×
10.07.2019
219.017.ad15

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА ШТРИПСА ДЛЯ ТРУБ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, конкретнее к производству штрипсовой стали для магистральных трубопроводов диаметром до 1420 мм, толщиной не менее 20 мм и не более 40 мм. Для повышения прочностных свойств и сопротивляемости хрупким разрушениям при температуре до -20°С при сохранении высокой технологичности, определяемой соотношением σ/σ≤0,90, осуществляют выплавку стали определенного химического состава в конверторе, разливку металла в непрерывнолитые заготовки, аустенизацию при температуре 1170-1220°С в течение 4-8 часов, затем проводят предварительную деформацию с суммарной степенью обжатия 40-60% и с регламентированными обжатиями не менее 14% за проход при температуре 1000-900°С, далее промежуточный подкат ускоренно охлаждают за два прохода в установке контролируемого охлаждения (УКО), причем после первого прохода осуществляют кантование подката, далее проводят подстуживание на воздухе в течение 3-5 с/мм и подвергают окончательной деформации при температуре 820-730°С с суммарной степенью обжатий 40-50% и не менее 12% за проход, затем проводят охлаждение в УКО до температуры 500-350°С, далее замедленно охлаждают в кессоне до температуры не выше 150°С, затем на воздухе. 1 табл.

Изобретение относится к металлургии, конкретнее к производству штрипсовой стали для магистральных трубопроводов диаметром до 1420 мм, толщиной не менее 20 мм и не более 40 мм.

Известен способ производства штрипсовой стали с использованием контролируемой прокатки из низколегированной стали повышенной прочности марки 10Г2ФБ, отвечающей требованиям к стали данной категории прочности по стандарту API 5L в толщинах до 21,6 мм при температуре испытания падающим грузом -20°С с гарантированным содержанием волокнистой составляющей в изломе не менее 90%, при отношении σTB≤0,9, содержащей, мас.%: углерод - 0,08-0,11, марганец - 1,55-1,75, кремний - 0,15-0,35, хром - не более 0,3, никель - не более 0,3, медь - не более 0,3, ванадий - 0,06-0,08, ниобий - 0,04-0,06, титан - 0,010-0,25, алюминий 0,015-0,06, фосфор - не более 0,020, сера - не более 0,005, железо - остальное.

Основными недостатками этой марки являются использование технологии контролируемой прокатки для изготовления и, как следствие, отсутствие возможности изготовления в толщинах более 21,6 мм, что обуславливается образованием неоднородной структуры по толщине проката, определяющей снижение хладостойкости и изотропности механических свойств и снижение эксплуатационной надежности.

Наиболее близким по технологии изготовления является способ производства штрипсовой стали для труб подводных морских газопроводов высоких параметров следующего химического состава (мас.%), патент №2270873, С21D 8/02, публ. 27.02.2006 г. (прототип):

Углерод 0,05-0,09
Марганец 1,25-1,60
Хром 0,01-0,1
Кремний 0,15-0,30
Никель 0,30-0,60
Молибден 0,10-0,25
Ванадий 0,03-0,10
Алюминий 0,02-0,05
Ниобий 0,01-0,06
Медь 0,20-0,40
Кальций 0,001-0,005
Сера 0,0005-0,005
Фосфор 0,005-0,015
Железо остальное

При этом проводят нагрев заготовки выше Ас3, предварительную деформацию при температуре 950-850°С с суммарными обжатиями 50-60%, затем осуществляют охлаждение полученной заготовки до 820-760°С, со скоростью охлаждения 4-15°С/с на установке контролируемого охлаждения (УКО), окончательную деформацию с суммарной степенью обжатий 60-76% проводят при температуре 770-740°С, ускоренное охлаждение листового проката проводят в установке контролируемого охлаждения до температур 530-350°С со скоростью 35-50°С/с, далее замедленно охлаждают в кессоне до температуры не выше 150°С и затем на воздухе.

Известная сталь обеспечивает высокую технологичность изготовления труб, определяемую соотношением σTB≤0,90.

