×
19.07.2019
219.017.b618

Результат интеллектуальной деятельности: Устройство для контроля защитного потенциала подземного металлического сооружения

Вид РИД

Изобретение

№ охранного документа
0002694854
Дата охранного документа
17.07.2019
Аннотация: Изобретение относится к устройствам для контроля защитного потенциала подземного металлического сооружения. Устройство содержит блок контроля, источник светового излучения и волоконно-оптический датчик потенциала, соединенные с волоконно-оптическим кабелем. Волоконно-оптический датчик потенциала включает оптическое волокно, чувствительную к электрическому полю среду и отводы для соединения с неполяризующимся электродом сравнения и подземным металлическим сооружением. В результате повышается эффективность контроля защитного потенциала подземного сооружения. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области электрохимической защиты подземных металлических сооружений от коррозии и может быть использовано для постоянного наблюдения за изменением защитного потенциала на протяженных подземных металлических объектах.

Известна система мониторинга технического состояния трубопровода (Патент на изобретение РФ №2563419, F17D 5/00, 2015), содержащая систему сбора и обработки измеренных параметров текущего состояния трубопровода, блоки хранения данных и анализа отклонения текущих параметров состояния трубопровода, блок адаптации модели состояния трубопровода к текущему состоянию, блок формирования данных об отклонении текущего состояния трубопровода от модели состояния трубопровода, устройство отображения информации, распределенные и квазираспределенные волоконно-оптические датчики, в частности для измерения электрического поля, выполненные в виде секций и расположенные непрерывно по всей длине трубопровода.

Недостатком известной системы является ее сложность, высокая стоимость.

Известна система мониторинга параметров катодной защиты нефтяного трубопровода (Международная заявка WO2017120174, C23F13/04, 2017), принятая в качестве ближайшего аналога. Система включает волоконно-оптический кабель, подключенный к металлическому сооружению, светогенератор и поляриметр, процессор, связанный со светогенератором и поляриметром. Система измеряет и регулирует ток, протекающий через трубопровод.

Недостатком системы является невозможность контроля малых изменений потенциала защищаемого объекта, которые могут происходить в пределах погрешности поляриметра, однако оказывают влияние на коррозионные процессы в подземном сооружении.

Технический результат заявляемого изобретения заключается в повышении эффективности контроля защитного потенциала подземного сооружения.

Технический результат достигается тем, что устройство для контроля защитного потенциала подземного металлического сооружения, содержащее блок контроля, источник светового излучения, подключенные к волоконно-оптическому кабелю, согласно изобретению, содержит хотя бы один волоконно-оптический датчик потенциала в виде оптического волокна, содержащего чувствительную к электрическому полю среду, связанный с неполяризующимся электродом сравнения.

Кроме того, в устройстве волоконно-оптический датчик потенциала в качестве чувствительной среды может содержать ниобат лития.

Кроме того, в устройстве волоконно-оптический датчик потенциала в качестве чувствительной среды может содержать жидкие кристаллы.

Кроме того, в устройстве волоконно-оптический датчик потенциала в качестве чувствительной среды может содержать электролит.

Технический результат обеспечивается тем, что устройство контроля защитного потенциала подземного сооружения включает волоконно-оптический датчик потенциала, содержащий чувствительную среду, реагирующую на изменение электрического потенциала на поверхности защищаемого металлического сооружения, соединенный с электродом сравнения. При изменении электрического потенциала чувствительная среда изменяет свои светопропускные свойства. Отраженный сигнал через волоконно-оптический кабель мгновенно передается на блок контроля, благодаря чему повышается эффективность контроля над защитным потенциалом протяженного подземного сооружения. Волоконно-оптические датчики со встроенной чувствительной к электрическому полю средой в виде ниобата лития, жидких кристаллов или электролита способны реагировать на малые изменения защитного потенциала. Кроме того, контроль защитного потенциала с помощью заявляемого устройства может осуществляться дистанционно на удаленных или протяженных объектах, так как волоконно-оптические датчики потенциала, передающие сигналы по волоконно-оптической линии связи (ВОЛС), имеют устойчивый сигнал и не требуют наличия источника энергии в месте измерения защитного потенциала.

На фиг.1 представлена общая схема устройства для контроля защитного потенциала подземного металлического сооружения.

На фиг.2 показан волоконно-оптический датчик потенциала со встроенной чувствительной к электрическому полю средой.

