается снижение скорости осаждения частицы.

В таблице 2 приведены значения коэффициента динамической вязкости и плотности типичной вязкой жидкости - глицерина в зависимости от температуры [11].

Таблица 2 - Значения плотности глицерина и его динамической вязкости в интервале температур (20÷200)°С

Из приведенных данных следует, что изменение плотности жидкости с увеличением температуры намного меньше изменения коэффициента динамической вязкости Предполагая формулу (15) можно записать для эталонной и нагретой (или охлажденной) частиц в виде:

где

При этом из (16), (17) следует соотношение (3) для определения коэффициента сопротивления нагретой (или охлажденной) частицы:

Соотношение для Схо (4) получается из формулы (16) при подстановке в нее выражения для А=const.

Пример реализации

Сущность заявленного изобретения поясняется схемой, приведенной на Фиг. 1. Установка для реализации способа состоит из призматической кюветы 1 с вязкой жидкостью 2, устройства нагрева частицы, устройства ввода эталонной и нагретой частиц в жидкость и системы визуализации процесса осаждения частиц.

Кювета 1 выполнена из оптического стекла в виде правильной призмы размером 30×30×90 см. Устройство нагрева частицы 3 состоит из цилиндрического контейнера 4 со спиралью накаливания 5. Устройство ввода эталонной 6 и нагретой 3 частиц состоит из неподвижной 7 и подвижной 8 пластин, в которых выполнены совмещенные круглые отверстия 9. Визуализацию процесса осаждения частиц в жидкости проводили скоростной цифровой видеокамерой 10 типа Citius С100 с темпом съемки (50÷200) кадров в секунду. Обработка видеорядов проводилась с использованием компьютера 11.

Устройство для реализации способа определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях работает следующим образом. Предварительно нагревали одну из частиц 3 в контейнере 4 до заданной температуры, которую измеряли термопарой 12, соединенной через усилитель 13 с осциллографом 11. После нагрева частицы 3 ее вводили в отверстие 9 неподвижной пластины 7 за счет свободного падения при удалении стопора 15 электромагнитным приводом 16.

Затем подвижную пластину 8 с помощью электромагнитного привода 14 смещали в горизонтальном направлении до совмещения отверстий 9 в подвижной 8 и неподвижной 7 пластинах. При этом эталонная 6 и нагретая 3 частицы осаждались в вязкой жидкости 2 с нулевой начальной скоростью.

Полученные с видеокамеры 10 данные обрабатывались на компьютере 11 с целью определения скорости осаждения каждой из частиц времяпролетным методом.

Эффективность заявленного способа подтверждена проведением серии экспериментов, по исследованию влияния температуры нагретой частицы на коэффициент сопротивления при малых числах Рейнольдса.

В экспериментах использовались стальные шарики диаметром 3.0, 8.87 и 17.47 мм. В качестве вязкой жидкости использовалось силиконовое масло ПМС-10000. Измеренная методом взвешивания на аналитических весах плотность материала частиц составляла Плотность жидкости, измеренная ареометром при температуре эксперимента составляла Значение коэффициента динамической вязкости жидкости, измеренного по стационарной скорости осаждения шарика диаметром Dp=3 мм в стоксовском режиме [9], составляла

Значение времени предварительного нагрева частиц t1 и расстояния х1 на котором измеряли скорость осаждения частиц в жидкости, рассчитывались по соотношениям (1), (2). При этом использовались табличные значения теплофизических характеристик стали:

Рассчитанные значения t1, x1 приведены в таблице 3.

Таблица 3 - Рассчитанные значения t1, х1

С учетом неидеальности теплового контакта шарика с устройством его нагрева значения времени нагрева были увеличены в несколько раз в соответствие с неравенством (1).

Видеоряд процесса осаждения нагретого и эталонного шариков диаметром Dp=17.47 мм приведен на Фиг. 2. Из приведенных видеокадров видно, что скорость осаждения нагретого шарика 6 существенно превышает скорость осаждения эталонного шарика 3. Графики зависимости пройденного нагретыми до 300°С и эталонными частицами (Dp=8.87 мм, Dp=17.47 мм) расстояния х от времени t приведены на Фиг. 3. Из графиков следует, что скорости частицы соответствуют стационарному режиму осаждения.

