×
10.07.2019
219.017.b002

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ТВЕРДОГО ИОННОГО ЭЛЕКТРОЛИТА RbAgI

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам получения твердого электролита с высокой ионной проводимостью при комнатной температуре и может быть использовано в электронной промышленности, в частности, при изготовлении миниатюрных суперконденсаторов высокой емкости - варисторов, которые находят различное применение, в том числе в качестве источника энергии кардиостимуляторов. Согласно изобретению готовят стехиометрическую порошкообразную смесь иодида рубидия RbI и иодида серебра AgI, смесь плавят в атмосфере азота или аргона при температуре 300-320°С и перемешивании путем барботирования азотом или аргоном, осуществляют одновременное охлаждение расплава и его диспергирование путем центробежного распыления расплава в атмосфере азота или аргона с образованием микрогранул с крупностью частиц 100-500 мкм, которые затем подвергают термообработке. Термообработку микрогранул осуществляют при температуре 180-195°С в течение не менее 400 часов в атмосфере азота или аргона. Техническим результатом является повышение ионной проводимости и снижение электронной проводимости. 4 з.п. ф-лы.

Изобретение относится к способам получения твердого электролита с высокой ионной проводимостью при комнатной температуре и может быть использовано в электронной промышленности, в частности, при изготовлении миниатюрных суперконденсаторов высокой емкости - варисторов, которые находят различное применение, в том числе в качестве источника энергии кардиостимуляторов.

Практическое использование твердого ионного электролита состава RbAg4I5 при изготовлении высокоемкостных суперконденсаторов требует, чтобы этот проводящий материал имел высокое значение удельной ионной и малое значение удельной электронной проводимости для исключения саморазряда конденсаторов.

Известен способ получения твердого ионного электролита RbAg4I5 (см. Бобкова М. В., Козлова Н.И., Плоткин С.С. и др. Синтез твердых электролитов на основе иодида серебра // Физическая химия и электрохимия расплавленных и твердых электролитов: тез. докл. V Всесоюз. совещ., г.Свердловск, 5-7 июня 1973 г., Ч.1. - Свердловск, 1973. - С.137-138), согласно которому смесь RbI и AgI, взятых в мольном соотношении 1:4, плавят в тигле, нагревают расплав до 300°C и выдерживают при этой температуре в течение 0,5 часа, периодически перемешивая. Затем расплав быстро охлаждают на воздухе, измельчают и обжигают при 200°C в течение 50 часов. Получают продукт светло-желтого цвета в виде соединения RbAg4I5.

К недостаткам данного способа следует отнести его непригодность для получения значительного количества твердого электролита, так как при быстром охлаждении всего объема расплава происходит перитектический распад электролита с выделением фаз Rb2AgI3 и AgI, приводящий к резкому снижению величины удельной ионной проводимости. Кроме того, отжиг измельченного плава при температуре 200°C не позволяет полностью освободиться от фаз Rb2AgI3 и AgI, поскольку температура эвтектики составляет 197°C и при 200°C еще присутствует жидкая фаза, содержащая Rb2AgI3.

Известен также способ получения твердого ионного электролита RbAg4I5 (см. пат. 3519404 США, МПК C01D 3/12, H01B 1/00, H01M 39/04, 1970), согласно которому готовят порошкообразную смесь иодидов рубидия и серебра в мольном соотношении 1:4, смесь расплавляют, охлаждают расплав на термостойком стекле, измельчают полученный твердый продукт в фарфоровой ступке, компактируют прессованием в таблетку, которую прокаливают в атмосфере инертного газа при температуре 175°C в течение 40 часов. Рентгеноструктурный анализ показал, что полученный продукт в основном представляет собой RbAg4I5, но содержит некоторое количество исходных реагентов. Поэтому продукт повторно измельчают, компактируют и прокаливают в течение ночи при 165°C. Результирующий продукт по данным рентгеноструктурного анализа является монофазным RbAg4I5 с ионной проводимостью 0,2 См·см-1 при температуре 20°C и электронной проводимостью около 1-10-8 См·см-1.

Известный способ характеризуется относительно невысокой ионной проводимостью и недостаточно низкой электронной проводимостью при комнатной температуре получаемого твердого ионного электролита.

Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении ионной и снижении электронной проводимости при комнатной температуре получаемого монофазного твердого ионного электролита RbAg4I5.

Технический результат достигается тем, что в способе получения твердого ионного электролита RbAg4I5, включающем приготовление порошкообразной смеси иодидов рубидия и серебра, взятых в стехиометрическом соотношении, плавление смеси при перемешивании, охлаждение расплава, диспергирование, термообработку в атмосфере инертного газа, согласно изобретению охлаждение расплава и диспергирование осуществляют одновременно путем центробежного распыления расплава с образованием микрогранул, которые и подвергают термообработке, причем плавление смеси и распыление расплава ведут в инертной атмосфере, а термообработку микрогранул осуществляют при температуре 180-195°C в течение не менее 400 часов.

Достижению технического результата способствует то, что плавление смеси иодидов рубидия и серебра ведут при температуре 300-320°C.

Достижению технического результата способствует также то, что в качестве инертного газа используют азот или аргон.

Достижению технического результата способствует также и то, что расплав перемешивают путем барботирования азотом или аргоном.

Достижению технического результата способствует и то, что микрогранулы имеют крупность 100-500 мкм.

Существенные признаки заявленного изобретения, определяющие объем испрашиваемой правовой охраны и достаточные для получения вышеуказанного технического результата, соотносятся с техническим результатом следующим образом.

Одновременное охлаждение расплава и диспергирование путем центробежного распыления расплава упрощает процесс синтеза. Центробежное распыление обеспечивает практически мгновенное образование микрогранул и их затвердевание.

Термообработка микрогранул необходима, поскольку, несмотря на высокую скорость закалки расплава, при остывании микрогранул, имеющих пусть и малый, но конечный размер, перитектический распад все же имеет место. При этом выделяются не обнаруживаемые рентгенофазовым анализом (РФА), но наблюдаемые методом люминесценции микрочастицы AgI. Легко распадающийся на свету AgI является источником образования серебра, выступающего донором свободных электронов, что увеличивает удельную электронную проводимость электролита. В результате термообработки микрогранул в заявленных условиях снижается концентрация в конечном продукте микроколичеств свободного AgI согласно реакции:

Плавление смеси и распыление расплава в инертной атмосфере предотвращает окисление исходных веществ и синтезированного продукта, имеющее место при их высокотемпературном контакте с кислородом воздушной атмосферы и приводящее к резкому снижению электропроводящих свойств продукта.

Проведение термообработки при температуре 180-195°C обеспечивает полноту протекания твердофазной реакции (1). Однако температура термообработки не может быть выше температуры эвтектики (197°C), так как при этом образуется жидкая фаза, что недопустимо.

Проведение термообработки микрогранул в течение не менее 400 часов обусловлено необходимостью завершения протекания реакции (1) в заданном интервале температур термообработки.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в повышении ионной и снижении электронной проводимости при комнатной температуре получаемого твердого монофазного ионного электролита RbAg4I5.

В частных случаях осуществления изобретения предпочтительны следующие конкретные операции и режимные параметры.

Плавление смеси иодидов рубидия и серебра при температуре 300-320°C обусловлено тем, что вязкость расплава при этом снижается настолько, что оказывается возможным получать микрогранулы продукта крупностью до 500 мкм. Такие гранулы застывают в атмосфере находящегося при комнатной температуре инертного газа (азота или аргона) настолько быстро, что характерный для состава RbAg4I5 перитектический распад практически не успевает произойти, что позволяет получить монофазный целевой продукт с высокой удельной ионной проводимостью. Дальнейшее повышение температуры расплава нецелесообразно, так как возрастает теплосодержание расплава, поступающего на гранулирование, что затрудняет закалку образующихся капель и увеличивает энергозатраты.

Использование азота или аргона в качестве инертного газа предотвращает окисление исходных веществ и синтезированного продукта, имеющее место при их высокотемпературном контакте с кислородом воздушной атмосферы, сопровождающееся образованием элементарного йода и приводящее к резкому снижению электропроводящих свойств продукта.

Перемешивание расплава путем барботирования азотом или аргоном обеспечивает получение стехиометрического состава по всему объему расплава без его окисления.

