×
19.07.2019
219.017.b665

Результат интеллектуальной деятельности: Способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока

Вид РИД

Изобретение

Аннотация: Использование: для создания функциональных переключаемых электронных устройств. Сущность изобретения заключается в том, что способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока, включает использование корпускулярного излучения, при этом создают элементы требуемых геометрических форм и размеров, облучают только выбранные участки функциональных элементов, а в качестве корпускулярного излучения используют низкоэнергетический поток ионов или атомов, энергия и доза которого достаточны для образования дефектов кристаллической структуры и/или изменения стехиометрии материала сверхпроводника. Технический результат - формирование наноразмерных функциональных элементов электронных устройств со стабильными параметрами критического тока в требуемых областях. 2 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к микроэлектронике и может быть использовано при создании функциональных переключаемых электронных устройств различного назначения, в том числе, для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов, имеющих оптимальные для этого величины критического тока для всего проводника или для отдельных его участков.

Известен способ получения сверхпроводящих пленок с различными значениями плотности критического тока путем варьирования толщины пленки (патент РФ №2 133525, МПК H01L 39/22[1]). Результаты исследований механизма роста YBaCuO пленок и зависимости сверхпроводящих свойств пленки от ее толщины d показывают, что после преодоления порога перколяции существует некоторый интервал значений толщин, при котором плотность критического тока пленки меняется скачком почти на два порядка. При значениях d~10÷20 нм величина плотности критического тока Jс составляет порядка 103 А/см2. При d>30 нм величина Jc>105 А/см2 и, при дальнейшем росте толщины, плотность тока выходит на насыщение (Jc>106 А/см2). Таким образом, путем варьирования толщины пленки d можно задавать необходимую плотность критического тока. Недостатком данного способа является ограниченность применения полученных с его помощью элементов электронных устройств. Например, совмещенные со сквидом на одной подложке сверхпроводящий трансформатор потока и петли градиометра также изготавливаются из сверхтонкой пленки, а следовательно, обладают низкими значениями плотности критического тока, а сверхтонкие пленки полученные этим способом обладают слабой устойчивостью к воздействию окружающей среды и к термо-циклированию в интервале температур 77÷300 К, что делает сквиды и магнитометры, изготовленные данным способом, недолговечными.

Известен способ формирования сверхпроводящих пленок с требуемыми значениями величины критического тока, (патент РФ на изобретение №2199796, МПК H01L 39/22,. [2]. Способ заключался в следующем: технологические параметры для выращивания пленок выбирались такими, при которых для обычного режима постростового остывания получается высококачественная монокристаллическая пленка. Варьированием скорости и времени охлаждения пленки можно организовать в пленке необходимую степень механических напряжений и, следовательно, необходимое значение плотности критического тока. При высоких скоростях охлаждения в монокристаллической пленке образуются домены напряжений, границы между которыми представляют сильнонапряженные участки, подавляющие, вследствие кулоновской блокады, ток куперовских пар, что и приводит к подавлению сверхпроводящих транспортных свойств пленки, в частности плотности критического тока. Основным недостатком данного способа получения пленки является то, что джозефсоновские микромостики, изготовленные из налряженных пленок, неустойчивы к релаксациям упругих напряжений, что делает нестабильным критический ток мостиков - со временем значение критического тока мостика релаксирует до высоких значений, что сопровождается понижением чувствительности сквида. Еще одним недостатком данного способа является то, что выращиваемая сверхпроводящая пленка является напряженной по всей площади, а следовательно, совмещенные со сквидом на одной подложке сверхпроводящий трансформатор потока и петли градиометра также изготавливаются из напряженных участков пленки, что приводит к ухудшению их качества.

