×
10.07.2019
219.017.b029

Результат интеллектуальной деятельности: СПОСОБ ЭКСПЛУАТАЦИИ ЛИТИЙ-ИОННОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ В СОСТАВЕ ИСКУССТВЕННОГО СПУТНИКА ЗЕМЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации литий-ионных аккумуляторных батарей (ЛИАБ). Техническим результатом изобретения является повышение эффективности использования ЛИАБ и увеличение срока службы. Согласно изобретению способ эксплуатации ЛИАБ заключается в проведении зарядов, разрядов, хранении в заряженном состоянии, контроле и регулировании температуры ЛИАБ посредством встроенного нагревателя, управляемого в зависимости от текущей температуры ЛИАБ. Управление работой встроенного нагревателя проводят в зависимости от текущей температуры ЛИАБ непрерывно, с помощью широтно-импульсного модулятора с обратной связью, в заданном контрольном диапазоне температур. Кроме того, заданный контрольный диапазон температуры корректируют в процессе эксплуатации в большую или меньшую сторону в зависимости от текущей температуры, от тепловыделения ЛИАБ при проведении циклов разряда-заряда, от изменения номинального значения температуры из-за деградации характеристик системы терморегулирования. 3 з.п. ф-лы, 4 ил.

Заявляемое изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации литий-ионных аккумуляторных батарей преимущественно в автономных системах электропитания искусственных спутников Земли (ИСЗ).

Преимущества литий-ионной аккумуляторной системы в сравнении с никель-водородными системами делают ее привлекательной для применения на ИСЗ. Однако, реализовать энергетические и ресурсные характеристики литий-ионных аккумуляторных батарей можно только при организации эффективного контроля и управления по напряжению и температуре, проведении специальных работ по балансировке (выравниванию запасенной энергии) аккумуляторов в батарее, заряде аккумуляторной батареи оптимальными токами.

Для того чтобы заряжать литий-ионный аккумулятор, необходимо, чтобы его температура была выше температуры замерзания электролита. При эксплуатации литий-ионных аккумуляторных батарей в условиях низких температур снижается емкость, уменьшается рабочее напряжение. Кроме того, при низких температурах имеет место начальная просадка напряжения. Литий-ионные аккумуляторы лучше работают при высокой температуре, которая противодействует увеличению внутреннего сопротивления аккумулятора, являющемуся результатом старения. Но повышенные температуры, в свою очередь, способствует ускоренному старению аккумулятора, с дальнейшим увеличением внутреннего сопротивления. Повышение температуры эксплуатации (в пределах рабочего диапазона) также может увеличить скорость побочных процессов, затрагивающих границу раздела электрод - электролит, и повысить скорость уменьшения разрядной емкости с циклами. Количество циклов заряда-разряда не так сильно влияют на ресурс литий-ионной батареи, как возраст и температурный диапазон.

Наиболее оптимальным температурным диапазоном работы литий-ионной аккумуляторной батареи является температурный диапазон 15-25°C (см. Д.А.Хрусталев. Аккумуляторы. М.: Изумруд, 2003 г.).

Известен способ эксплуатации литий-ионных аккумуляторных батарей, в которых имеется функция управления температурой воздуха, окружающего аккумулятор (внешней температурой). В опубликованной заявке Японии JP 8185897 раскрывается зарядное устройство, в котором устанавливается нижняя температурная граница, которая равна или выше заданного значения, и устанавливается верхняя температурная граница, которая равна или ниже заданного значения.

Наиболее близким техническим решением является способ, реализованный устройством для заряда литиевых аккумуляторов для применения на ИСЗ, который принят в качестве прототипа. В заявке Японии JP 2001155783 раскрывается устройство для заряда литиевых аккумуляторов для применения на ИСЗ, которое препятствует замерзанию при низких температурах аккумуляторов с неводным электролитом и препятствует ухудшению характеристик аккумуляторов при высоких температурах, обеспечивая тем самым стабильные заряд-разрядные характеристики. Устройство имеет в составе нагревательные элементы (блок коммутаторов) и систему управления. Включение нагревательного элемента происходит при достижении нижнего уровня температурного диапазона, отключение происходит при достижении верхнего уровня температурного диапазона. Коммутация осуществляется посредством электромеханических реле (блок коммутаторов).

