×
10.07.2019
219.017.ad79

Результат интеллектуальной деятельности: РЕГУЛИРОВАНИЕ МОЩНОСТИ ЛИНИИ ОБРАТНОЙ СВЯЗИ В ОРТОГОНАЛЬНОЙ СИСТЕМЕ

Вид РИД

Изобретение

№ охранного документа
0002355110
Дата охранного документа
10.05.2009
Аннотация: Изобретение относится к технике связи. Технический результат состоит в повышении эффективности работы системы. Описан алгоритм регулирования мощности в линии обратной связи с замкнутым контуром для системы множественного доступа с ортогональным частотным разделением каналов и скачкообразным изменением частоты (FH-OFDMA). Алгоритм регулирования мощности корректирует мощность передачи пользователя на основе измерений действующего отношения мощности несущей к помехам (C/I) и отношения принимаемой мощности к термическому шуму (RpOT). Алгоритм является, по сути, стабильным и эффективен для систем FH-OFDMA с повторными передачами. 4 н. и 21 з.п. ф-лы, 4 ил.

Настоящая заявка на патент притязает на приоритет по дате подачи Предварительной заявки № 60/589823, озаглавленной "FH-OFDMA Reverse-Link Power Control", зарегистрированной 20 июля 2004 года, переданной правопреемнику этой заявки, и таким образом явно содержащейся в данном описании по ссылке.

Область техники, к которой относится изобретение

Настоящее изобретение, в общем, относится к связи, а более конкретно к методикам определения регулирования мощности линии обратной связи в ортогональной системе связи.

Уровень техники

В системе множественного доступа с ортогональным частотным разделением каналов и скачкообразным изменением частоты (FH-OFDMA) полоса пропускания равномерно делится на ряд ортогональных поднесущих. Каждому пользователю выделяется определенное число этих поднесущих OFDM. В FH-OFDMA пользователи также скачкообразно меняют частоту (т.е. поднабор несущих OFDM, назначенных пользователю, меняется во времени) по всей полосе пропускания. Все пользователи в рамках одного сектора или соты являются ортогональными относительно друг друга и, следовательно, не вызывают помех друг другу.

FH-OFDMA - это эффективная методика мультиплексирования для высокоскоростной передачи данных по беспроводным каналам. Тем не менее, вследствие существенного варьирования принимаемого отношения "сигнал-шум" (SNR) в системе FH-OFDMA она является очень неэффективной по ресурсам, чтобы обеспечивать небольшую частоту ошибок по пакетам для каждой передачи. Механизм повторной передачи пакетов (к примеру, H-ARQ) часто используется для того, чтобы помочь устранить эту неэффективность.

Помимо этого, регулирование мощности в замкнутом контуре часто используется, чтобы обеспечить, что достаточный SNR (т.е. SNR необходимый для того, чтобы замыкать линию связи) принимается в базовой станции. Существует внутреннее соотношение между числом разрешенных повторных передач и мощностью передачи, требуемой для успешной передачи. Например, посредством увеличения уровня мощности передачи число передач, требуемых для успешной передачи, может быть снижено, что непосредственно приводит к более высокой скорости передачи данных. Либо мощность передачи, требуемая для успешной передачи, может быть снижена, если число разрешенных повторных передач возрастает. Это внутреннее соотношение между скоростью и мощностью делает разработку контура регулирования мощности в системе с повторными передачи нетривиальной задачей.

Следовательно, в данной области техники существует потребность в методиках, которые увязывают скорость и мощность эффективным способом с учетом повторных передач.

Сущность изобретения

В одном аспекте раскрывается способ регулирования мощности в линии обратной связи, который содержит передачу пакета, определение того, принят ли пакет без ошибки, снижение действующей заданной величины отношения мощности несущей к помехам (C/I), если пакет принят без ошибки, и повышение действующей заданной величины C/I, если пакет не принят без ошибки.

В другом аспекте раскрывается способ регулирования мощности в линии обратной связи, который также содержит определение того, меньше ли отношение принимаемой мощности к термическому шуму (RpOT) максимального отношения принимаемой мощности к термическому шуму (RpOTmax). В аспекте, способ регулирования мощности линии обратной связи дополнительно содержит выдачу команды понижения, если RpOT превышает RpOTmax.

В другом аспекте предложен способ регулирования мощности в линии обратной связи, который также содержит определение того, меньше ли действующее отношение мощности несущей к помехам (C/I) действующего отношения мощности несущей к помехам для заданной величины (C/Isp). В аспекте, способ регулирования мощности в линии обратной связи дополнительно содержит определение того, меньше ли отношение принимаемой мощности к термическому шуму (RpOT) минимального отношения принимаемой мощности к термическому шуму (RpOTmin).