Получение микрогранул крупностью 100-500 мкм обусловлено необходимостью ограничения перитектического распада соединения RbAg4I5, который усиливается при увеличении крупности микрогранул, а также обеспечения стабильности качества твердого ионного электролита RbAg4I5 при его дальнейшем использовании. Оно может снижаться при крупности микрогранул менее 100 мкм за счет усиления гидролиза вследствие увеличения сорбции атмосферной влаги.

Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения получения высоких технологических показателей процесса и качественного конечного продукта.

Сущность заявляемого изобретения и его преимущества могут быть пояснены следующими примерами конкретного выполнения.

Пример 1. Порошкообразную смесь иодида рубидия и иодида серебра в количестве 193,66 г RbI и 856,34 г AgI (стехиометрическое соотношение) загружают в верхнюю камеру кварцевого сосуда, нижняя камера которого снабжена центробежным тарельчатым распылителем. Верхняя камера имеет выпускную трубку с диаметром выходного отверстия 0,8 мм, а тарельчатый распылитель нижней камеры установлен под выпускной трубкой. Кварцевый сосуд вакуумируют, заполняют аргоном, порошкообразную смесь нагревают до расплавления, после чего температуру повышают до 300°C при перемешивании расплава путем барботирования аргоном. Осуществляют одновременное охлаждение расплава и его диспергирование путем пропускания струи расплава под действием избыточного давления аргона через выпускную трубку и падения струи на тарелку центробежного распылителя, вращающуюся со скоростью 6000 об/мин. В результате распыления расплава и охлаждения образовавшихся капель в процессе их разлета образовались микрогранулы с максимальной крупностью 500 мкм. По данным РФА микрогранулы состоят из монофазной комплексной соли RbAg4I5. Ее удельная ионная проводимость при температуре 20°C равна 0,24 См·см-1, удельная электронная проводимость - 4·10-9 См·см-1. Полученные микрогранулы подвергают термообработке в атмосфере аргона при температуре 180°C в течение 450 часов. После термообработки удельная ионная проводимость продукта не изменилась, а удельная электронная проводимость снизилась до 5·10-10 См·см-1.

Пример 2. Процесс ведут согласно Примеру 1. Порошкообразную смесь иодида рубидия и иодида серебра нагревают до расплавления, после чего температуру повышают до 320°C при перемешивании расплава путем барботирования азотом. Центробежное распыление расплава осуществляют при скорости вращения тарелки 10000 об/мин. В результате распыления расплава и охлаждения образовавшихся капель в процессе их разлета образовались микрогранулы с максимальной крупностью не более 100 мкм. По данным РФА микрогранулы состоят из монофазной комплексной соли RbAg4I5. Ее удельная ионная проводимость при температуре 20°C равна 0,26 См·см-1, удельная электронная проводимость - 3,8·10-9 См·см-1. Полученные микрогранулы подвергают термообработке в атмосфере азота при температуре 190°C в течение 420 часов. После термообработки удельная ионная проводимость продукта не изменилась, а удельная электронная проводимость снизилась до 3·10-10 См·см-1.

Пример 3. Процесс ведут согласно Примеру 1. Порошкообразную смесь иодида рубидия и иодида серебра нагревают до расплавления, после чего температуру повышают до 310°C при перемешивании расплава путем барботирования очищенным аргоном. Центробежное распыление расплава осуществляют при скорости вращения тарелки 8000 об/мин. В результате распыления расплава и охлаждения образовавшихся капель в процессе их разлета образовались микрогранулы с максимальной крупностью 220 мкм. По данным РФА микрогранулы состоят из монофазной комплексной соли RbAg4I5. Ее удельная ионная проводимость при температуре 20°C равна 0,25 См·см-1, удельная электронная проводимость - 4,2·10-9 См·см-1. Полученные микрогранулы подвергают термообработке в атмосфере аргона при температуре 195°C в течение 435 часов. После термообработки удельная ионная проводимость продукта не изменилась, а удельная электронная проводимость снизилась до 4,1·10-10 См·см-1.

Из вышеприведенных примеров видно, что способ согласно изобретению позволяет получить монофазный твердый ионный электролит RbAg4I5, имеющий по сравнению с прототипом при комнатной температуре в 1,2-1,3 раза более высокую ионную проводимость и в 20-33 раза более низкую электронную проводимость. Способ относительно прост и может быть реализован с использованием несложного оборудования.