Известный способ позволяет удерживать температуру аккумуляторной батареи в рабочем диапазоне.

Однако данный способ имеет ряд недостатков.

1. В системе терморегулирования происходит температурное циклирование (температура циклически изменяется от нижнего до верхнего значения рабочего температурного диапазона). Большой диапазон температуры при штатной эксплуатации (15-25)°C уменьшает ресурс аккумуляторной батареи.

2. При проведении подогрева аккумуляторной батареи совместно с проведением заряд-разрядных циклов возможен выход температуры аккумуляторной батареи из заданного диапазона температур ввиду инерционности тепловых процессов.

3. В известном способе нагрев происходит на полную мощность нагревательных элементов. Нагрев на полную мощность и циклирование снижает ресурс нагревательных элементов и системы в целом.

Задачей заявляемого изобретения является повышение эффективности использования литий-ионной аккумуляторной батареи и увеличение срока службы аккумуляторной батареи и системы терморегулирования.

Эта задача решается тем, что при проведении зарядов, разрядов, хранении в заряженном состоянии, контроле и регулировании температуры аккумуляторов посредством встроенного нагревателя, управляемого в зависимости от текущей температуры аккумуляторной батареи, управление работой встроенного нагревателя проводят в зависимости от текущей температуры аккумуляторной батареи непрерывно, с помощью широтно-импульсного модулятора с обратной связью, в заданном контрольном диапазоне температур. Кроме того, заданный контрольный диапазон температуры корректируют в процессе эксплуатации в большую или меньшую сторону в зависимости от текущей температуры, от тепловыделения аккумуляторной батареи при проведении заряд-разрядных циклов, от изменения установившегося равновесного значения температуры из-за деградации характеристик системы терморегулирования.

Суть изобретения поясняется чертежами, где на Фиг.1 изображена зависимость температуры аккумуляторной батареи от времени в процессе работы системы терморегулирования при начальной температуре -10°C, также на графике указан оптимальный температурный диапазон (15-25)°C, на Фиг.2 изображена зависимость температуры аккумуляторной батареи от времени, в процессе работы системы терморегулирования, при начальной температуре 19°C и проведении цикла заряда аккумуляторной батареи (время начала заряда 3 часа, продолжительность 7 часов). Построение выполнено с учетом энергии, подводимой на подогрев аккумуляторной батареи и энергии, отводимой через радиатор охлаждения (характеристики упомянуты выше). Построение выполнено без учета инерционности тепловых процессов, на графике Фиг.3 представлена передаточная характеристика широтно-импульсного модулятора, отображающая зависимость коэффициента заполнения от управляющего напряжения.

Действительно, в заявляемом изобретении управление нагревательными элементами осуществляется непрерывно по текущей температуре аккумуляторной батареи. Это позволяет непрерывно регулировать мощность тепловыделения нагревательных элементов в зависимости от текущей температуры аккумуляторной батареи. Если в исходном состоянии температура аккумуляторной батареи ниже рабочего диапазона температур (Фиг.1), то температура будет расти линейно (мощность нагревательных элементов будет постоянной и максимальной) до момента достижения температурой нижней уставки температуры. Дальнейший рост температуры будет снижать мощность нагревательных элементов, обеспечивая тем самым плавный подход к установившемуся равновесному значению температуры. Если в исходном состоянии температура аккумуляторной батареи выше рабочего диапазона температур, то температура будет падать линейно (нагревательные элементы выключены) до момента достижения температурой верхней уставки температуры. Дальнейшее падение температуры будет повышать мощность нагревательных элементов, обеспечивая тем самым плавный подход к установившемуся равновесному значению температуры. Установившееся равновесное значение может иметь значение в пределах температурного диапазона.