Наиболее близким к заявляемому по достигаемому результату является известный способ формирования сверхпроводящей тонкой пленки, имеющей области с различными значениями плотности критического тока, основанный на создании механических напряжений в подложке (патент РФ на изобретение №2375789, МПК H01L 39/24, [3]. Способ предусматривает использование излучения корпускулярных частиц (фотонов) для создания в конечном итоге упругих напряжений в выращенных пленках. Для этого перед нанесением пленки в подложке создают механические напряжения путем воздействия на подложку в требуемых областях сфокусированным до заданных размеров импульсным лазерным излучением наносекундной длительности. При этом для формирования в пленке областей с регулируемой плотностью критического тока от 103 до 104 А/см2 выбирают энергию облучения подложки в диапазоне 500-1000 Дж, а затем проводят напыление сверхпроводящей пленки методом лазерной абляции.

Недостатком известного способа является то, что в результате использования лазерного излучения изменение свойств сверхпроводящей пленки происходит на относительно большой площади (способ позволяет обеспечить области облучения подложки размером 0,1-1 мм в диаметре. Впоследствии на облученной подложке методом лазерной абляции выращивают сверхпроводящую тонкую пленку, в которой формируются дополнительные упругие напряжения только в тех областях, которые расположены над облученными участками подложки), что ограничивает использование в наноразмерных устройствах без дополнительных технологических операций. В частности, для использования в функциональных элементах электронных устройств из выращенной пленки необходимо выделять фрагменты требуемой геометрии и размеров. Кроме того, созданные в пленке механические напряжения рано или поздно релаксируют, что влечет изменение рабочих характеристик устройств, в которых они могут быть использованы.

Заявляемый способ направлен на формирование наноразмерных функциональных элементов электронных устройств со стабильными параметрами критического тока в требуемых областях.

Указанный результат достигается тем, что способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока включает использование для этого корпускулярного излучения. При этом сначала создают элементы требуемых геометрических форм и размеров, облучают только выбранные участки функциональных элементов, а в качестве излучения используют низкоэнергетический поток ионов или атомов, энергия и доза которого достаточны для образования дефектов кристаллической структуры и/или изменения стехиометрии материала сверхпроводника.

Указанный результат достигается также тем, что параметры ионного облучения, при которых достигаются требуемые изменения критических токов при сохранении сверхпроводящих свойств материала, выбираются экспериментально путем построения их зависимости от параметров облучения.

Указанный результат достигается также тем, в качестве корпускулярного излучения используют низкоэнергетический поток ионов или атомов кислорода, ионов или атомов водорода или протонов и ионов ОН+.

Отличительными признаками заявляемого способа являются:

- предварительное формирование функциональных элементов, электронных устройств требуемых геометрических форм и размеров;

- облучают только выбранные участки функциональных элементов, в которых необходимо иметь требуемое значение величины критического тока;

- качестве корпускулярного излучения используют низкоэнергетический поток ионов;

- энергию и дозу потока ионов подбирают достаточными для образования дефектов кристаллической структуры и/или изменения стехиометрии материала сверхпроводника;

- параметры ионного облучения, при которых достигаются требуемые изменения критических токов при сохранении сверхпроводящих свойств материала, выбираются экспериментально путем построения их зависимости от параметров облучения;

- в качестве корпускулярного излучения используют поток ионов или атомов кислорода, ионов или атомов водорода или протонов и ионов OH+.

Использование корпускулярного излучения в виде низкоэнергетического потока ионов или атомов позволяет обеспечить получение сверхпроводниковых функциональных элементов электронных устройств со стабильными параметрами критического тока в требуемых областях путем воздействия потоком корпускулярного облучения на выбранные участки элементов.