Измеренные значения скорости осаждения эталонного шарика, осредненные по 5 дублирующим опытам, рассчитанные значения числа Рейнольдса и коэффициента сопротивления Схо приведены в таблице 4.

Таблица 4 - Характеристики осаждения частиц в изотермических условиях

Здесь же приведены значения коэффициента сопротивления , рассчитанные по аппроксимационной зависимости [9]:

где - измеренное значение скорости осаждения частиц.

Из результатов, приведенных в таблице 3, следует, что в изотермических условиях измеренные значения коэффициента сопротивления Схо соответствуют зависимости (18). Расхождение составляет 0.1% (для Dp=3 мм), 0.4% (для Dp=8.87 мм), 2.9% (для Dp=17.47 мм). Увеличение расхождения для более крупных частиц связано, по-видимому, с погрешностью аппроксимационной зависимости (18).

Измеренные значения скорости осаждения и рассчитанные значения коэффициента сопротивления для нагретых частиц (при ) приведены в таблице 5.

Таблица 5 - Характеристики осаждения частиц в неизотермических условиях

Здесь же приведены значения относительного снижения коэффициента сопротивления частиц при их нагреве до 300°С, рассчитанные по формуле

Из результатов, приведенных в таблице 3, следует, что при нагреве шариков диаметром Dp=8.87 мм и Dp=17.47 мм относительное снижение коэффициента сопротивления одинаково и составляет 38%.

Таким образом, из приведенного примера следует, что заявляемый способ обеспечивает достижение технического результата изобретения - возможность определения коэффициента сопротивления твердых сферических частиц при их гравитационном осаждении в вязкой жидкости в неизотермических условиях.

ЛИТЕРАТУРА

1. Романков П.Г., Курочкина М.И. Гидромеханические процессы химической технологии. - Л.: Химия, 1982. - 288 с.

2. Нигматулин Р.И. Динамика многофазных сред. Ч. 1. - М: Наука, 1987. - 464 с.

3. Шрайбер А.А. Многофазные полидисперсные течения с переменным фракционным составом дискретных включений // Итоги науки и техники: Комплексные и специальные разделы механики. - М.: ВИНИТИ, 1988. - С. 3-80.

4. Келбалиев Г.И. Коэффициенты сопротивления твердых частиц, капель и пузырей различной формы // Теоретические основы химической технологии. - 2011. - Т. 45, №3. - С. 264-283.

5. Гуляев И.П., Солоненко О.П. Моделирование поведения полых частиц ZrO2 в плазменной струе с учетом их термического расширения // Теплофизика и аэромеханика. - 2013. - Т. 20, №6. - С. 789-802.

6. Асовский В.П. Особенности тушения лесных пожаров вертолетами с использованием подвесных водосливных устройств // Научный вестник МГТУ ГА: Аэромеханика и прочность. - 2009. - №138. - С. 142-149.

7. Pfender Е., Lee Y.C. Particle dynamics and particle heat and mass transfer in thermal plasmas. Part 1. The motion of a single particle without thermal effects // Plasma chemistry and plasma processing. - 1985. - V. 5, No. 3. - P. 211-237.

8. Eisenklam P., Arunachalam S.A. The drag resistance of burning drops // Combustion and flame. - 1966. - Vol. 10, No. 2. - P. 171-181.

9. Архипов В.А., Усанина А.С. Гравитационное осаждение совокупности твердых сферических частиц в режиме частично продуваемого облака // Инженерно-физический журнал. - 2017. - Т. 90, №5. - С. 1-8.

10. Лыков А.В. Теория теплопроводности. - М: Высшая школа, 1967. - 599 с.

11. Справочник химика. Основные свойства неорганических и органических соединений. Т. 2. - Л.: Химия, 1971. - 1168 с.