Источник поступления информации: Роспатент

Showing 1-8 of 8 items.
15.03.2019
№219.016.e12f

Огнеупорное керамическое изделие

Изобретение относится к области огнеупоров и технической керамики и может быть использовано в производстве огнеупорных керамических изделий, в том числе технологических контейнеров, используемых при синтезе высокочистых материалов на основе пентаоксидов ниобия и тантала, а также для футеровки...
Тип: Изобретение
Номер охранного документа: 0002433105
Дата охранного документа: 10.11.2011
10.04.2019
№219.017.08de

Способ конверсии соли цветного металла

Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для получения солей металлов из хлоридных, сульфатных и нитратных растворов, образующихся при переработке полиметаллического сырья. Способ конверсии соли цветного металла включает противоточную экстракцию...
Тип: Изобретение
Номер охранного документа: 0002430171
Дата охранного документа: 27.09.2011
29.04.2019
№219.017.44ee

Способ получения сорбента на основе фосфата титана

Изобретение относится к области производства неорганических сорбентов для извлечения катионов различных металлов из нейтральных и слабокислых водных растворов. В титансодержащий раствор вводят водорастворимое соединение циркония при мольном отношении Ti:Zr=1:0,1-0,25 с образованием...
Тип: Изобретение
Номер охранного документа: 0002401160
Дата охранного документа: 10.10.2010
29.04.2019
№219.017.4563

Способ получения фотокаталитического нанокомпозита, содержащего диоксид титана

Изобретение может быть использовано для фотокаталитической очистки воды и воздуха от органических соединений и патогенной флоры, при фотокаталитическом разложении воды. Для получения фотокаталитического нанокомпозита, содержащего диоксид титана, в раствор соли титана(IV) с концентрацией 1,0-2,5...
Тип: Изобретение
Номер охранного документа: 0002435733
Дата охранного документа: 10.12.2011
09.05.2019
№219.017.4fd9

Способ извлечения ниобия и тантала из титансодержащего редкометального концентрата

Изобретение относится к гидрометаллургии редкометального сырья, в частности к сольвометаллургической переработке лопаритового концентрата, и может быть использовано в химической промышленности для извлечения из него соединений ниобия и тантала. Способ извлечения ниобия и тантала из...
Тип: Изобретение
Номер охранного документа: 0002434958
Дата охранного документа: 27.11.2011
18.05.2019
№219.017.5b00

Способ получения титансодержащего продукта

Изобретение может быть использовано в производстве титансодержащих пигментов и сорбентов. В сернокислый раствор титана с концентрацией 50-100 г/л TiO и кислотным фактором 1,25-2,5 вводят 5-20% раствор аммиака до обеспечения кислотного фактора 0,2-0,5 с образованием дисперсии гидроксида титана....
Тип: Изобретение
Номер охранного документа: 0002445270
Дата охранного документа: 20.03.2012
24.05.2019
№219.017.6030

Магнезиальное вяжущее

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении плит и панелей, предназначенных для внутренней и наружной облицовки зданий, напольных покрытий, лестничных ступеней, полов, стяжек под напольные покрытия, а также строительных сухих смесей....
Тип: Изобретение
Номер охранного документа: 0002428390
Дата охранного документа: 10.09.2011
10.07.2019
№219.017.af10

Способ извлечения рения из металлических отходов никельсодержащих жаропрочных сплавов

Изобретение относится к гидрометаллургии редких элементов и может быть использовано для способа извлечения рения из металлических отходов никельсодержащих жаропрочных сплавов. Способ включает обработку отходов серной кислотой при повышенной температуре и подаче пероксида водорода с переводом в...
Тип: Изобретение
Номер охранного документа: 0002412267
Дата охранного документа: 20.02.2011
Showing 21-30 of 47 items.
25.08.2017
№217.015.ad31

Оксидно-цинковая варисторная керамика

Изобретение относится к способам получения варисторной керамики и может быть использовано в электроэнергетике при изготовлении высоковольтных варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения (ОПН). Оксидно-цинковая варисторная керамика содержит оксиды цинка,...
Тип: Изобретение
Номер охранного документа: 0002612423
Дата охранного документа: 09.03.2017
26.08.2017
№217.015.dd48