В ходе проведения экспериментов по воздействию низкоэнергетического смешанного ионного облучения на тонкопленочные сверхпроводники было установлено, что облучение приводит к образованию дефектов кристаллической структуры материала сверхпроводника, а также к изменению стехиометрии сверхпроводящего материала за счет замены части выбитых атомов сверхпроводника на атомы, привнесенные из пучка корпускулярного облучения. Выяснилось, что образование дефектов кристаллической структуры, а также изменение стехиометрии сверхпроводника вызывает изменение параметров сверхпроводимости, в частности, уменьшение прямого и обратного критических токов, увеличение электрического сопротивления в нормальном состоянии. Стабильность во времени внесенных облучением изменений свойств объясняется образованием устойчивых конфигураций дефектов, а также стабильных фаз с измененным химическим составом элементов в исходном сверхпроводнике. Например, если облучению смешанным пучком ионов, состоящим из протонов (Н+) и ионов (ОН+) подвергается нитрид ниобия NbN, то в качестве стабильной фазы с измененным составом выступает оксинитрид ниобия NbNO. Поэтому признано целесообразным в качестве корпускулярного излучения использовать поток ионов или атомов кислорода, ионов или атомов водорода или протонов и ионов ОН+.

Следует учитывать, что описанное выше воздействие на сверхпроводник peaлизуется при малых дозах ионного облучения, поскольку по мере увеличения дозы, материал при рабочей температуре, например, 4.2 К, теряет свои сверхпроводящие свойства, проявляя металлические свойства при промежуточных дозах облучения, а затем - диэлектрические свойства при больших дозах облучения. Для каждого сверхпроводящего материала и выбранных параметрах ионного облучения (состав ионного пучка, энергия ионов, температура облучения и т.п.) значения диапазона доз, при которых реализуется требуемые изменения критических токов при сохранении сверхпроводящих свойств материала, выбираются экспериментальным путем за счет построения зависимости требуемых параметров от дозы облучения. При этом, использование корпускулярного излучения в виде низко-энергетического потока ионов позволяет сначала получить известными способами микросхему электронного устройства, а затем в нужных местах преобразовать свойства сверхпроводника для достижения требуемого критического тока.

Сущность заявляемого способа поясняется примерами реализации и фиг. 1, на которой представлена принципиальная схема установки для измерения величины критического тока.

В общем случае эксперименты по определению величины критического тока проводятся с помощью установки, представленной на фиг. 1 следующим образом.

Исследуемый нанопроводник 1 помещается в жидкий гелий (температура 4.2К) или в другое устройство, позволяющее достичь рабочей температуры, ниже температуры сверхпроводящего перехода материала нанопроводника.

С помощью источника тока 2 через нанопроводник пропускается постоянный ток, который измеряется амперметром 3, при этом напряжение на нанопроводнике измеряется вольтметром 4.

Величина тока через нанопроводник медленно увеличивается до момента возникновения напряжения на нанопроводнике. В момент возникновения напряжения на нанопроводнике фиксируется величина тока, которая соответствует току прямого перехода нанопровода из сверхпроводящего состояния в нормальное.

Далее, величина тока через нанопровод медленно уменьшается до момента исчезновения напряжения на нанопроводнике. В момент исчезновения напряжения на нанопроводнике фиксируется величина тока, которая соответствует току обратного перехода нанопровода из нормального состояния в сверхпроводящее.

Таким образом измеряются прямой и обратный критические токи нанопроводника.

Пример 1.

В качестве исходного материала нанопроводника берется нитрид ниобия (NbN). Методами электронной литографии и плазмохимического травления на диэлектрической подложке из сапфира изготавливаются два идентичных образца нанопроводов. Для подключения нанопроводников к схеме электрических измерений, к их концам методом взрывной фотолитографии формируются макроскопические металлические контакты из платины толщиной 20 нм с подслоем титана толщиной 10 нм.