Способ определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях
Способ определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях
Способ определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях
Способ определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях
Способ определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях
Способ определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях
Способ определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях
Способ определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях
Способ определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях
Способ определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях
Способ определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях
Источник поступления информации: Роспатент

Showing 11-20 of 29 items.
29.05.2018
№218.016.5710

Способ самоорганизации оптически активного ансамбля диамагнитных наночастиц электрон-ион

Изобретение относится к квантовой технике. Способ самоорганизации оптически активного ансамбля диамагнитных наночастиц электрон-ион заключается в создании объема когерентности, где на каждую молекулу резонансно по энергии воздействуют векторной суммой коллектива полей, состоящего из...
Тип: Изобретение
Номер охранного документа: 0002655052
Дата охранного документа: 23.05.2018
21.10.2018
№218.016.94ab

Устройство для создания компактного кластера монодисперсных пузырьков

Изобретение относится к аэрационным устройствам, предназначенным для введения газа в жидкую среду, в частности к устройствам для получения компактного кластера пузырьков одинакового размера. Устройство включает размещенный в нижней части резервуара с жидкостью коллектор в виде цилиндрической...
Тип: Изобретение
Номер охранного документа: 0002670228
Дата охранного документа: 19.10.2018
19.01.2019
№219.016.b1e9

Снаряд для стрельбы в водной среде

Изобретение относится к снарядам, движущимся в водной среде. Снаряд содержит корпус, в котором размещен реактивный двигатель с центральным соплом, баллистический наконечник, выполненный в виде усеченного конуса, и кольцевое сопло для вдува газа в водную среду. В качестве реактивного двигателя...
Тип: Изобретение
Номер охранного документа: 0002677506
Дата охранного документа: 17.01.2019
29.03.2019
№219.016.eddd

Установка для исследования динамики всплытия пузырькового кластера в жидкости

Изобретение относится к области разработки установок для лабораторных исследований физических процессов, в частности для исследования закономерностей всплытия компактного пузырькового кластера в жидкости. Установка включает прозрачную призматическую кювету с жидкостью, устройство для...
Тип: Изобретение
Номер охранного документа: 0002683147
Дата охранного документа: 26.03.2019
11.04.2019
№219.017.0b63

Линейный реверсивный вибродвигатель

Изобретение относится к электротехнике и может быть использовано как исполнительный элемент для прецизионных перемещений в оптико-механических приборах, в технологическом оборудовании для микроэлектроники, в системах автоматического наведения, в механических сканирующих устройствах и...
Тип: Изобретение
Номер охранного документа: 0002684395
Дата охранного документа: 09.04.2019
24.05.2019
№219.017.5ddb

Способ измерения интегрального коэффициента излучения поверхности твердого материала

Изобретение относится к области измерений в теплофизике, в частности к способам определения интегрального коэффициента излучения поверхности твердых материалов, и может быть использовано при измерении интегрального коэффициента излучения теплозащитных материалов. Способ включает измерение...
Тип: Изобретение
Номер охранного документа: 0002688911
Дата охранного документа: 22.05.2019
07.06.2019
№219.017.756c

Способ получения потока капель с регулируемым дисперсным составом

Изобретение относится к средствам распыливания жидкостей и растворов и может быть использовано в двигателестроении, химической и лакокрасочной промышленности. Способ получения потока капель с регулируемым дисперсным составом включает распыливание жидкости в газообразной среде центробежной...
Тип: Изобретение
Номер охранного документа: 0002690802
Дата охранного документа: 05.06.2019
13.06.2019
№219.017.818e

Способ оценки взрыво- и пожароопасности химических источников тока

Изобретение относится к области производства и испытаний химических элементов питания и может быть использовано для оценки их взрыво- и пожароопасности при эксплуатации. Пробивание корпуса цилиндрической батареи осуществляют по ее диаметру заостренным металлическим стержнем диаметром (4÷5) мм в...
Тип: Изобретение
Номер охранного документа: 0002691196
Дата охранного документа: 11.06.2019
20.06.2019
№219.017.8ccc

Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния

Изобретение относится к области металлургии легких сплавов, в частности к способам получения литьем сплавов на основе алюминия и магния. Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния включает предварительный нагрев герметичной цилиндрической камеры, на...
Тип: Изобретение
Номер охранного документа: 0002691826
Дата охранного документа: 18.06.2019
02.10.2019
№219.017.cf04

Судоподъемный комплекс, твердотопливный газогенератор и способ судоподъема

Изобретение относится к судостроению, а именно к судоподъемным и аварийно-спасательным работам. Судоподъемный комплекс содержит траверсу в виде замкнутой трубы, внутренними перегородками разделенной на балластные цистерны, причем, в средних боковых и концевых цистернах установлены...
Тип: Изобретение
Номер охранного документа: 0002700431
Дата охранного документа: 17.09.2019
Showing 11-20 of 79 items.
20.01.2015
№216.013.1f87