В другом аспекте предложен способ регулирования мощности в линии обратной связи, который также содержит выдачу команды понижения, если действующее отношение мощности несущей к помехам (C/I) не меньше действующего отношения мощности несущей к помехам для заданной величины (C/Isp) или отношение принимаемой мощности к термическому шуму (RpOT) не меньше минимального отношения принимаемой мощности к термическому шуму (RpOTmin).

В другом аспекте предложен способ регулирования мощности в линии обратной связи, который также содержит выдачу команды повышения, если действующее отношение мощности несущей к помехам (C/I) меньше действующего отношения мощности несущей к помехам для заданной величины (C/Isp) и отношение принимаемой мощности к термическому шуму (RpOT) меньше минимального отношения принимаемой мощности к термическому шуму (RpOTmin).

В другом аспекте раскрыты этапы определения того, принят ли пакет без ошибки, снижения заданной величины действующего отношения мощности несущей к помехам (C/I), если пакет принят без ошибки, и повышения заданной величины действующего C/I, если пакет не принят без ошибки, содержат регулирование мощности во внешнем контуре.

В другом аспекте предложен способ регулирования мощности в линии обратной связи, который также содержит отключение регулирования мощности во внешнем контуре, если отношение принимаемой мощности к термическому шуму (RpOT) меньше или равно минимального отношения принимаемой мощности к термическому шуму (RpOTmin) или если отношение принимаемой мощности к термическому шуму (RpOT) больше или равно максимального отношения принимаемой мощности к термическому шуму (RpOTmax).

В другом аспекте предложен способ регулирования мощности в линии обратной связи, который также содержит включение регулирования мощности во внешнем контуре, если отношение принимаемой мощности к термическому шуму (RpOT) больше минимального отношения принимаемой мощности к термическому шуму (RpOTmin) и отношение принимаемой мощности к термическому шуму (RpOT) меньше максимального отношения принимаемой мощности к термическому шуму (RpOTmax).

В другом аспекте предложено устройство беспроводной связи, которое содержит средство для передачи пакета, средство для определения того, принят ли пакет без ошибки, средство для снижения действующей заданной величины отношения мощности несущей к помехам (C/I), если пакет принят без ошибки, и средство для повышения действующей заданной величины C/I, если пакет не принят без ошибки.

В другом аспекте предложен процессор, который запрограммирован для того, чтобы приводить в исполнение способ оценки помех в системе беспроводной связи, при этом способ содержит передачу пакета, определение того, принят ли пакет без ошибки, снижение действующей заданной величины отношения мощности несущей к помехам (C/I), если пакет принят без ошибки, и повышение действующей заданной величины C/I, если пакет не принят без ошибки.

В другом аспекте предложен машиночитаемый носитель, который осуществляет способ регулирования мощности в линии обратной связи, при этом способ содержит передачу пакета, определение того, принят ли пакет без ошибки, снижение действующей заданной величины отношения мощности несущей к помехам (C/I), если пакет принят без ошибки, и повышение действующей заданной величины C/I, если пакет не принят без ошибки.

Далее подробно описаны различные аспекты и варианты осуществления изобретения.

Краткое описание чертежей

Признаки и сущность настоящего изобретения станут более явными из изложенного ниже подробного описания, рассматриваемого вместе с чертежами, на которых одинаковые позиции определяются соответствующим образом по всему описанию, и из которых:

Фиг.1 показывает систему 100 беспроводной связи с множественным доступом в соответствии с вариантом осуществления;

Фиг.2 иллюстрирует блок-схему последовательности операций способа регулирования мощности во внешнем контуре в соответствии с вариантом осуществления;

Фиг.3 иллюстрирует блок-схему последовательности операций способа регулирования мощности во внутреннем контуре в соответствии с вариантом осуществления; и

Фиг.4 иллюстрирует блок-схему терминала и базовой станции.

Подробное описание осуществления изобретения

Слово "примерный" используется в данном описании, чтобы обозначать "служащий в качестве примера, отдельного случая или иллюстрации". Любой вариант осуществления или проект, раскрытый в данном описании как "типичный", не обязательно должен быть истолкован как предпочтительный или выгодный по сравнению с другими вариантами осуществления или проектами.

Методики, раскрытые в данном описании для прогнозирования ранжирования на основе производительности, могут быть использованы в различных системах связи, таких как система множественного доступа с кодовым разделением каналов (CDMA), система широкополосного CDMA (WCDMA), система CDMA с прямым расширением спектра (DS-CDMA), система множественного доступа с временным разделением каналов (TDMA), система множественного доступа с частотным разделением каналов (FDMA), система высокоскоростного пакетного доступа по нисходящей линии связи (HSDPA), система мультиплексирования с ортогональным частотным разделением каналов (OFDM), система множественного доступа с ортогональным частотным разделением каналов (OFDMA), система с одним входом и одним выходом (SISO), система со многими входами и многими выходами (MIMO) и т.д.