Толщина нанопроводника составляет 5 нм, ширина нанопроводника 200 нм, длина нанопроводника 500 нм. Сверху на нанопроводники, которые будут подвергаться воздействию корпускулярного излучения наносится слой электронного резиста ПММА толщиной 240 нм. В требуемом месте над одним из нанопроводников методом электронной литографии создается окно с размерами: ширина 200 нм, длина 200 нм (внутри окна резист удаляется и, соответственно, маска отсутствует). Далее, образцы подвергаются облучению смешанным пучком ионов, состоящим из протонов и ионов ОН+ с энергией 1 кэВ до дозы 1 с.н.а. (по азоту). После облучения с помощью установки, представленной на фиг. 1, определяется величина критического тока обоих образцов. Измерения показали, что величина прямого критического тока для образца не подвергаемого воздействию корпускулярного излучения составила 45 мкА, а обратного критического тока 15 мкА.

В результате воздействия облучения на сверхпроводник величина прямого и обратного критического тока для такого же образца уменьшились и составили 8 мкА и 3 мкА соответственно.

Таким образом получен участок сверхпроводника, характеризующийся уменьшенным значением критического тока по сравнению со значением критического тока для исходного нанопроводника из NbN не подвергаемого облучению.

Пример 2.

В качестве исходного материала нанопроводника берется карбо-нитрид ниобия (NbCN). Методами электронной литографии и плазмохимического травления на диэлектрической подложке из сапфира изготавливаются два идентичных образца нанопроводов. Для подключения нанопроводников к схеме электрических измерений, к их концам методом взрывной фотолитографии формируются макроскопические металлические контакты из платины толщиной 20 нм с подслоем титана толщиной 10 нм.

Толщина нанопроводника составляет 5 нм, ширина нанопроводника 200 нм, длина нанопроводника 500 нм. Сверху на нанопроводник наносится слой электронного резиста ПММА толщиной 240 нм. В требуемом месте нанопроводника методом электронной литографии создается окно с размерами: ширина 200 нм, длина 200 нм (внутри окна резист удаляется и, соответственно, маска отсутствует). Далее, образец подвергается облучению смешанным пучком ионов, состоящим из протонов и ионов ОН+ с энергией 1 кэВ до дозы 1 с.н.а. (по азоту). После облучения с помощью установки, представленной на фиг. 1, определяется величина критического тока обоих образцов. Измерения показали, что величина Прямого критического тока для образца не подвергаемого воздействию корпускулярного излучения составила 40 мкА, а обратного критического тока 12 мкА.

В результате воздействия облучения на сверхпроводник величина прямого критического тока для такого образца уменьшились и составили 7 мкА и 2 мкА соответственно, т.е. получен участок сверхпроводника, характеризующийся уменьшенным значением критического тока по сравнению со значением критического тока для исходного нанопроводника из NbCN

Пример 3.

Осуществлялся, как описано в примерах 1 и 2.

В качестве исходного материала нанопроводника берется нитрид ниобия (NbN). Толщина нанопроводника составляет 5 нм, ширина нанопроводника 200 нм, длина нанопроводника 500 нм. Сверху на нанопроводник наносится слой электронного резиста ПММА толщиной 240 нм, покрытого сверху защитным слоем вольфрама толщиной 2 нм. В требуемом месте нанопроводника методом электронной литографии создается окно с размерами: ширина 200 нм, длина 200 нм (внутри окна резист с защитным слоем вольфрама удаляются и, соответственно, маска отсутствует). Далее, образец подвергается облучению пучком ионов кислорода с энергией 0.1 кэВ до дозы 5 с.н.а. (по азоту). Измерения показали, что величина прямого критического тока для образца не подвергаемого воздействию корпускулярного излучения составила 45 мкА, обратного критического тока 15 мкА, а облученного уменьшились и составили 4.5 мкА и 2 мкА соответственно. Таким образом, результате воздействия облучения на месте открытого окна в маске участок сверхпроводника, характеризующийся уменьшенным значением критического тока по сравнению со значением критического тока для исходного нанопроводника из NbN.

Пример 4.

Осуществлялся, как описано в примерах 1 и 2.

