×
11.07.2019
219.017.b2af

Результат интеллектуальной деятельности: Способ определения степени черноты поверхности натурного обтекателя ракет при тепловых испытаниях и установка для его реализации

Вид РИД

Изобретение

Аннотация: Изобретение относится к области теплофизики и касается способа определения степени черноты поверхности натурных обтекателей при тепловых испытаниях. Способ включает радиационный нагрев обтекателя, полностью соответствующего натурному обтекателю, на тепловом стенде кварцевыми галогенными лампами накаливания и непрерывный замер температуры с помощью термопар в нескольких контрольных точках по высоте обтекателя на наружной и внутренней его поверхностях. Нагрев обтекателя производится со ступенчатым увеличением мощности нагревателя с шагом 10-15%, выдержкой по времени достигнутой мощности нагревателя на каждой квазистационарной ступени режима нагрева, в момент которого с помощью малоинерционных датчиков лучистого теплового потока производится замер эффективного теплового потока от обтекателя в каждой контрольной точке дважды: с включенным нагревателем и после кратковременного его отключения. Степень черноты поверхности натурного обтекателя в контрольных точках по высоте обтекателя в зависимости от температуры вычисляется по формуле, вытекающей из закона Стефана-Больцмана. Технический результат заключается в повышении точности определения степени черноты. 2 н.п. ф-лы, 1 ил.

Изобретение относится к теплофизике в области теплообмена излучением, в частности, к способам измерения степени черноты покрытий и поверхностей различных обтекателей, а также к области тепловых испытаний высокоскоростных летательных аппаратов и может быть использовано при наземных испытаниях антенных обтекателей ракет.

Тепловые испытания антенных обтекателей ракет различного класса проводятся с целью изучения влияния аэродинамического нагрева на несущую способность обтекателя, определения температурных полей на поверхности обтекателя в процессе полета, исследования изменения физико-механических характеристик материала оболочки, определения температур внутри обтекателя и оценки влияния этой температуры на аппаратуру, защищаемую обтекателем.

На практике наибольшее распространение получил способ нагрева испытываемых антенных обтекателей ракет путем лучистого нагрева с помощью инфракрасных нагревателей (кварцевых галогенных ламп накаливания), который позволяет достаточно легко воспроизвести нужное температурное поле обтекателя путем изменения электрического напряжения в нагревателях. Такой способ реализуется с помощью регулирующих устройств. Управление нагревом вручную или автоматически (по программе) позволяет, достаточно точно, воспроизвести нестационарный нагрев, который соответствует реальному полету.

Достоинством галогенных нагревателей, используемым в предлагаемом способе, является малая инерционность нагревателей по сравнению с другими нагревателями, показатель постоянной времени составляет величину всего 0,3 с, темп нагрева достигает 150-200 К/с, а максимальная температура достигает 2000К.

Известен стенд для испытания и воспроизведения аэродинамического теплового воздействия на антенный обтекатель ракеты в наземных условиях, который состоит из четырех раздельных цилиндрических нагревательных панелей радиационного нагрева на основе кварцевых галогенных ламп накаливания, контроль температуры в этих зонах осуществляется с помощью измерительных преобразователей (термопар), которые установлены на поверхности обтекателя в каждой регулируемой зоне и их количество равно количеству независимых нагревательных панелей. Управление нагревом на таком стенде производят в автоматическом режиме по заданной температуре и по измерению термопары на обтекателе (Испытания летательных аппаратов (беспилотные летательные аппараты) / П.П. Афанасьев и др. - Калуга: ИП Стрельцов И.А. (Издательство «Эйдос»), 2015. стр. 246).