Данная задача согласуется с законом управления широтно-импульсного модулятора. Когда начальная температура ниже температурного диапазона, до момента достижения температурой нижней уставки коэффициент заполнения широтно-импульсного модулятора равен единице и транзисторный ключ открыт, тем самым на нагревателе выделяется полная мощность. Дальнейший рост температуры будет уменьшать коэффициент заполнения широтно-импульсного модулятора и время открытого состояния транзисторного ключа за период будет уменьшаться. Когда мощность, выделяемая на нагревателе, сравняется с мощностью, которая снимается через радиатор охлаждения, наступит равновесие и установится постоянная скважность широтно-импульсного модулятора. При данной скважности установится равновесная температура. Когда начальная температура выше температурного диапазона до момента достижения температурой верхней уставки температуры, коэффициент заполнения широтно-импульсного модулятора равен нулю и транзисторный ключ закрыт, тем самым на нагревателе не выделяется мощность. Дальнейшее падение температуры будет увеличивать коэффициент заполнения широтно-импульсного модулятора и время открытого состояния транзисторного ключа за период будет увеличиваться. Когда мощность, выделяемая на нагревателе, сравняется с мощностью, которая снимается через радиатор охлаждения, наступит равновесие и установится постоянная скважность широтно-импульсного модулятора. При данной скважности установится равновесная температура. Цепь обратной связи широтно-импульсного модулятора должна обеспечивать закон изменения напряжения управления от температуры таким образом, чтобы напряжению U0 соответствовала температура, равная температуре нижней уставки. А также обеспечивался необходимый наклон характеристики в диапазоне ΔU (Фиг.3).

При проведении циклов разряда-заряда вследствие того, что выделяется энергия (саморазогрев аккумуляторов), установившееся равновесное значение температуры будет изменяться. В случае проведения цикла разряда при постоянном токе номинальное значение температуры после переходного процесса примет новое постоянное значение. При проведении цикла заряда установившееся равновесное значение температуры будет расти с ростом напряжения заряда (заряд при постоянном токе).

Для обеспечения большей надежности системы и для компенсации изменения установившегося равновесного значения температуры, вызванного изменением характеристик системы (изменение тепловыделения аккумуляторной батареи при заряде-разряде, изменение характеристик системы охлаждения аккумуляторной батареи и характеристик самой аккумуляторной батареи), предлагается введение возможности корректировки параметров обратной связи. Изменяемым параметром является температурный диапазон. Изменение температурного диапазона осуществляется по программе с помощью бортовой электронно-вычислительной машины (ЭВМ).

В заявляемом изобретении управление температурным диапазоном осуществляется тремя способами.

По первому способу изменение температурного диапазона осуществляется дискретно по текущей температуре. Данный способ позволяет уменьшить время переходного процесса (осуществляя нелинейный закон изменения мощности нагревательного элемента от температуры).

При исходной температуре ниже нижней уставки бортовая ЭВМ задает температурный диапазон выше оптимального (15-25°C). По мере роста температуры (нагреватель управляется широтно-импульсным модулятором) выше нижней уставки бортовая ЭВМ будет дискретно понижать температурный диапазон до оптимального. При исходной температуре выше верхней уставки бортовая ЭВМ задает температурный диапазон ниже оптимального. По мере падения температуры (нагреватель управляется широтно-импульсным модулятором) ниже верхней уставки бортовая ЭВМ будет дискретно повышать температурный диапазон до оптимального.

По второму способу изменение температурного диапазона осуществляется дискретно по параметрам работы аккумуляторной батареи. Данный способ позволяет улучшить стабилизацию температуры (введением обратной связи по основным возмущающим факторам изменения установившегося равновесного значения температуры).

При проведении заряд-разрядных циклов, когда на аккумуляторной батарее идет процесс саморазогрева (вследствие которого изменяется установившееся равновесное значение температуры), происходит изменение рабочего температурного диапазона. Это позволяет при изменившемся равновесном значении температуры относительно рабочего диапазона оставить установившееся равновесное значение температуры на том же уровне за счет изменения рабочего диапазона. При проведении заряда мощность, выделяющаяся за счет саморазогрева аккумуляторной батареи, линейно растет с ростом напряжения заряда. При разряде мощность, выделяющаяся за счет саморазогрева аккумуляторной батареи, зависит от тока разряда. Предлагается изменять температурный диапазон в зависимости от параметров: тока разряда аккумуляторной батареи и напряжения заряда (при постоянном токе заряда аккумуляторной батареи).

По третьему способу изменение температурного диапазона осуществляется дискретно по радиокомандам с Земли. Данный способ позволяет компенсировать изменение установившегося равновесного значения температуры за счет неконтролируемых факторов и деградации характеристик систем.