Недостатками прототипа являются пониженные прочностные свойства, предел текучести не выше 502 МПа, работа удара при -60°С и не обеспечивается сопротивляемость хрупким разрушениям стали по критерию ИПГ при температуре -20°С.

Техническим результатом изобретения является разработка способа производства штрипсовой стали в толщинах 20-40 мм и шириной до 4371 мм, обеспечивающего повышенные прочностные свойства, гарантированный предел текучести не менее 505 МПа, работу удара (KV при -60°С) и сопротивляемость хрупким разрушениям при температурах до -20°С по критерию ИПГ для листов толщиной до 40 мм (количество волокнистой составляющей не менее 90%) при сохранении высокой технологичности, определяемой соотношением σTB≤0,90.

Технический результат достигается тем, что заготовку получают из стали со следующим соотношением элементов, мас.%: углерод - 0,04-0,08, марганец - 1,5-1,8, кремний - 0,16-0,40, никель - 0,20-0,70, алюминий - 0,02-0,05, молибден - 0,1-0,3, ниобий - 0,03-0,08, ванадий - до 0,08, титан - 0,003-0,020, медь - 0,10-0,30, сера - 0,001-0,004, фосфор - 0,002-0,015, железо - остальное, при этом величина углеродного эквивалента определяется по формуле:

Перед прокаткой заготовку подвергают аустенизации при температуре 1170-1220°С в течение 4-8 часов, затем проводят предварительную деформацию с суммарной степенью 40-60% и с регламентированными обжатиями не менее 14% за проход при температуре 1000-900°С, далее промежуточный подкат ускоренно охлаждается за два прохода в УКО, причем за первый проход верхняя широкая грань промежуточного подката охлаждается на 110°С, а нижняя на 40°С, затем осуществляется кантование подката, верхняя грань становится нижней и охлаждается на 40°С, а нижняя грань после кантования - верхней и охлаждается на 110°С, тем самым происходит выравнивание температуры по всей толщине подката, далее проводят подстуживание на воздухе в течение 3-5 с/мм и чистовую прокатку при температуре 820-730°С со степенью обжатий 40-50% от общей деформации и не менее 12% за проход, затем проводят охлаждение в УКО до температуры 500-350°С, далее замедленно охлаждают в кессоне до температуры не выше 150°С, затем на воздухе.

Основными факторами повышения предела текучести являются твердорастворное, дислокационное, субструктурное и дисперсионное упрочнения. Единственным механизмом, который одновременно с приростом предела текучести вызывает повышение хладостойкости, является измельчение действительного зерна. Использование микролегирования обеспечивает отсутствие значительного роста зерна при нагреве под прокатку и при высокотемпературном деформировании.

Измельчение структуры при прокатке достигается применением легирования титаном, ванадием и ниобием, которые, образуя мелкодисперсные карбиды, препятствуют росту зерна аустенита при нагреве и оказывают тормозящее действие на собирательную рекристаллизацию при высокотемпературной стадии прокатки. Регламентированные обжатия при предварительной деформации не менее 14% за проход позволяют за счет протекания динамической рекристаллизации сформировать мелкодисперсное зерно аустенита и стимулировать выделение карбидной фазы, предотвращающей прохождение собирательной рекристаллизации, и обеспечить измельчение структуры по всей толщине. Дополнительное микролегирование титаном обусловливает измельчение зерна в зоне термического влияния при сварке, что повышает работу удара вблизи линии сплавления.

Главной отличительной особенностью технологии является регламентация режима нагрева и процесс охлаждения после черновой прокатки.

Экспериментально установлено, что увеличение температуры нагрева слябов из низколегированной стали выше 1240°С не улучшает комплекс механических свойств штрипсов, а лишь увеличивает время нагрева и требует дополнительного подстуживания раската перед чистовой прокаткой, что снижает производительность процесса. Снижение этой температуры ниже 1170°С приводит к неполному растворению в аустените карбонитридных упрочняющих частиц, снижению пластических и вязкостных свойств штрипсов.