OFDM - это методика модуляции с несколькими несущими, которая эффективно разделяет общую полосу пропускания системы на множество (NF) ортогональных поддиапазонов. Эти поддиапазоны также называются тонами, поднесущими, элементами разрешения и частотными каналами. В OFDM каждый поддиапазон ассоциативно связан с соответствующей поднесущей, которая может быть модулирована с помощью данных. До NF символов модуляции может передаваться отправлять по NF поддиапазонам в периоде символов OFDM. До передачи эти символы модуляции преобразуются к временной области с помощью NF-точечного обратного быстрого преобразования Фурье (IFFT), чтобы получить "преобразованный" символ, который содержит NF элементарных сигналов.

OFDMA-система использует OFDM и может поддерживать множество пользователей одновременно. В OFDMA-системе со скачкообразным изменением частоты данные для каждого пользователя передаются с помощью конкретной последовательности скачкообразного изменения частоты (FH), назначенной пользователю. FH-последовательность указывает конкретный поддиапазон, чтобы использовать для передачи в каждом периоде скачка частоты. Несколько передач данных для нескольких пользователей могут отправляться одновременно с помощью различных FH-последовательностей. Эти FH-последовательности задаются, чтобы быть ортогональными по отношению друг к другу, так чтобы только одна передача данных использовала каждый поддиапазон в периоде скачка частоты. Посредством использования ортогональных FH-последовательностей устраняются внутрисотовые помехи, и несколько передач данных не создают помехи друг другу, при этом используя преимущества частотного разнесения.

Типично, контур регулирования мощности может быть разбит на две части: внутренний контур и внешний контур. Базовая станция выдает команду регулирования мощности UP/DOWN, как диктуется посредством внутреннего контура, чтобы регулировать мощность передачи пользователя таким образом, чтобы требуемая величина (такая как мощность принимаемого сигнала, отношения "сигнал-помехи-и-шум" (SINR) и т.д.), задаваемая посредством внешнего контура регулирования мощности, поддерживалась. Внешний контур динамически корректирует эту заданную величину, так чтобы удовлетворялось заданное качество обслуживания (QoS), вне зависимости от изменения параметров канала.

IS-95 и CDMA2000 используют частоту ошибок по пакетам (PER) в качестве выбранного показателя QoS. По сути, контур регулирования мощности регулирует мощность передачи таким образом, чтобы PER был рядом с целевой заданной величиной (к примеру, 1%). Тем не менее, в этом алгоритме есть несколько недостатков, когда он применяется к системам с повторными передачами.

Например, рассмотрим вариант применения негарантированной скорости передачи, в котором ошибка пакета объявляется, только когда пакет не принят корректно после того, как достигнуто максимальное число разрешенных передач. Алгоритм регулирования мощности на основе частоты ошибок по пакетам (PER) пытается минимизировать мощность передачи, при этом стараясь поддерживать целевую частоту ошибок по пакетам. По мере того как максимальное число разрешенных передач возрастает, требуемая мощность передачи снижается (при условии, что размер пакета остается таким же). Хотя мощность передачи для пользователей снизилась, пропускная способность также снизилась.

Интересно, что в CDMA-системе, хотя пропускная способность каждого отдельного пользователя снижается, пропускная способность сектора может оставаться неизменной (или даже может возрастать), поскольку большее число пользователей добавляется в систему (напомним, что в CDMA-системе меньшие помехи приводят к большему числу поддерживаемых пользователей). К сожалению, системы, которые используют методики ортогонального множественного доступа (к примеру, TDMA, FDMA и OFDMA) по линии обратной связи, испытывают потери общей пропускной способности сектора при этой схеме регулирования мощности.

В ортогональных системах, когда все измерения использованы, дополнительные пользователи не могут быть добавлены без отказа от ортогональности между пользователями. Таким образом, добавление дополнительных пользователей не обязательно помогает компенсировать потери пропускной способности сектора, вызываемые снижением пропускной способности каждого отдельного пользователя в ортогональной системе.

Фиг.1 показывает систему 100 беспроводной связи с множественным доступом в соответствии с вариантом осуществления. Система 100 включает в себя определенное число базовых станций 110, которые поддерживают обмен данными для определенного числа беспроводных терминалов 120. Базовая станция - это стационарная станция, используемая для обмена данными с терминалами, и она может также упоминаться как точка доступа, узел B или каким-либо другим термином. Терминалы 120 типично распределены по системе, и каждый терминал может быть стационарным или мобильным. Терминал также может упоминаться как мобильная станция, абонентское оборудование (UE), устройство беспроводной связи или каким-либо другим термином. Каждый терминал может обмениваться данными с одной или более базовыми станциями по линии прямой и обратной связи в любой данный момент времени. Это зависит от того, активен ли терминал, поддерживается ли мягкая передача обслуживания и находится ли терминал в режиме мягкой передачи обслуживания. Для простоты фиг.1 показывает только передачу по линии обратной связи. Системный контроллер 130 соединяется с базовыми станциями 110, обеспечивает координацию и контроль этих базовых станций и дополнительно управляет маршрутизацией данных для терминалов, обслуживаемых этими базовыми станциями.