В процессе эксплуатации ИСЗ на Землю по радиокомандам передается информация о состоянии аккумуляторной батареи, в том числе и текущая температура. В случае если установившееся равновесное значение температуры меньше оптимальной температуры, передается радиокоманда с Земли в бортовую ЭВМ на повышение оптимального температурного диапазона. В случае если установившееся равновесное значение температуры больше оптимальной температуры, передается радиокоманда с Земли в бортовую ЭВМ на понижение оптимального температурного диапазона.

Заявляемое устройство позволяет производить стабилизацию температуры аккумуляторной батареи по наиболее сильным возмущающим факторам (саморазогрев аккумуляторной батареи) и по принципу обратной связи, когда в качестве управляющего сигнала нагревательных элементов используется сигнал, пропорциональный стабилизируемой температуре.

На чертеже, фиг.4, приведена функциональная схема автономной системы электропитания, включающая систему регулирования температуры аккумуляторной батареи.

Устройство содержит солнечную батарею 1, подключенную к нагрузке 2 через преобразователь напряжения 3, аккумуляторную батарею 4, подключенную через зарядный преобразователь 5 к солнечной батарее 1, а через разрядный преобразователь 6 к входу выходного фильтра преобразователя напряжения 3.

При этом нагрузка 2 в своем составе содержит бортовую ЭВМ, систему телеметрии и командно-измерительную радиолинию.

Параллельно аккумуляторной батарее 4 подключено устройство контроля аккумуляторов (напряжения, давления, температуры) 7, связанное входом с аккумуляторной батареей 4, а выходом с нагрузкой 2 (с бортовой ЭВМ).

Параллельно нагрузке 2 подключено устройство нагрева аккумуляторной батареи 8, связанное входом с устройством контроля аккумуляторов 7 и нагрузкой 2 (бортовой ЭВМ). А выходом с аккумуляторной батареей 4 (тепловая связь).

В цепи заряда-разряда аккумуляторной батареи установлен измерительный шунт 9.

Зарядный преобразователь 5 состоит из регулирующего ключа 10, управляемого схемой управления 11, вольтодобавочного узла, выполненного на трансформаторе Tp, транзисторах T1 и T2, и выпрямителя на диодах D1 и D2.

Разрядный преобразователь 6 состоит из регулирующего ключа 12, управляемого схемой управления 13.

Устройство нагрева аккумуляторной батареи 8 состоит из регулирующего ключа 14, управляемого схемой управления 15 и нагревательного элемента Rн.

Преобразователь напряжения 3 состоит из регулирующего ключа 16, управляемого схемой управления 17, входного фильтра C1 и выходного фильтра на диоде D, дросселе L и конденсаторе C.

Схемы управления преобразователями 11, 13, 17, выполнены в виде широтно-импульсных модуляторов, входом подключенных к шинам стабилизируемого напряжения. Схема управления 11 зарядного преобразователя 5 дополнительно связана с измерительным шунтом 9 и нагрузкой 2 (с командно-измерительной радиолинией).

Схема управления преобразователем 15 выполнена в виде широтно-импульсного модулятора, входом подключенного к устройству контроля аккумуляторов 7 и к нагрузке 2 (бортовой ЭВМ).

Устройство контроля аккумуляторов 7 контролирует текущие емкость, напряжение и температуру аккумуляторов и передает информацию об их состоянии в нагрузку (бортовую ЭВМ), а сигнал, пропорциональный температуре, - в схему управления 15.

Устройство работает следующим образом.

Устройство контроля аккумуляторов 7 контролирует текущее состояние температуры батарей и выдает сигнал в схему управления 15, которая обеспечивает вход в заданный рабочий диапазон температуры аккумуляторной батареи и удержание температуры в этом диапазоне.

В случае включения циклов разряда-заряда аккумуляторных батарей нагрузкой (бортовую ЭВМ) выдается сигнал в схему управления 15, которая обеспечивает изменение температурного рабочего диапазона.

Телеметрические данные о состоянии аккумуляторной батареи поступают по командно-измерительной радиолинии на Землю. При необходимости, по радиокомандам с Земли рабочий температурный диапазон может быть изменен в большую или меньшую сторону.