Охлаждение подката таким образом позволяет избежать изотермической паузы в интервале температур прохождения собирательной рекристаллизации, вызывающей укрупнение зерна, выдержка на воздухе 3-5 с/мм дается для выравнивания температуры по сечению. Благодаря реализованному режиму охлаждения заготовки (промежуточного подката) обеспечивается получение квазиизотропной структуры по всему сечению листа после окончания прокатки, в том числе при сравнении нижней и верхней поверхностей листа.

Применение термомеханической обработки с температурой чистовой прокатки 820-730°С и суммарной степенью обжатий 40-50% обеспечивает формирование мелкозернистой структуры с развитой субструктурой и равномерно распределенной мелкодисперсной карбидной фазой.

Ускоренное охлаждение листового проката в УКО в интервале температур от 820-720°С до 500-350°С способствует образованию мелкозернистой структуры. состоящей из полигонального (~10%) и фрагментированного феррита (40-65%) и бейнита (25-50%). Последующее замедленное охлаждение в кессоне до температуры, не превышающей 150°С, обуславливает снятие термических напряжений.

Регламентирование содержания примесных элементов, особенно серы, обеспечивает высокую сопротивляемость стали динамическим нагрузкам при отрицательных температурах (ИПГ при минус 20 и минус 60°С) и высокие характеристики эксплуатационной надежности, в том числе коррозионную стойкость.

Испытания листового проката, изготовленного по указанной технологии, показали, что предлагаемые режимы для стали заданного химического состава обеспечивают наряду с требуемой прочностью содержание волокнистой составляющей в изломе проб не менее 90% в толщинах до 40 мм.

Пример:

Сталь была выплавлена в кислородном конверторе и после внепечного рафинирования разлита в непрерывнолитые слябы сечением 250×1600 мм.

Химический состав стали был следующим, мас.%: углерод - 0,06, кремний - 0,30, марганец - 1,70, никель - 0,50, алюминий - 0,04, молибден - 0,2, титан - 0,01, сера - 0,002, фосфор - 0,007, ниобий - 0,06, ванадий - 0,06, железо - остальное, медь - 0,2, Сэкв=0,43.

Заготовки подвергали аустенизации при температуре 1200°С в течение 8 часов. Прокатку на листы толщиной 40 мм производили на одноклетьевом стане в реверсивном режиме. Предварительную деформацию проводили с регламентированными обжатиями 14-17-16-20% в диапазоне температур 1000-900°С, промежуточный подкат охлаждали в УКО за два прохода с применением кантования, затем подстуживали на воздухе до температуры чистовой прокатки 820-730°С, степень обжатий при прокатке составила 40-50% от общей деформации и не менее 12% за проход. После окончания деформации листы охлаждали в УКО до температуры 500 и 350°С, далее замедленно охлаждали в кессоне до температуры 100°С, окончательное охлаждение - на воздухе до температуры окружающей среды.

Механические свойства определяли на продольных и поперечных образцах. Испытания на статическое растяжение проводили на полнотолщинных образцах, а на ударный изгиб на образцах с V-образным надрезом (тип 11, ГОСТ 9454) при температурах -20 и -60°С. Испытание ИПГ проводили на полнотолщинных образцах в соответствии с API 5L 3.

Механические свойства прокатанных листов приведены в таблице.

Способ производства штрипса для труб магистральных трубопроводов толщиной 20-40 мм, аустенизацию заготовки с нагревом выше Ас, дробную деформацию, подстуживание и ступенчатое охлаждение штрипса в установке контролируемого охлаждения УКО до температуры 500-350°С с последующим охлаждением в кессоне до температуры не более 150°С и далее на воздухе, отличающийся тем, что осуществляют нагрев заготовки полученной из стали со следующим соотношением элементов, мас.%: с углеродным эквивалентом С≤0,43 мас.%, при этом аустенизацию заготовки проводят при температуре 1170-1220°С в течение 4-8 ч, затем проводят предварительную деформацию с суммарной степенью обжатий 40-60% и с регламентированными обжатиями не менее 14% за проход при температуре 1000-900°С с получением промежуточного подката, который ускоренно охлаждают в УКО за два прохода, причем после первого прохода осуществляют кантование подката, далее проводят подстуживание на воздухе в течение 3-5 с/мм, а окончательную деформацию ведут при температуре 820-730°С с суммарной степенью обжатий 40-50% и не менее 12% за проход.
Источник поступления информации: Роспатент