Схема регулирования мощности с замкнутым контуром для системы FH-OFDMA с гибридным ARQ (H-ARQ) описывается ниже в соответствии с вариантом осуществления. Специалистам в данной области техники должно быть очевидно, что нижеописанный алгоритм может быть легко модифицирован, чтобы работать с любыми ортогональными системами (к примеру, TDMA, FDMA), которые используют повторные передачи.

Этот алгоритм предназначен для того, чтобы оптимально подходить для трафика с негарантированной скоростью передачи (к примеру, ftp, загрузка и т.д.) и чувствительного к задержкам трафика с постоянной скоростью передачи (CBR) (к примеру, речь, мультимедиа и т.д.). Для трафика с негарантированной скоростью передачи предлагаемый алгоритм уменьшает проблему потерь скорости вследствие связи между регулированием мощности и H-ARQ. Для чувствительного к задержкам CBR-трафика предлагаемый алгоритм регулирования мощности пытается минимизировать мощность передачи пользователя, при этом по-прежнему удовлетворяя ограничение на частоту ошибок по пакетам и задержку. Один базовый алгоритм и интерфейс регулирования мощности может быть использован для трафика с негарантированной скоростью передачи и чувствительного к задержке CBR-трафика.

Фиг.2 иллюстрирует блок-схему 200 последовательности операций способа регулирования мощности во внешнем контуре в соответствии с вариантом осуществления. Назначение внешнего контура - задавать целевое действующее отношение мощности несущей к помехам (C/I), чтобы отслеживать для внутреннего контура. Действующее C/I используется вместо, например, среднего C/I. Действующее C/I - это более оптимальный показатель состояния канала, чем среднее C/I, в системе FH-OFDMA. "Действующее SNR" (примерно) пропорционально геометрическому среднему SNR, усредненных по всем тонам.

Внешний контур обновляется, когда (i) есть ошибка передачи пакета или (ii) пакет декодирован корректно. Вследствие повторной передачи внешний контур может не обновляться каждый интервал поступления пакета.

Пакет считается ошибочным, если он не был успешно декодирован после того, как достигнуто заданное максимальное число передач, или если его задержка превышает заданный предел задержки. Задержка включает в себя задержку помещения в очередь и задержку передачи.

Посредством объявления пакетов с задержкой, превышающей максимальную допустимую задержку, как пакетов с ошибками, ограничение по задержке прозрачно встраивается в контур регулирования мощности. Логическое объяснение этого состоит в том, что в большинстве приложений реального времени просроченные пакеты просто отбрасываются, поскольку в отношении восприятия пользователя поврежденный пакет или поступивший с опозданием пакет является в той или иной степени нежелательным. Помимо этого, пакеты могут отбрасываться в передающем устройстве, чтобы дополнительно помогать регулировать задержку пакетов (поскольку не имеет смысла передавать пакеты, задержка которых уже превысила предел, поскольку они в любом случае будут отброшены приемным устройством).

Приемное устройство может обнаруживать, что некоторые пакеты отброшены в передающем устройстве, посредством распознавания того, что пакеты приняты не по порядку. Эти отсутствующие пакеты (после обнаружения) трактуются как пакеты с ошибками. Отсутствие пакетов может быть обнаружено только после того, как следующий пакет в последовательности корректно декодирован в приемном устройстве. По сути, поврежденные пакеты, отброшенные пакеты и пакеты с чрезмерной задержкой объявляются пакетами с ошибками, и внешний контур динамически регулирует действующую заданную величину C/I, чтобы поддержать целевое значение частоты ошибок по пакетам. За счет выбора надлежащего размера шагов корректировки действующей заданной величины C/I целевая PER может регулироваться до требуемого значения.

На этапе 202 выполняется проверка, чтобы определить, должна ли быть обновлена заданная величина. Если нет, то управляющая логика возвращается к этапу 202 в следующей итерации. Если заданная величина должна быть обновлена, то управляющая логика переходит к этапу 204.

На этапе 204 выполняется проверка, чтобы определить, есть ли пакеты с ошибками. Если пакетов с ошибками нет, то управляющая логика переходит к этапу 206. В противном случае управляющая логика переходит к этапу 208.

На этапе 206 выполняется проверка, чтобы определить, пропущен ли пакет. Если пакет пропущен, то управляющая логика переходит к этапу 208, и действующая заданная величина C/I увеличивается. В противном случае управляющая логика переходит к этапу 210, и действующая заданная величина C/I уменьшается.

Затем базовая станция выдает команду регулирования мощности UP/DOWN (к примеру, +/- 1 дБ) с помощью внутреннего контура, как показано на фиг.3. Фиг.3 показывает блок-схему 300 последовательности операций способа регулирования мощности во внутреннем контуре в соответствии с вариантом осуществления.