Для точного расчета теплового состояния обтекателя и расчетных температур на поверхности обтекателя, по которым будет осуществляться управление нагревом, необходимо учитывать тепло-физические свойства материала обтекателя и зависимость степени черноты поверхности натурного обтекателя ε(Т) от температуры, которая характеризует излучательную способность обтекателя в диапазоне рабочих температур (режим полета). При этом значение параметра ε(Т) для поверхности обтекателя, полученное на образцах, может не соответствовать натурному обтекателю, так как в реальной конструкции поверхность обтекателя имеет шероховатость после механической обработки и на его поверхность могут наноситься различные покрытия, улучшающие его радиотехнические характеристики. При испытании натурного обтекателя, который полностью соответствует летному экземпляру, необходимо знать степень черноты ε(Т) его поверхности.

В полете и при испытании на тепловом стенде поверхность обтекателя может частично разрушаться (обгорать), окисляться и соответственно может изменяться значение степени черноты ε(Т), что существенно влияет на точность определения тепловых потоков, подводимых к обтекателю в полете и на точность вычисления температур на его поверхности.

Известны способы определения степени черноты поверхности твердых тел, которые проводятся только на специальных образцах, в специальных условиях (например, в вакууме), с использованием специальной аппаратуры и не позволяющие применить известные способы на натурных конструкциях. Методы определения степени черноты также основываются на использовании специальных эталонных образцов или с нанесением на образцы эталонных покрытий с заранее известной степенью черноты, что тоже не позволяет реализовать эти методы при испытании натурных обтекателей, которые полностью должны соответствовать летным экземплярам.

Известен способ измерения степени черноты твердых тел, при котором эталонный образец изготавливают из того же материала, что и исследуемый образец, наносят на эталонный образец покрытие с известной степенью черноты, сравнивают скорости изменения температуры эталонного и исследуемого образцов при их нагреве излучением черного тела в моменты времени, соответствующие одинаковой температуре, и определяют степень черноты путем сравнением скоростей изменения температуры исследуемого и эталонного образцов (А.с. СССР №770333 А1, МПК G01J 5/12, опубл. 20.11.2005 г.).

Недостатками указанного способа является необходимость замера скоростей изменения температуры образцов в строго фиксированные моменты времени, когда температуры обоих образцов одинаковы. Получение зависимости степени черноты твердого тела от температуры с помощью этого способа не обеспечивает постоянство точности параметра на всем диапазоне измерений, поскольку скорости изменения температуры образцов зависят от температуры.

Известен способ относительного измерения степени черноты твердых тел, в котором доводят яркостную (радиационную) температуру эталона до яркостной (радиационной) температуры объекта, одновременно компенсируют искажения температурных полей объекта и эталона, по измеренным истинным температурам и известному коэффициенту черноты излучения эталона определяют коэффициент черноты объекта (А.с. СССР №412496, кл. G01J 5/00, опубл. 25.01.1974 г.).

Недостатком данного способа является использование эталонного объекта и ограничения, связанные с необходимостью замера яркостной (радиационной) температуры, что в условиях натурных испытаний трудно осуществить.

Известен способ определения степени черноты тела, в котором измеряют мощность эталонного тела и по разности мощностей исследуемого и эталонного тел через калибровочный коэффициент определяют искомую величину (А.с. СССР №270295, кл. G01J 5/00, опубл. 08.05.1970 г.).

Недостатком данного способа является использование эталонного объекта и сложности с определением калибровочного коэффициента, который в свою очередь будет зависеть от температуры, что в условиях натурных испытаний невозможно осуществить.

Наиболее близким техническим решением (прототипом) является способ измерения степени черноты (патент РФ №2510491 С2, МПК G01J 5/12, опубл. 27.03.2014 г.). Способ включает последовательное измерение температуры эталонного и исследуемого образцов, изготовленных из одного и того же материала. Эталонный и исследуемый образцы изготавливают в виде двух пластин с одинаковым покрытием, размещенных одна напротив другой покрытием наружу. При этом на пластины эталонного образца наносят покрытие с известной степенью черноты. В полость между пластинами устанавливают электронагреватель и нагревают пластины при постоянной мощности нагревателя до полного установления стационарного теплового режима. Степень черноты исследуемого образца определяют по расчетной формуле, вытекающей из уравнения теплового баланса, измеряя мощности тепловыделений в исследуемом и контрольном (эталонном) образце, затрачиваемые на поддержание температуры поверхностей образцов на уровне стационарного значения температуры.