Способ переработки апатитового концентрата

Изобретение относится к способу переработки апатитового концентрата. Способ включает обработку концентрата кислым раствором в присутствии катионита с последующим отделением продукционной фосфорной кислоты от катионита, содержащего кальций и примесные металлы. Далее проводят регенерацию...
Тип: Изобретение
Номер охранного документа: 0002624575
Дата охранного документа: 04.07.2017
19.01.2018
№218.016.05f0

Способ переработки фторидного редкоземельного концентрата

Изобретение относится к способу переработки фторсодержащих концентратов редкоземельных элементов (РЗЭ) и может быть использовано в гидрометаллургии. Иттрофлюоритовый концентрат, содержащий в мас. %: 40 F, 13,15 ΣТrО, 0,16 ТhO, 66,4 СаО, обрабатывают фтористоводородной кислотой концентрацией...
Тип: Изобретение
Номер охранного документа: 0002630989
Дата охранного документа: 15.09.2017
10.05.2018
№218.016.4e68

Способ переработки фторсодержащего апатитового концентрата

Изобретение может быть использовано в химической промышленности для получения фосфорной кислоты, концентрата редкоземельных элементов (РЗЭ), карбонатов щелочноземельных металлов и соединений фтора. Фторсодержащий апатитовый концентрат обрабатывают фосфорнокислым раствором в присутствии...
Тип: Изобретение
Номер охранного документа: 0002650923
Дата охранного документа: 18.04.2018
18.05.2018
№218.016.508e

Способ переработки жидких отходов аэс с борным регулированием

Изобретение относится к комплексной переработке сложных по составу жидких борсодержащих отходов АЭС. Способ переработки жидких отходов АЭС с борным регулированием, содержащих соли натрия и калия, включает введение нитрата кальция в боратный раствор с осаждением бората кальция и его отделением...
Тип: Изобретение
Номер охранного документа: 0002652978
Дата охранного документа: 04.05.2018
11.10.2018
№218.016.907d

Способ обработки фосфатного концентрата редкоземельных элементов

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита, и может быть использовано в химической промышленности для получения нерадиоактивных карбонатного или гидроксидного концентратов РЗЭ. Осуществляют обработку...
Тип: Изобретение
Номер охранного документа: 0002669031
Дата охранного документа: 05.10.2018
15.03.2019
№219.016.e12f

Огнеупорное керамическое изделие

Изобретение относится к области огнеупоров и технической керамики и может быть использовано в производстве огнеупорных керамических изделий, в том числе технологических контейнеров, используемых при синтезе высокочистых материалов на основе пентаоксидов ниобия и тантала, а также для футеровки...
Тип: Изобретение
Номер охранного документа: 0002433105
Дата охранного документа: 10.11.2011
20.03.2019
№219.016.e504

Способ получения диоксида церия

Изобретение относится к технологии получения соединений редкоземельных элементов, в частности к получению порошков диоксида церия, используемых в производстве катализаторов, присадок к дизельному топливу и других областях техники. В способе получения диоксида церия вводят раствор нитрата церия...
Тип: Изобретение
Номер охранного документа: 0002341459
Дата охранного документа: 20.12.2008
20.03.2019
№219.016.e728

Способ получения титаната двухвалентного металла

Изобретение относится к способам получения тонкодисперсных порошков титанатов щелочноземельных элементов или свинца, которые могут быть использованы для производства высоко- и низкочастотных керамических конденсаторов и других изделий радиоэлектронной промышленности. Способ получения титаната...
Тип: Изобретение
Номер охранного документа: 0002323882
Дата охранного документа: 10.05.2008
20.03.2019
№219.016.e822

Способ переработки фосфогипса для производства концентрата редкоземельных элементов (рзэ) и гипса

Изобретение относится к технологии комплексной переработки фосфогипса, получаемого в сернокислотном производстве минеральных удобрений из апатитового концентрата, и может быть использовано для производства концентрата редкоземельных элементов (РЗЭ), а также гипсовых строительных материалов и...
Тип: Изобретение
Номер охранного документа: 0002458999
Дата охранного документа: 20.08.2012
+ добавить свой РИД