Внешний контур может быть отключен, когда данные отсутствуют. Таким образом, только управление во внутреннем контуре включено, когда данные отсутствуют.

Внутренний контур обновляется периодически (к примеру, каждые несколько скачков частоты или временных интервалов). Базовая станция измеряет мощность принимаемого сигнала и действующее C/I в интервале измерения. Внутренний контур пытается поддержать целевое эффективное C/I, заданное посредством внешнего контура, при этом удовлетворяя ограничение RpOT (т.е. рабочий RpOT должен быть между RpOTmin и RpOTmax). Отношение принимаемой мощности к термическому шуму (RpOT) задается как отношение между мощностью принимаемого сигнала (P) и термическим шумом (No). Внутренний контур этого предлагаемого алгоритма пытается удовлетворить цели как по C/I, так и по RpOT.

Заданные величины (C/Isp, RpOTmin, RpOTmax) зависят от пользователя. Пользователи с различным качеством обслуживания (QoS) могут иметь различные ограничения по RpOTmin, RpOTmax. Обновления также зависят от пользователя.

RpOTmin и RpOTmax могут определяться согласно QoS. RpOTmin и RpOTmax также могут задаваться равными друг другу.

Хотя и не отражено на чертежах, когда предел RpOT (т.е. RpOTmin или RpOTmax) достигнут, обновление внешнего контура отключается в соответствии с вариантом осуществления. Это позволяет не допустить бесконечного увеличения или уменьшения действующей заданной величины C/I.

Есть два преимущества внедрения RpOT в структуру регулирования мощности. Во-первых, поскольку RpOT не зависит по мощности помех от других пользователей посредством регулирования мощности передачи на основе RpOT контур регулирования мощности, по сути, стабилен (т.е. нет бесконечных скачков мощности между пользователями). Во-вторых, посредством наложения ограничения на рабочий RpOT мощность передачи может быть увязана со скоростью передачи данных.

Без дополнительного ограничения рабочего диапазона RpOT контур регулирования мощности может задавать мощность передачи на очень низком уровне, поскольку это может быть единственным, что требуется для того, чтобы удовлетворить заданное требование по частоте ошибок по пакетам. Это приводит к более низкой пропускной способности, как описано выше. Посредством задания рабочего диапазона RpOT пользователи могут существенно влиять на соотношение между скоростью передачи данных и мощностью передачи (к примеру, пользователи могут задавать более высокую скорость передачи из досрочного завершения посредством передачи с более высокой мощностью). По сути, RpOTmin позволяет защитить от излишней потери в скорости, тогда как RpOTmax помогает обеспечить стабильную работу.

Посредством задания RpOTmin = RpOTmax внешний контур в сущности отключается. Фактически базовая станция регулирует мощность передачи пользователя так, чтобы удовлетворялось целевое RpOT. Эта настройка может быть использована для поддержки трафика с негарантированной скоростью передачи, когда пользователь всегда может извлечь выгоду из более высокой скорости передачи данных.

На этапе 302 выполняется проверка, чтобы определить, должен ли быть обновлен внутренний контур. Если нет, то управляющая логика возвращается к этапу 302 в следующей итерации. Если внутренний контур должен быть обновлен, то управляющая логика переходит к этапу 304.

На этапе 304 выполняется проверка, чтобы определить, превышает ли RpOT RpOTmax. Если да, то управляющая логика переходит к этапу 306, и команда DOWN выдается базовой станцией. Если нет, то управляющая логика переходит к этапу 308.

На этапе 308 выполняется проверка, чтобы определить, меньше ли действующая C/I действующей C/Isp, или RpOT < RpOTmin. Действующая C/Isp - это действующая C/I для заданной величины. Если да, то управляющая логика переходит к этапу 310, и базовая станция выдает команду UP. Если нет, то управляющая логика переходит к этапу 306, и базовая станция выдает команду DOWN.

В варианте осуществления функция гистерезиса добавлена, чтобы обновить функции внешнего и внутреннего контура 200, 300 по фиг.2 и 3, соответственно. Функция гистерезиса помогает не допустить вхождения системы в предельный цикл.

В варианте осуществления ошибки передачи пакетов автоматически приводят к команде UP, чтобы ускорить восстановление (при условии, разумеется, что ограничение RpOT не нарушено).

В варианте осуществления, когда присутствует только канал управления, внешний контур отключается, при этом продолжая приводить в исполнение внутренний контур. Когда канал передачи данных возвращается, работа внешнего контура может быть прозрачно возобновлена. Таким образом, один базовый контур регулирования мощности используется для каналов управления и передачи данных.