Устройство для распыления расплавленных металлов

Изобретение относится к области порошковой металлургии. Устройство для распыления расплавленных металлов содержит корпус с крышкой и кольцевой полостью, соединенной с газопроводом для подачи нагретого сжатого газа, ниппель с центральным каналом для подачи расплава металла и дополнительный...
Тип: Изобретение
Номер охранного документа: 0002539512
Дата охранного документа: 20.01.2015
20.02.2015
№216.013.295b

Способ получения упрочненных сплавов на основе алюминия

Изобретение относится к области металлургии, в частности к получению легких сплавов с повышенной прочностью на основе алюминия, и может быть использовано в ракетно-космической, авиационной, автомобильной промышленностях. Способ включает получение лигатуры из смеси порошков алюминия и диборида...
Тип: Изобретение
Номер охранного документа: 0002542044
Дата охранного документа: 20.02.2015
27.06.2015
№216.013.58bc

Форсунка для распыления расплавленных металлов

Изобретение относится к порошковой металлургии, а именно к получению порошка распылением расплава металла. Форсунка содержит корпус с кольцевой щелью для подачи газа, ниппель с центральным каналом для подачи расплава и защитный стальной чехол, ниппель изготовлен из пьезоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002554257
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5b52

Бункер-питатель со шнековой выгрузкой и устройством измельчения

Изобретение относится к технологии дозированной подачи порошкообразных материалов, особенно с крупными включениями порошковых спеков пластинчатой формы. Бункер-питатель содержит бункер, соединенный с имеющим выходной патрубок корпусом двухопорно закрепленного выгрузочного винтового шнека,...
Тип: Изобретение
Номер охранного документа: 0002554919
Дата охранного документа: 27.06.2015
10.08.2015
№216.013.6b82

Способ получения металлических порошков распылением расплавов

Изобретение относится к области порошковой металлургии. Струю металлического расплава диспергируют окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний. Звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин,...
Тип: Изобретение
Номер охранного документа: 0002559080
Дата охранного документа: 10.08.2015
10.11.2015
№216.013.8cba

Способ получения порошка диоксида урана из гексафторида урана и установка для его осуществления

Группа изобретений относится к области металлургии, а именно к способу получению порошка диоксида урана методом пирогидролиза и к установке для его осуществления. Способ включает подачу в предварительно разогретую первую реакционную зону реакционной камеры гексафторида урана и водяного пара,...
Тип: Изобретение
Номер охранного документа: 0002567633
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8d4c

Способ получения модифицированных алюминиевых сплавов

Изобретение относится к получению упрочненных легких сплавов на основе алюминия. В расплав алюминиевого сплава при температуре 750÷800ºС вводят 6 мас.% порошка криолита NaAlF, через промежуток времени не менее 10 мин в расплав вводят 5÷6 мас.% модификатора при одновременной активации расплава...
Тип: Изобретение
Номер охранного документа: 0002567779
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9420

Твердотопливный ракетный двигатель

Изобретение относится к области ракетной техники, а именно к конструкциям зарядов твердотопливных ракетных двигателей. Ракетный двигатель включает камеру сгорания, пластинчатый заряд твердого топлива из сплошных и перфорированных дисков, боковая поверхность которого покрыта бронирующим...
Тип: Изобретение
Номер охранного документа: 0002569539
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9486

Способ определения характеристик зажигания образцов высокоэнергетических материалов лучистым тепловым потоком

Изобретение относится к области исследования характеристик высокоэнергетических материалов (ВЭМ) и может быть использовано для определения времени задержки зажигания ВЭМ лучистым тепловым потоком. Способ заключается в непосредственном измерении времени задержки зажигания ВЭМ, на поверхность...
Тип: Изобретение
Номер охранного документа: 0002569641
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95c4

Гибридный ракетный двигатель

Изобретение относится к области ракетной техники, в частности к конструкциям гибридных ракетных двигателей космического назначения. Гибридный ракетный двигатель содержит камеру сгорания с размещенным в ней зарядом твердого топлива с внутренним сквозным каналом и сопловой блок. Во входном...
Тип: Изобретение
Номер охранного документа: 0002569960
Дата охранного документа: 10.12.2015
+ добавить свой РИД