Таким образом, предлагаемый способ позволяет стабилизировать температуру аккумуляторной батареи в оптимальном рабочем температурном диапазоне (обеспечивающем лучшие характеристики аккумуляторной батареи) без циклирования температуры (колебаний температуры от нижней до верхней границы рабочего диапазона).

Результатом является повышение эффективности использования литий-ионной аккумуляторной батареи за счет более полной стабилизации температуры около оптимальной, обеспечивающей наилучшие энергетические и ресурсные показатели аккумуляторной батареи, что позволяет увеличить срок службы автономной системы электропитания и ИСЗ в целом.

Источник поступления информации: Роспатент

Showing 31-40 of 83 items.
27.09.2014
№216.012.f6c6

Способ эксплуатации никель-водородной аккумуляторной батареи в автономной системе электропитания космического аппарата и автономная система электропитания для его реализации

Заявляемое изобретение относится к электротехнической промышленности и может быть использовано при создании никель-водородных аккумуляторных батарей и автономных систем электропитания космических аппаратов (КА). Техническим результатом изобретения является повышение надежности эксплуатации...
Тип: Изобретение
Номер охранного документа: 0002529011
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fb5d

Узел герметизации стыка разъемных соединений

Изобретение относится к конструкциям, предназначенным для герметизации соединения составных частей устройств, предпочтительнее стыка основания и крышки контейнера для транспортирования космических аппаратов. Узел содержит основание, крышку и уплотнитель, расположенный между ними по периметру...
Тип: Изобретение
Номер охранного документа: 0002530195
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fbf9

Способ создания контекста для сжатия измерительных данных и способ проведения измерений

Изобретение относится к телеметрии и сжатию данных при трансляции данных измерений в системах контроля и мониторинга, при проведении измерений в труднодоступных местах, а также при хранении измерительных данных, например, в черных ящиках самолетов и судов. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002530351
Дата охранного документа: 10.10.2014
10.12.2014
№216.013.0ca7

Способ и устройство для обработки внутренней поверхности волноводов

Изобретение относится к различным областям промышленности, преимущественно ракетно-космической и авиационной, и может быть использовано при магнитно-абразивной обработке металлических волноводов сложной формы и любой длины. На кронштейнах закрепляют волновод, на котором устанавливают кольцевой...
Тип: Изобретение
Номер охранного документа: 0002534656
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0de0

Способ интеграции с автоматизированной системой управления данными об изделии

Изобретение относится к способу интеграции с автоматизированной системой управления данными об изделии (АСУДИ). Техническим результатом является предотвращение возможности для пользователя вносить изменения в формируемые в автоматизированной системе и размещаемые в АСУДИ электронные документы....
Тип: Изобретение
Номер охранного документа: 0002534969
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0f5f

Способ тестирования двигателей коррекции космического аппарата

Изобретение относится к управлению движением космического аппарата (КА). Согласно предложенному способу определяют тяги двигателей коррекции (ДК)(управляющих ускорений) по суммарным изменениям периода обращения КА от коррекции к коррекции. Последние проводят одними и теми же ДК и судят об...
Тип: Изобретение
Номер охранного документа: 0002535352
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0f60

Способ удержания космического аппарата на геосинхронной 24-часовой орбите

Изобретение относится к управлению движением космического аппарата (КА) и, конкретно, к удержанию геосинхронного КА в заданной области стояния и коллокации с другими геостационарными КА. Способ включает определение и коррекцию начальных наклонений и долготы восходящего узла орбиты выведения с...
Тип: Изобретение
Номер охранного документа: 0002535353
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1105

Узел закрепления оборудования к силовой сетчатой конструкции из полимерных композиционных материалов

Изобретение относится к космической отрасли и касается узлов и элементов крепления оборудования космического аппарата (КА) на его силовой конструкции из полимерных композиционных материалов (ПКМ). Узел закрепления оборудования состоит из крепежной и опорной накладок, скрепленных с элементом...
Тип: Изобретение
Номер охранного документа: 0002535780
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1131

Способ изготовления космического аппарата

Изобретение относится к электропитанию космических аппаратов (КА), в частности телекоммуникационных КА. Способ включает сборку КА, в т.ч. системы его электропитания, содержащей солнечные (СБ) и аккумуляторные (АБ) батареи, а также стабилизированный преобразователь напряжения (СПН) для...
Тип: Изобретение
Номер охранного документа: 0002535824
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.11b6