Фиг.4 иллюстрирует блок-схему варианта осуществления базовой станции 110x и терминала 120x. В линии обратной связи, в терминале 120x, процессор 510 данных передачи (TX) принимает и обрабатывает (к примеру, форматирует, кодирует, перемежает и модулирует) данные трафика линии обратной связи (RL) и предоставляет символы модуляции для данных трафика. Процессор 510 TX-данных также обрабатывает управляющие данные (к примеру, CQI) из контроллера 520 и предоставляет символы модуляции для управляющих данных. Модулятор (MOD) 512 обрабатывает символы модуляции для данных трафика, управляющих данных и контрольных символов и предоставляет последовательность комплекснозначных элементарных сигналов. Обработка в процессоре 510 TX-данных и модуляторе 512 зависит от системы. Например, модулятор 512 может выполнять OFDM-модуляцию, если система использует OFDM. Передающее устройство (TMTR) 514 приводит к требуемым параметрам (к примеру, преобразует в аналоговую форму, усиливает, фильтрует и преобразует с повышением частоты) последовательность элементарных сигналов и генерирует сигнал линии обратной связи, который направляется через антенный переключатель (D) 516 и передается посредством антенны 518.

В базовой станции 110x сигнал линии обратной связи из терминала 120x принимается антенной 552, направляется через антенный переключатель 554 и предоставляется приемному устройству (RCVR) 556. Приемное устройство 556 приводит к требуемым параметрам (например, фильтрует, усиливает и преобразует с понижением частоты и оцифровывает) принятый сигнал и дополнительно оцифровывает параметризованный сигнал для получения потока выборок данных. Демодулятор (DEMOD) 558 обрабатывает выборки данных для получения оценок символов. Затем процессор 560 данных приема (RX) обрабатывает (к примеру, обратно перемежает и декодирует) оценки символов для получения декодированных данных для терминала 120x. Процессор 560 RX-данных также выполняет обнаружение стирания и предоставляет контроллеру 570 состояние каждого принимаемого кодового слова, используемого для регулирования мощности. Обработка в демодуляторе 558 и процессоре 560 RX-данных комплементарна обработке, выполняемой модулятором 512 и процессором 510 TX-данных, соответственно.

Обработка передачи по линии прямой связи может выполняться аналогично обработке, описанной выше для линии обратной связи. Обработка передачи по линии обратной связи и линии прямой связи типично задается системой.

Для регулирования мощности линии обратной связи блок 574 оценки SNR оценивает принимаемый SNR для терминала 120x и предоставляет принимаемый SNR в TPC-генератор 576. TPC-генератор 576 также принимает целевой SNR и генерирует TPC-команды для терминала 120x. TPC-команды обрабатываются процессором 582 TX-данных, дополнительно обрабатываются модулятором 584, параметризуются передающим устройством 586, направляются через антенный переключатель 554 и передаются посредством антенны 552 в терминал 120x.

В терминале 120x сигнал линии прямой связи от базовой станции 110x принимается антенной 518, направляется через антенный переключатель 516, параметризуется и оцифровывается приемным устройством 540, обрабатывается демодулятором 542 и дополнительно обрабатывается процессором 544 RX-данных для получения принимаемых TPC-команд. После того TPC-процессор 524 обнаруживает принимаемые TPC-команды для получения решений по TPC, которые используются для регулирования мощности передачи. Модулятор 512 принимает управление от TPC-процессора 524 и корректирует мощность передачи по линии обратной связи. Регулирование мощности линии прямой связи может осуществляться аналогичным образом.

Контроллеры 520 и 570 управляют операциями различных блоков обработки в терминале 120x и базовой станции 110x, соответственно. Контроллер 520 и 570 также может выполнять различные функции по обнаружению стирания и регулированию мощности для линии прямой и обратной связи. Например, каждый контроллер может реализовывать блок оценки SNR, TPC-генератор и блок корректировки целевого SNR для своей линии связи. Контроллер 570 и процессор 560 RX-данных также могут реализовывать процессы 200 и 300 на фиг.2 и 3. Запоминающие устройства 522 и 572 сохраняют данные и программный код для контроллеров 520 и 570, соответственно.

Описанные в данном документе методики обнаружения стирания и регулирования мощности могут быть реализованы различными средствами. Например, эти методики могут быть реализованы в аппаратных средствах, программном обеспечении или их сочетании. При реализации в аппаратных средствах блоки обработки, используемые для осуществления обнаружения стирания или регулирования мощности, могут быть реализованы в одной или более специализированных интегральных схемах (ASIC), процессорах цифровых сигналов (DSP), устройствах цифровой обработки сигналов (DSPD), программируемых логических устройствах (PLD), программируемых пользователем матричных БИС (FPGA), процессорах, контроллерах, микроконтроллерах, микропроцессорах, других электронных устройствах, предназначенных для того, чтобы выполнять описанные в данном документе функции, или их сочетание.