Устройство для контроля защитного потенциала подземного металлического сооружения содержит блок контроля 1 с источником излучения 2, подключенный к волоконно-оптическому кабелю 3, волоконно-оптические датчики потенциала 4, соединенные с волоконно-оптическим кабелем 3 через оптические разъемы 5. При этом каждый волоконно-оптический датчик потенциала 4 связан с неполяризующимся электродом сравнения 6 и защищаемым объектом 7 отводами 8 и 9 соответственно. Волоконно-оптический датчик 4 содержит среду 10, встроенную в волоконно-оптическое волокно 11.

Волоконно-оптический датчик потенциала 4 представляет собой оптическое волокно с встроенной чувствительной к изменениям электрического поля средой 10. В качестве чувствительной среды 10 предпочтительно использование ниобата лития, который обладает линейным электрооптическим эффектом, т.е. изменяет свои оптические свойства, например фазовый сдвиг, пропорционально величине защитного потенциала на защищаемом объекте 7. Кристалл ниобата лития может быть встроен в волокно, как это показано на фиг.2 или закреплен на торцевой части волокна. Также в качестве чувствительной среды 10 могут быть использованы жидкие кристаллы или электролит, которые также изменяют свои оптические характеристики под воздействием электрического поля, например, изменяют коэффициент затухания, прозрачность или цвет. В качестве электролита может быть использован твердый электролит, например, смесь порошка медного купороса, этиленгликоля и гипса. При этом жидкие кристаллы или электролит могут быть заключены в микроемкости, или закреплены между металлическими пластинками, а оптическое волокно датчика помещено в эту среду.

В качестве неполяризующегося электрода сравнения 6 используют преимущественно медно-сульфатный электрод сравнения, в связи с тем, что его собственный потенциал не меняется от вида грунта, в котором находится защищаемое металлическое сооружение 7. Электрод сравнения 6 необходим для начала точки отсчета при измерении потенциала вблизи защищаемого сооружения 7, например, металлической трубы.

В качестве блока контроля 1 используют компьютер, оснащенный программным обеспечением для распознавания, обработки и анализа сигналов, поступающих от волоконно-оптических датчиков потенциала 4, установленных с определенной периодичностью на протяжении всего защищаемого подземного сооружения 7. Блок контроля 1 связан со станцией катодной защиты (СКЗ) (на фиг.1 не показана).

В качестве источника светового излучения 2 используют лазерный источник излучения малой мощности.

Устройство для контроля защитного потенциала работает следующим образом.

Для контроля за защитным потенциалом вдоль защищаемого металлического подземного сооружения 7, например, металлического трубопровода, через определенные промежутки размещают волоконно-оптические датчики потенциала 4. Каждый из датчиков 4 отводами 9 и 8, соответственно, соединяют с защищаемым сооружением 7 и неполяризующимся электродом сравнения 6, расположенным под землей вблизи защищаемого объекта 7. Волоконно-оптические датчики потенциала 4 соединяют через оптические разъемы 5 с волоконно-оптическим кабелем 3, который проложен вдоль всего защищаемого сооружения 7 и соединен с блоком контроля 1 и источником светового излучения 2. Волоконно-оптические датчики потенциала 4 располагают преимущественно на поверхности земли, например, в корпусах контрольно-измерительных пунктов (на фиг.1 не показаны).

После установки каждый волоконно-оптический датчик потенциала 4 испытывают, т.е. определяют зависимость величины его отраженного оптического сигнала, например фазового сдвига, от изменения величины защитного потенциала подземного сооружения 7 и длины прохождения светового луча. Для этого на чувствительную среду 10 волоконно-оптического датчика потенциала 4 подают световой луч, и с определенной дискретностью изменяют величину защитного потенциала, получают ответный измененный оптический сигнал, соответствующий установленной величине защитного потенциала. Изменение защитного потенциала осуществляют через минимальные промежутки, например, через 0,1 В. Вводят полученные данные в блок контроля 1.

Для контроля защитного потенциала посредством источника светового излучения 1 по волоконно-оптическому кабелю 3 подают световой сигнал, который проходит через установленные волоконно-оптические датчики потенциала 4. Блок контроля 1 получает отраженные сигналы с каждого волоконно-оптического датчика потенциала 4, анализирует полученную информацию. При получении сигнала от одного или нескольких датчиков 4 об изменении защитного потенциала выше или ниже оптимальной величины, блок контроля 1 определяет местоположение этих датчиков 4. После этого блок контроля подает сигнал на СКЗ для корректировки величины защитного потенциала до оптимальной величины 0,1-3,0 В.