Термокамера и способ ее работы

Изобретение относится к оборудованию и к способу изготовления крупногабаритных изделий из композиционных материалов, в частности к установкам для нагрева и полимеризации, используемым в производстве изделий из композиционных материалов, полимеризуемых на оснастке из инвара. Термокамера содержит...
Тип: Изобретение
Номер охранного документа: 0002535957
Дата охранного документа: 20.12.2014
Showing 31-40 of 84 items.
20.04.2015
№216.013.430b

Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли

Изобретение относится к электротехнической промышленности и может быть использовано при создании автономных систем электропитания (СЭП) искусственных спутников Земли (ИСЗ). Техническим результатом изобретения является повышение функциональной надежности автономной системы электропитания ИСЗ....
Тип: Изобретение
Номер охранного документа: 0002548661
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.430e

Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли

Изобретение относится к электротехнической промышленности и может быть использовано при создании автономных систем электропитания (СЭП) искусственных спутников Земли (ИСЗ). Техническим результатом заявляемого изобретения является повышение функциональной надежности автономной системы...
Тип: Изобретение
Номер охранного документа: 0002548664
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.4797

Аккумуляторная батарея космического аппарата

Изобретение относится к электротехнической промышленности и может быть использовано при разработке и последующей эксплуатации аккумуляторов и аккумуляторных батарей (АБ) различных типов в автономных системах электроснабжения космических аппаратов (КА), в частности искусственных спутников земли...
Тип: Изобретение
Номер охранного документа: 0002549831
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.488c

Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли

Изобретение относится к электротехнической промышленности и может быть использовано при проектировании автономных систем электропитания искусственных спутников Земли (ИСЗ). Технический результат - повышение удельных энергетических характеристик и надежности автономной системы электропитания...
Тип: Изобретение
Номер охранного документа: 0002550079
Дата охранного документа: 10.05.2015
27.06.2015
№216.013.5824

Способ эскплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата, эксплуатирующегося на низкой околоземной орбите

Предлагаемое изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей в автономных системах электропитания космических аппаратов, эксплуатируемых на низкой околоземной орбите. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002554105
Дата охранного документа: 27.06.2015
10.08.2015
№216.013.6dc7

Способ электрических проверок космического аппарата

Изобретение относится к наземным испытаниям, в т.ч. при изготовлении космических аппаратов (КА). КА содержит систему электропитания с бортовыми источниками: солнечными (СБ) и аккумуляторными (АБ) батареями, а также стабилизированным преобразователем напряжения (СПН) с зарядными и разрядными...
Тип: Изобретение
Номер охранного документа: 0002559661
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.719a

Солнечная электростанция

Изобретение относится к солнечным электростанциям, в том числе к переносным, предназначенным для преобразования солнечной лучистой энергии в электрическую как в солнечную погоду, так и в переменную. Солнечная электростанция содержит раму c приводом азимутального поворота и систему автоматики...
Тип: Изобретение
Номер охранного документа: 0002560652
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.719b

Портативная солнечная электростанция

Изобретение относится к переносным портативным солнечным электростанциям, предназначенным для преобразования солнечной лучистой энергии в электрическую как в солнечную погоду, так и в переменную. Портативная солнечная электростанция состоит из рамы, в которой установлен вертикальный вал с...
Тип: Изобретение
Номер охранного документа: 0002560653
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.71de

Система электропитания космического аппарата с экстремальным регулированием мощности солнечной батареи

Изобретение относится к преобразовательной технике, в частности к бортовым системам электропитания космических аппаратов, и может быть использовано в системе питания автоматических космических аппаратов на основе солнечных и аккумуляторных батарей. Система электропитания содержит солнечную...
Тип: Изобретение
Номер охранного документа: 0002560720
Дата охранного документа: 20.08.2015
20.10.2015
№216.013.84ea

Способ изготовления космического аппарата

Способ изготовления космического аппарата относится к космической технике. Способ заключается в том, что производят сборку космического аппарата, проводят электрические испытания на функционирование, испытания на воздействие механических нагрузок, термовакуумные испытания определенным образом....
Тип: Изобретение
Номер охранного документа: 0002565629
Дата охранного документа: 20.10.2015
+ добавить свой РИД