При реализации в программном обеспечении описанные в данном документе методики могут быть реализованы с помощью модулей (к примеру, процедур, функций и т.п.), которые выполняют описанные в данном документе функции. Программные коды могут быть сохранены в запоминающем устройстве (к примеру, в запоминающем устройстве 572 на фиг.5) и исполнены процессором (к примеру, контроллером 570). Запоминающее устройство может быть реализовано в процессоре или внешне по отношению к процессору, причем во втором случае оно может быть подсоединено к процессору с помощью различных средств, известных в данной области техники.

Предшествующее описание раскрытых вариантов осуществления изобретения предоставлено для того, чтобы дать возможность любому специалисту в данной области техники создавать или использовать настоящее изобретение. Различные модификации в этих вариантах осуществления будут явными для специалистов в данной области техники, а раскрытые в данном описании общие принципы могут быть применены к другим вариантам осуществления без отступления от духа и существа изобретения. Таким образом, настоящее изобретение не предназначено, чтобы быть ограниченным раскрытыми в данном описании вариантами осуществления, а должно удовлетворять самой широкой области применения, согласованной с принципами и новыми признаками, раскрытыми в данном описании.

Источник поступления информации: Роспатент

Showing 31-40 of 1,144 items.
27.01.2013
№216.012.2183

Управление помехами посредством регулирования мощности

Изобретение относится к технике связи и может быть использовано в терминалах доступа систем беспроводной связи. Технический результат - улучшение управления подавлением помех. Способ регулирования мощности заключается в том, что оценивают для терминала доступа, ассоциированного с первой точкой...
Тип: Изобретение
Номер охранного документа: 0002474080
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2184

Способ и устройство для управления мощностью первой передачи данных в процедуре произвольного доступа системы связи fdma

Изобретение относится к области связи. Передаваемая мощность управляется для первой передачи данных восходящей линии связи на физическом совместно используемом канале восходящей линии связи (PUSCH) в ходе процедуры канала произвольного доступа (RACH). Регулировка управления мощностью для первой...
Тип: Изобретение
Номер охранного документа: 0002474081
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2185

Динамическая регулировка покрытия в системе связи с множеством несущих

Изобретение относится к области связи. Описываются способы для динамического изменения покрытия в системе связи с множеством несущих. Сектор может работать на множестве несущих. Данный сектор может изменять покрытие на заданной несущей k на основе ее нагрузки, так что по отношению к другим...
Тип: Изобретение
Номер охранного документа: 0002474082
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2186

Конфигурация точки доступа на основе принятых сигналов точки доступа

Изобретение относится к беспроводной связи. Точка доступа конфигурируется на основе сигналов, принятых от одной или нескольких точек доступа по прямой линии связи. Точка доступа представляет собой точку доступа с относительно небольшой зоной обслуживания и/или точку доступа, которая...
Тип: Изобретение
Номер охранного документа: 0002474083
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2187

Поисковый вызов беспроводной связи с использованием многочисленных типов идентификаторов узлов

Изобретение относится к беспроводной связи. Технический результат заключается в снижении нагрузки поисковыми вызовами и/или нагрузки регистрацией в сети. Технический результат достигается посредством использования разных типов идентификаторов для предписывания того, какие узлы осуществляют...
Тип: Изобретение
Номер охранного документа: 0002474084
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2188

Поисковый вызов и доступ посредством различных узлов

Изобретение относится к беспроводной связи. Техническим результатом является улучшение рабочих характеристик связи. Доступ только к сигнализации устанавливается на узле (104) доступа, при определении, что узел (102) не авторизован на доступ к данным на узле (102) доступа. Может выполняться...
Тип: Изобретение
Номер охранного документа: 0002474085
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2189

Выделение совместно используемого ресурса

Изобретение относится к мобильной связи. Технический результат заключается в оптимизации управления совместно используемым ресурсом. Технический результат достигается за счет администрирования работы мобильного устройства, основанного на оценке набора подтверждений приема, содержащихся в буфере...
Тип: Изобретение
Номер охранного документа: 0002474086
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.218a

Инициирование передачи cqi из ue в узел в для ue, находящегося в состоянии cell_fach

Изобретение относится к беспроводной связи. Технический результат заключается в обеспечении улучшенной эффективности и надежности беспроводной связи в полуактивном состоянии. Предложен способ усовершенствованной беспроводной связи для абонентского устройства (UE), находящегося в полуактивном...
Тип: Изобретение
Номер охранного документа: 0002474087
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.218b

Опорная несущая в беспроводной системе связи с несколькими несущими

Изобретение относится к технике связи и может использоваться в беспроводных системах связи с несколькими несущими. Технический результат состоит в повышении пропускной способности беспроводной связи между узлами и пользовательским устройством (UE) с использованием множества несущих нисходящей...
Тип: Изобретение
Номер охранного документа: 0002474088
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.218c

Способ и устройство для поддержки передачи данных в системе связи с несколькими несущими