Недостатками данного способа является использование эталонного объекта и ограничения, связанные с необходимостью использования пирометров, что в условиях натурных испытаний трудно осуществить.

Техническим результатом изобретения является разработка эффективного способа определения температурной зависимости интегральной степени черноты натурных обтекателей, сокращение количества экспериментальных исследований, повышение точности полученных результатов, используя известные испытательные стенды.

Указанный технический результат достигается тем, что способ определения степени черноты поверхности натурного обтекателя ракет при тепловых испытаниях, включающий радиационный нагрев натурного обтекателя на тепловом стенде с помощью нескольких нагревательных панелей с кварцевыми галогенными лампами накаливания, каждая с индивидуальным управлением по мощности нагрева, а также непрерывный замер температуры в процессе нагрева с помощью термопар, установленных в нескольких контрольных точках по высоте обтекателя на наружной и внутренней его поверхностях, а степень черноты исследуемой поверхности определяют расчетным путем, отличающийся тем, что обтекатель для испытаний на тепловой нагрев должен полностью соответствовать натурному обтекателю, включая используемые покрытия, шероховатость и степень черноты наружной поверхности, наружные термопары устанавливаются в контрольных точках, расположенных напротив средней части нагревательных панелей, а внутренние термопары закрепляются строго напротив наружных, нагрев обтекателя производится со ступенчатым увеличением мощности нагревателя с шагом 10-15% от максимально необходимого значения подводимого теплового потока для конкретного обтекателя и выдержкой по времени достигнутой мощности нагревателя на каждой квазистационарной ступени режима нагрева, в момент которого с помощью малоинерционных датчиков лучистого теплового потока производится замер теплового потока от обтекателя в каждой контрольной точке на наружной и внутренней поверхности обтекателя, причем замер теплового потока на полке квазистационарного режима нагрева производится дважды: с включенным нагревателем замеряется эффективный тепловой поток (Qi)в, включающий отраженное излучение и собственное излучение обтекателя, после кратковременного отключения нагревателя замеряется тепловой поток, излучаемый обтекателем (Qi)н, при температуре Ti, а интегральная степень черноты поверхности натурного обтекателя в контрольных точках по высоте обтекателя в зависимости от температуры вычисляется по формуле, вытекающей из закона Стефана-Больцмана:

εi(T)=ki*(Qi)в/(σ0*Ti4),

где εi - интегральная степень черноты поверхности обтекателя в зоне i-той контрольной точки;

(Qi)в - эффективный тепловой поток, измеряемый датчиком лучистого теплового потока в зоне i-контрольной точки с включенными нагревателями;

σ0=5,67*10-8 Вт/(м2*К4) - постоянная Стефана-Больцмана;

Ti - измеренная температура поверхности обтекателя в i-точке, К;

ki - поправочный коэффициент для i-контрольной точки, определяемый из отношения ki=(Qi)н/(Qi)в теплового потока излучаемого обтекателем с отключенными нагревателями к эффективному тепловому потоку при включенных нагревателях.

В качестве установки для реализации способа определения степени черноты поверхности натурного обтекателя ракет при тепловых испытаниях используется стенд для испытания натурных обтекателей.

Установка определения степени черноты поверхности натурного обтекателя ракет при тепловых испытаниях, содержащая инфракрасные нагревательные панели на основе кварцевых галогенных ламп накаливания, с индивидуальным управлением по мощности нагрева, обтекатель, закрепленный на силовой тумбе, которая закрыта теплозащитным кожухом, а также термопары, установленные в нескольких контрольных точках по высоте обтекателя на внешней и внутренней его поверхностях, отличающаяся тем, что обтекатель для испытаний на тепловой нагрев должен полностью соответствовать натурному обтекателю, установленные на наружной поверхности контрольные термопары крепятся в местах напротив средней части нагревательных панелей, внутренние термопары располагаются строго напротив наружных, а датчики лучистого теплового потока, закрепленные на регулируемых штангах с теплозащитным кожухом из термостойкого материала, расположены напротив контрольных термопар на некотором расстоянии от поверхности обтекателя с направленным на нее чувствительным элементом датчика.