В качестве исходного материала нанопроводника берется карбонитрид ниобия (NbCN). Толщина нанопроводника составляет 5 нм, ширина нанопроводника 200 нм, длина нанопроводника 500 нм. Сверху на нанопроводник наносится слой электронного резиста ПММА толщиной 240 нм, покрытого сверху защитным слоем вольфрама толщиной 2 нм. В требуемом месте нанопроводника методом электронной литографии создается окно с размерами: ширина 200 нм, длина 200 нм (внутри окна резист с защитным слоем вольфрама удаляются и, соответственно, маска отсутствует). Далее, образец подвергается облучению пучком ионов кислорода с энергией 0.1 кэВ до дозы 5 с.н.а. (по азоту). Измерения показали, что величина прямого критического тока для образца не подвергаемого воздействию корпускулярного излучения составила 40 мкА, обратного критического тока 12 мкА, а облученного уменьшились и составили 4 мкА и 1 мкА соответственно. В результате воздействия облучения на месте открытого окна в маске участок сверхпроводника, характеризующийся уменьшенным значением критического тока по сравнению со значением критического тока для исходного нанопроводника из NbCN.

По описанной в примерах схеме опыты проводились для различных корпускулярных потоков, различных энергий, доз и материалов сверхпроводника. Часть из них приведена в таблице.


Способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока
Способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока
Источник поступления информации: Роспатент

Showing 131-140 of 259 items.
26.08.2017
№217.015.dd38

Система кондиционирования воздуха

Изобретение относится к системам кондиционирования воздуха для автомобиля и других транспортных средств. Система кондиционирования воздуха для автомобиля с пассажирским салоном и двигательным отсеком содержит первый контур циркуляции с теплообменником для теплообмена между наружным воздухом и...
Тип: Изобретение
Номер охранного документа: 0002624486
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.de39

Способ получения радионуклида лютеций-177

Изобретение относится к способу получения радионуклида лютеций-177 для ядерной медицины. В заявленном способе в процессе контактного восстановления с помощью капельной подачи в ячейку с хлоридно-ацетатным раствором амальгамы натрия и раствора кислот (соляная, уксусная и др.) с одновременным...
Тип: Изобретение
Номер охранного документа: 0002624636
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.deb9

Способ получения катализатора синтеза биоразлагаемых алифатических сложных полиэфиров

Изобретение относится к получению катализатора синтеза биоразлагаемых алифатических сложных полиэфиров поликонденсацией α-замещенных оксикислот, преимущественно молочной кислоты. Полимеры обладают способностью к полному биоразложению в живом организме или естественных природных условиях и могут...
Тип: Изобретение
Номер охранного документа: 0002624905
Дата охранного документа: 10.07.2017
26.08.2017
№217.015.e428

Способ преобразования энергии

Изобретение относится преимущественно к способам преобразования энергии газообразного топлива (природный или синтез-газ, водород) в механическую. Способ преобразования энергии предусматривает подачу в камеру сгорания сжатого воздуха и парометановодородной смеси, расширение продуктов ее сгорания...
Тип: Изобретение
Номер охранного документа: 0002626291
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e4fe

Система создания биоинженерных моделей тканей животных и человека

Изобретение относится к области биохимии. Предложена система создания биоинженерных моделей тканей животных и человека. Система содержит набор газовых баллонов с газовыми смесями азота, кислорода и двуокиси углерода заранее заданного состава. Каждый баллон соединен с коммуникационной системой,...
Тип: Изобретение
Номер охранного документа: 0002626526
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e8f5

Сцинтилляционный материал для регистрации ионизирующего излучения (варианты)

Группа изобретений относится к материалам, используемым в сцинтилляционной технике. Сущность группы изобретений заключается в том, что сцинтилляционный материал для регистрации ионизирующего излучения представляет собой кристаллический твердый раствор с общей эмпирической формулой Li(Y Lu)F при...
Тип: Изобретение
Номер охранного документа: 0002627573
Дата охранного документа: 08.08.2017
20.11.2017
№217.015.efc8