При этом волоконно-оптические датчики потенциала 4 не требуют электропитания и могут быть применены в местах, где невозможно использование дополнительных источников электропитания.

Таким образом, предлагаемое изобретение позволяет повысить эффективность контроля защитного потенциала подземного металлического сооружения.


Устройство для контроля защитного потенциала подземного металлического сооружения
Устройство для контроля защитного потенциала подземного металлического сооружения
Устройство для контроля защитного потенциала подземного металлического сооружения
Источник поступления информации: Роспатент

Showing 1-1 of 1 item.
12.04.2023
№223.018.493b

Способ катодной защиты трубы

Изобретение относится к электрохимической защите конструкций от коррозии и может быть использовано при защите металлоконструкций без дополнительного источника питания. Расширение арсенала технических средств, используемых в электрохимической защите от коррозии, путем реализации нового средства...
Тип: Изобретение
Номер охранного документа: 0002740024
Дата охранного документа: 30.12.2020
Showing 11-17 of 17 items.
16.11.2019
№219.017.e322

Электрод сравнения

Изобретение относится к средствам контроля за величиной защитного потенциала на защищаемом объекте, а именно к электродам сравнения медносульфатным неполяризующимся, и может быть использовано в составе станций катодной защиты для измерения потенциала подземных металлических сооружений....
Тип: Изобретение
Номер охранного документа: 0002706251
Дата охранного документа: 15.11.2019
06.12.2019
№219.017.e9df

Способ поиска методов разрешения технических противоречий и система на основе обучаемой нейронной сети для его осуществления

Изобретение относится к компьютерным системам, а именно к системам, синтезирующим интеллектуальные решения в виде нахождения нужного решения или пути к нему по запросу пользователя из заданной им области знания. Техническим результатом является обеспечение разрешения любого технического...
Тип: Изобретение
Номер охранного документа: 0002707917
Дата охранного документа: 02.12.2019
23.02.2020
№220.018.04ca

Устройство измерения защитного потенциала подводного объекта

Изобретение относится к области электрохимической защиты и используется для определения потенциала электрохимической защиты на участках протяженного подводного трубопровода. Технический результат: снижение трудоемкости обслуживания устройства. Сущность: в качестве источника питания устройства...
Тип: Изобретение
Номер охранного документа: 0002714850
Дата охранного документа: 19.02.2020
12.04.2023
№223.018.4893

Способ установки подводных анодов для катодной защиты подводных объектов

Изобретение относится к области предотвращения коррозии металлов путем катодной защиты, в частности к конструктивным элементам подводных устройств катодной защиты, и может быть использовано при защите от коррозии гидротехнических сооружений, например морских платформ, портов. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002768061
Дата охранного документа: 23.03.2022
12.04.2023
№223.018.4894

Способ катодной защиты подземного объекта

Изобретение относится к катодной защите подземных металлических сооружений от коррозии и может быть использовано при электрохимической защите трубопроводов, проложенных в грунте. Способ включает соединение подземного объекта со станцией катодной защиты, размещение вблизи защищаемого объекта...
Тип: Изобретение
Номер охранного документа: 0002768063
Дата охранного документа: 23.03.2022
12.04.2023
№223.018.493b

Способ катодной защиты трубы

Изобретение относится к электрохимической защите конструкций от коррозии и может быть использовано при защите металлоконструкций без дополнительного источника питания. Расширение арсенала технических средств, используемых в электрохимической защите от коррозии, путем реализации нового средства...
Тип: Изобретение
Номер охранного документа: 0002740024
Дата охранного документа: 30.12.2020
12.04.2023
№223.018.4945

Способ защиты от коррозии подземного трубопровода

Изобретение относится к области электрохимической защиты от коррозии протяженных объектов с помощью станций катодной защиты (далее СКЗ). В заявленном способе в программное обеспечение контроллеров СКЗ и в программное обеспечение контроллера центра управления заводят номера всех точек соединения...
Тип: Изобретение
Номер охранного документа: 0002746108
Дата охранного документа: 07.04.2021
+ добавить свой РИД