Изобретение иллюстрирует фигура.

Предлагаемый способ реализуется с помощью устройства, которое является стендом теплового нагрева натурных обтекателей, дополненный специально установленными измерительными датчиками температуры и лучистого теплового потока.

Схема теплового стенда содержит антенный обтекатель (объект испытаний) 1, закрепленный на силовой тумбе 2, закрытой теплозащитным кожухом 15, цилиндрические раздвижные инфракрасные нагревательные панели 3 и 4 с галогенными лампами накаливания, с установленными между ними защитными экранами 5 из термостойкого материала, а верхняя часть нагревательных панелей закрывается отражательными экранами 6 и 7 из термостойкого материала с высокой отражательной способностью. На обтекатель 1 устанавливаются контрольные термопары 8 и 9 на наружную поверхность (термопары T1-Т4) и на внутреннюю поверхность (термопары T11-Т44), причем термопары устанавливаются напротив средней части панелей 3 и 4, а внутренние термопары 9 закрепляются строго напротив наружных 8. Датчики 11 и 12 лучистого теплового потока, закрепленные на регулируемых штангах 13 и 14 с теплозащитным кожухом из термостойкого материала на наружной стороне и на внутренней стороне обтекателя 1, устанавливаются напротив контрольных термопар 8 и 9 на некотором расстоянии от поверхности обтекателя на наружной и внутренней стороне с направленным на нее чувствительным элементом датчика 11 и 12.

В качестве примера влияния степени черноты в расчетах теплового состояния конкретных обтекателей, можно привести результаты численного эксперимента изменения температуры на поверхности обтекателя (наружной и внутренней) в процессе нагрева обтекателя в полете при двух значениях ε=0,05 и ε=0,95, что соответствует двум предельным случаям: почти абсолютно белое - черное тело, или учет - не учет излучения с поверхности. Эксперимент, соответствующий реальному режиму полета обтекателя, показал, что учет излучения с наружной поверхности приводит к изменению температуры (уменьшению) на поверхности почти на 100К, а учет излучения с внутренней поверхности увеличивает перепад температур по толщине стенки почти на 180К, при максимальных значениях температур обтекателя всего 850К. Аналогичные результаты получены при испытании на образцах. В других расчетных случаях для более высоких температур нагрева в полете, которые соответствуют большим скоростям и высотам полета, эти отличия достигают еще больших величин, что доказывает важность учета степени черноты и его точное значение на натурных обтекателях, что повышает точность расчета и проведения испытаний обтекателей.

Определение степени черноты поверхности натурного обтекателя становится актуальной задачей, решение которой предложенным способом позволит более точно вычислить температуру на поверхности обтекателя, используемую для управления нагревом и уменьшить тем самым ошибку в режиме нагрева, увеличить точность теплового расчета обтекателя, используемого для оценки его прочности.


Способ определения степени черноты поверхности натурного обтекателя ракет при тепловых испытаниях и установка для его реализации
Способ определения степени черноты поверхности натурного обтекателя ракет при тепловых испытаниях и установка для его реализации
Источник поступления информации: Роспатент

Showing 11-20 of 136 items.
13.01.2017
№217.015.71c3

Способ образования галтелей клея на кромках ячеек сотового заполнителя

Изобретение относится к авиационной технике, а именно к способам изготовления трехслойных звукопоглощающих панелей, предназначенных для снижения шума в авиационных двигателях. Способ образования галтелей клея на кромках ячеек сотового заполнителя включает наложение клеящей пленки на кромки...
Тип: Изобретение
Номер охранного документа: 0002596772
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.729e