Осевой насос вспомогательного кровообращения

Изобретение относится к медицинской технике, а именно к осевому насосу вспомогательного кровообращения. Насос состоит из трубчатого полого корпуса. Внутри корпуса установлен с возможностью вращения нагнетательный элемент с лопатками, ориентированный вдоль оси. Нагнетательный элемент образует...
Тип: Изобретение
Номер охранного документа: 0002629054
Дата охранного документа: 24.08.2017
29.12.2017
№217.015.f535

Способ получения фармацевтических композиций на основе полимерных наночастиц методом микрофлюидной технологии

Изобретение относится к фармацевтической промышленности, а именно к способу получения фармацевтических композиций на основе полимерных наночастиц методом микрофлюидной технологии. Способ заключается в пропускании через проточный микрореактор, выполненный из боросиликатного стекла, водного...
Тип: Изобретение
Номер охранного документа: 0002637653
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f54d

Капиллярно-пористый электрод для магнитогидродинамических плазменных устройств

Изобретение относится к энергетике и может использоваться для преобразования энергии в магнитогидродинамических (МГД) плазменных устройствах, к которым относятся МГД генераторы электрической энергии и МГД ускорители плазменных сред. Техническим результатом является создание капиллярно-пористых...
Тип: Изобретение
Номер охранного документа: 0002637816
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f98d

Устройство для облучения образцов материалов электронами

Изобретение относится к устройству для облучения образцов материалов электронами. Заявленное устройство состоит из герметичной камеры, представляющей собой цилиндрический корпус с патрубками, разделенный изолятором на две части, внутри которой расположены держатель образца, соединенный со...
Тип: Изобретение
Номер охранного документа: 0002639767
Дата охранного документа: 22.12.2017
Showing 11-15 of 15 items.
06.12.2018
№218.016.a40f

Способ перевода сверхпроводника в элементах логики наноразмерных электронных устройств из сверхпроводящего состояния в нормальное

Использование: для создания функциональных переключаемых электронных устройств различного назначения. Сущность изобретения заключается в том, что способ перевода сверхпроводника в электронных функциональных наноразмерных устройствах из сверхпроводящего состояния в нормальное осуществляют путем...
Тип: Изобретение
Номер охранного документа: 0002674063
Дата охранного документа: 04.12.2018
20.02.2019
№219.016.bfec

Устройство энергонезависимой памяти

Изобретение к устройствам энергонезависимой электрически перепрограммируемой памяти, реализуемы с помощью методов микро- и нанотехнологии. Техническим результатом является снижение энергозатрат на считывание хранящейся информации и ее перезапись. Устройство содержит немагнитную матрицу и...
Тип: Изобретение
Номер охранного документа: 0002374704
Дата охранного документа: 27.11.2009
19.07.2019
№219.017.b699

Способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное

Использование: для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов. Сущность изобретения заключается в том, что способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное...
Тип: Изобретение
Номер охранного документа: 0002694799
Дата охранного документа: 16.07.2019
10.10.2019
№219.017.d476

Сверхпроводниковый дискретный счетный компонент

Использование: для создания счетного компонента в наноразмерных цифровых устройствах в различных областях науки и техники. Сущность изобретения заключается в том, что сверхпроводниковый дискретный счетный компонент, характеризующийся дискретным набором равновесных состояний, содержит...
Тип: Изобретение
Номер охранного документа: 0002702402
Дата охранного документа: 08.10.2019
21.05.2023
№223.018.6922

Способ снижения величины гистерезиса по току перехода сверхпроводящих нанопроводов из сверхпроводящего состояния в нормальное и обратно

Изобретение относится к микроэлектронике и может быть использовано при создании функциональных переключаемых электронных устройств различного назначения, в том числе, для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов. Способ...
Тип: Изобретение
Номер охранного документа: 0002794493
Дата охранного документа: 19.04.2023
+ добавить свой РИД