Изобретение относится к связи. Описываются способы для поддержки передачи данных на множестве несущих в системе беспроводной связи. Пользовательское оборудование (UE) может определять доступную мощность передачи для передачи данных на множестве несущих. UE может распределять доступную мощность...
Тип: Изобретение
Номер охранного документа: 0002474089
Дата охранного документа: 27.01.2013
Showing 31-40 of 48 items.
29.05.2019
№219.017.671f

Система модуляции с множеством несущих с разнесением циклических задержек

Изобретение относится к передаче данных в беспроводной системе смвязи. Технический результат заключается в повышении эффективности широковещательной передачи данных. Описаны методы передачи данных с разнесением циклических задержек и смещением пилот-сигнала. Для разнесения циклических задержек...
Тип: Изобретение
Номер охранного документа: 0002369030
Дата охранного документа: 27.09.2009
09.06.2019
№219.017.790f

Надежное обнаружение стирания и управление мощностью на основании частоты стирания в замкнутом контуре

Описываются способы выполнения обнаружения стирания и управления мощностью для передачи без кодирования обнаружения ошибок. Для обнаружения стирания передатчик передает кодовые слова через канал беспроводной связи. Техническим результатом является надлежащая регулировка мощности передачи в...
Тип: Изобретение
Номер охранного документа: 0002348115
Дата охранного документа: 27.02.2009
09.06.2019
№219.017.7924

Регулирование мощности в системе беспроводной связи, использующей ортогональное мультиплексирование

Изобретение относится к технике связи. Технический результат состоит в регулировании мощности для смягчения внутрисекторных помех для обслуживающей базовой станции и межсекторных помех для соседних базовых станций. Для этого величина внутрисекторных помех, которые может вызывать терминал, может...
Тип: Изобретение
Номер охранного документа: 0002349033
Дата охранного документа: 10.03.2009
09.06.2019
№219.017.7a91

Мультиплексирование для сотовой системы радиосвязи с множеством несущих

Изобретение относится к передаче данных. Технический результат заключается в повышении пропускной способности системы. Для квазиортогонального мультиплексирования в системе OFDMA для каждой базовой станции определяется множество (М) совокупностей каналов трафика. Каналы трафика в каждой...
Тип: Изобретение
Номер охранного документа: 0002357364
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7b12

Управление мощностью с помощью методик стирания

Описаны методики выполнения обнаружения стирания и управления мощностью передачи без кодирования с обнаружением ошибок. Технический результат заключается в потребности в методиках надлежащего управления мощностью передачи, когда код обнаружения ошибок не используется. Для этого, при обнаружении...
Тип: Изобретение
Номер охранного документа: 0002371862
Дата охранного документа: 27.10.2009
09.06.2019
№219.017.7f0f

Адаптивное распределенное частотное планирование

Изобретение относится к технике связи и может использоваться в системах сотовой связи. Технический результат состоит в повышении помехоустойчивости системы. Для этого системы и способы содействуют применению распределенного частотного планирования и оптимизации коэффициента повторного...
Тип: Изобретение
Номер охранного документа: 0002446622
Дата охранного документа: 27.03.2012
19.06.2019
№219.017.8647

Обнаружение сигнала в системе беспроводной связи

Изобретение относится к технике связи и может быть использовано для обнаружения сигнала в системе беспроводной связи. Каждая базовая станция передает первый мультиплексированный с временным разделением каналов (TDM) пилот-сигнал, основанный на первой последовательности псевдослучайных чисел...
Тип: Изобретение
Номер охранного документа: 0002395170
Дата охранного документа: 20.07.2010
19.06.2019
№219.017.86a7

Канал скоростной пейджинговой связи с уменьшенной вероятностью потери пейджингового сообщения

Изобретение относится к системам связи. Технический результат заключается в увеличении продолжительности работы мобильного устройства. Канал скоростной пейджинговой связи в системе беспроводной связи с произвольным доступом включает в себя, по меньшей мере, один бит в кадре скоростной...
Тип: Изобретение
Номер охранного документа: 0002387101
Дата охранного документа: 20.04.2010
19.06.2019
№219.017.8b36

Обнаружение сигнала в системе беспроводной связи

Изобретение относится к технике связи и может быть использовано в системах беспроводной связи для обнаружения сигнала. Способ обнаружения сигнала заключатся в том, что выполняют первую корреляцию принимаемых выборок для обнаружения первого мультиплексированного с временным разделением каналов...
Тип: Изобретение
Номер охранного документа: 0002444841
Дата охранного документа: 10.03.2012
06.07.2019
№219.017.a833

Передача пилот-сигнала и оценка канала для множества передатчиков

Изобретение относится к технике связи. Технический результат состоит в обеспечении оценки канала в присутствии множества передатчиков. Для этого каждому передатчику назначается только временной пилот-код, только частотный пилот-код или частотно-временной пилот-код для использования при передаче...
Тип: Изобретение
Номер охранного документа: 0002350030
Дата охранного документа: 20.03.2009
+ добавить свой РИД