Устройство для формования ударопрочных прозрачных полимерных материалов

Изобретение относится к технике переработки листовых заготовок и может быть использовано в любой отрасли машиностроения, в частности для получения изделий остекления самолетов, вертолетов и других средств с одинарной кривизной поверхности. Техническим результатом изобретения является улучшение...
Тип: Изобретение
Номер охранного документа: 0002598092
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.772f

Способ изготовления композитного элемента жесткости

Изобретение относится к композитным структурам, в частности к технологиям усиления композиционных элементов жесткости, и может применяться в области авиастроения и космической техники. Способ изготовления композитного элемента жесткости включает формирование из препрега пары компонентов, каждый...
Тип: Изобретение
Номер охранного документа: 0002599661
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7941

Способ тепловых испытаний обтекателей ракет из неметаллических материалов

Изобретение относится к технике наземных испытаний элементов летательных аппаратов и может быть использовано при наземных испытаниях элементов летательных аппаратов. Заявленный способ включает зонный нагрев наружной поверхности изделия за счет контакта с нагревателем. Распределение температуры...
Тип: Изобретение
Номер охранного документа: 0002599460
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.869f

Способ формования изделий из композиционного материала

Изобретение относится к способу формования изделий из композиционного материала. Техническим результатом является снижение трудоемкости, энергоемкости и сокращение производственного цикла изготовления изделия. Технический результат достигается способом формования изделий из композиционного...
Тип: Изобретение
Номер охранного документа: 0002603798
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8d25

Способ изготовления изделий из стеклокерамики литийалюмосиликатного состава

Изобретение относится к производству керамических изделий радиотехнического назначения. Технический результат изобретения заключается в повышении качества изделий из стеклокерамики литийалюмосиликатного состава. Измельчают аморфное стекло мокрым способом до получения водного шликера, формуют...
Тип: Изобретение
Номер охранного документа: 0002604611
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8d83

Радиопрозрачное защитное покрытие изделий из керамики, ситалла, стеклокерамики и способ его получения

Изобретение относится к технологии получения керамических и стеклокерамических изделий, работающих в условиях высоких тепловых и силовых нагрузок при одностороннем нагреве. Предложен состав и способ получения радиопрозрачных, ударопрочных защитных покрытий для изделий радиотехнического...
Тип: Изобретение
Номер охранного документа: 0002604541
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9b82

Высокотермостойкий радиопрозрачный неорганический стеклопластик и способ его получения

Изобретение относится к радиопрозрачным композиционным материалам. Технический результат – повышение работоспособности аппретирующей пленки, уменьшение кислотности наносимой на стеклоткань суспензии. Высокотермостойкий радиопрозрачный неорганический стеклопластик выполнен на основе фосфатного...
Тип: Изобретение
Номер охранного документа: 0002610048
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.a04f

Способ закрепления датчика измерения перемещения и деформации на объекте

Изобретение относится к измерению деформаций и может быть использовано при испытаниях изделий из хрупких материалов, например керамических обтекателей. Сущность: датчик измерения перемещения и деформации крепится жестким клеем на сухой поверхности односторонней липкой ленты с жесткой основой,...
Тип: Изобретение
Номер охранного документа: 0002606517
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b7e1

Способ контроля прочности керамических оболочек типа тел вращения

Изобретение относится к испытательной технике и может быть использовано для контроля и исследования прочности керамических оболочек типа тел вращения. Сущность: осуществляют приложение статической нагрузки с помощью камеры из эластичного материала, помещенной внутрь испытуемой оболочки и...
Тип: Изобретение
Номер охранного документа: 0002614920
Дата охранного документа: 30.03.2017
Showing 11-20 of 161 items.
10.08.2014
№216.012.e61f

Способ изготовления стеклокерамического материала

Изобретение относится к производству керамических изделий радиотехнического назначения типа стеклокерамической оболочки головного антенного обтекателя скоростных зенитных и авиационных ракет. Техническим результатом изобретения является снижение диэлектрической проницаемости и усадки материала...
Тип: Изобретение
Номер охранного документа: 0002524704
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e633

Способ получения керамических изделий на основе волластонита

Изобретение относится к технологии производства футеровочных и функциональных конструкционных керамических элементов оснастки металлопроводов литейных установок алюминиевой промышленности. Техническим результатом изобретения является снижение плотности теплопроводности, повышение термостойкости...
Тип: Изобретение
Номер охранного документа: 0002524724
Дата охранного документа: 10.08.2014
20.10.2014
№216.012.feac

Способ тепловых испытаний керамических обтекателей ракет

Изобретение относится к области тепловых испытаний и может быть использовано при наземных испытаниях элементов летательных аппаратов. Способ тепловых испытаний керамических обтекателей ракет включает нагрев и контроль температуры обтекателя в зоне узла соединения керамической оболочки со...
Тип: Изобретение
Номер охранного документа: 0002531052
Дата охранного документа: 20.10.2014
27.11.2014
№216.013.0b8a

Способ теплового нагружения конструкций летательных аппаратов из неметаллических материалов

Изобретение относится к области машиностроения и авиационно-космической отрасли промышленности и может быть использовано при проведении испытаний конструкции летательных аппаратов и их узлов (головных обтекателей) из неметаллических материалов на тепловые, а также комплексные термовибрационные...
Тип: Изобретение
Номер охранного документа: 0002534362
Дата охранного документа: 27.11.2014
20.12.2014
№216.013.1334

Антенный обтекатель

Изобретение относится к области авиационно-ракетной техники, преимущественно к конструкциям носовых радиопрозрачных обтекателей, являющихся укрытием от аэродинамического воздействия антенных устройств головок самонаведения (АУ ГСН). Технический результат - снижение теплового воздействия на АУ...
Тип: Изобретение
Номер охранного документа: 0002536339
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1349

Антенный обтекатель

Изобретение относится к области авиационно-ракетной техники, преимущественно к конструкциям носовых радиопрозрачных обтекателей, являющихся укрытием от аэродинамического воздействия антенных устройств головок самонаведения (АУ ГСН). Технический результат - снижение теплового воздействия на АУ...
Тип: Изобретение
Номер охранного документа: 0002536360
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.134a

Антенный обтекатель

Изобретение относится к области создания конструкций носовых антенных обтекателей ракет с оболочками, изготавливаемыми из жаростойких неорганических (керамических) материалов. Технический результат - повышение герметичности и устойчивости антенного обтекателя к воздействию динамических нагрузок...
Тип: Изобретение
Номер охранного документа: 0002536361
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.1b4f

Способ определения предела прочности при растяжении диэлектрических материалов при индукционном нагреве

Изобретение относится к методам определения механических характеристик диэлектрических материалов с учетом условий их применения. Сущность способа заключается в определении предела прочности при растяжении стандартных образцов при высокоинтенсивном индукционном нагреве промежуточного...
Тип: Изобретение
Номер охранного документа: 0002538419
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.26be

Способ испытания на прочность оболочки типа тела вращения

Изобретение относится к области машиностроения и авиационно-космической отрасли промышленности и может быть использовано при проведении наземных испытаний оболочек типа тел вращения. Заявленный способ испытания на прочность оболочки типа тела вращения включает нагружение установленной на...
Тип: Изобретение
Номер охранного документа: 0002541371
Дата охранного документа: 10.02.2015
20.04.2015
№216.013.42d5

Способ определения предела прочности и модуля упругости при сдвиге клеевых соединений металлических образцов при индукционном нагреве

Изобретение относится к методам определения механических характеристик клеевых соединений при интенсивных тепловых воздействиях. Сущность: осуществляют индукционный нагрев образца клеевого соединения до заданной температуры со скоростью 5-50°C/с и определяют искомые характеристики. Технический...
Тип: Изобретение
Номер охранного документа: 0002548607
Дата охранного документа: 20.04.2015
+ добавить свой РИД