Showing 21-25 of 25 items.
09.06.2019
№219.017.79a8

Суспензия для получения покрытия

Изобретение относится к области стекломатериалов для функциональных покрытий с необходимыми электрофизическими свойствами. Технический результат изобретения заключается в разработке состава суспензии для получения покрытий для снятия статических электрических зарядов, работающего в диапазоне...
Тип: Изобретение
Номер охранного документа: 0002399595
Дата охранного документа: 20.09.2010
09.06.2019
№219.017.79e4

Смесь для изготовления литейных форм и стержней

Изобретение относится к области литейного производства. Смесь содержит в мас.%: огнеупорный наполнитель в виде порошка недоплава производства электротехнического периклаза 40,0-50,0, связующее в виде жидкого стекла 5,0-12,0 и порошок лома использованных литейных форм из недоплава 45,0-48,0....
Тип: Изобретение
Номер охранного документа: 0002312732
Дата охранного документа: 20.12.2007
09.06.2019
№219.017.7a36

Способ гранулирования флюса

Изобретение относится к методам гранулирования флюсов для сварки низколегированных хладостойких сталей и сплавов, широкого диапазона составов и может быть применено во всех отраслях промышленности, производящих сварочные материалы, для сварки сталей и сплавов широкого диапазона составов, в том...
Тип: Изобретение
Номер охранного документа: 0002387521
Дата охранного документа: 27.04.2010
09.06.2019
№219.017.7ab0

Титановый сплав для трубопроводов и трубных систем теплообменного оборудования атомной энергетики

Изобретение относится к металлургии титановых сплавов, содержащих в качестве основы титан с заданным отношением легирующих и примесных элементов, и предназначено для использования в судовом и энергетическом машиностроении при производстве трубопроводов и сварных трубных систем, отвечающих...
Тип: Изобретение
Номер охранного документа: 0002351671
Дата охранного документа: 10.04.2009
09.06.2019
№219.017.7c90

Способ сварки плавлением меди и ее сплавов со сталями

Изобретение может быть использовано в машиностроении, судостроении и других отраслях промышленности при изготовлении различных узлов и конструкций, включающих соединения медных сплавов со сталями, кроме деталей или изделий из оловянных бронз. Предварительно на кромку стальной детали наплавляют...
Тип: Изобретение
Номер охранного документа: 0002325252
Дата охранного документа: 27.05.2008
Showing 21-30 of 75 items.
29.05.2018
№218.016.53f9

Способ производства толстолистового проката для изготовления электросварных газонефтепроводных труб большого диаметра категории прочности х42-х56, стойких против индуцированного водородом растрескивания в hs -содержащих средах

Изобретение относится к области металлургии. Для обеспечения высокой стойкости против разрушения в среде так называемого «кислого» газа: индуцированное водородом растрескивание и сульфидное растрескивание под напряжением, в сочетании с высокой прочностью, пластичностью и вязкостью выплавляют...
Тип: Изобретение
Номер охранного документа: 0002653954
Дата охранного документа: 15.05.2018
19.12.2018
№218.016.a87d

Способ производства низколегированных рулонных полос с повышенной коррозионной стойкостью

Изобретение относится к области металлургии, конкретнее, для получения рулонного полосового проката с низкой скоростью коррозии при сохранении уровня прочностных и пластических характеристик, соответствующего категории прочности К52, осуществляют аустенизацию заготовки при 1200-1280°С, черновую...
Тип: Изобретение
Номер охранного документа: 0002675307
Дата охранного документа: 18.12.2018
20.12.2018
№218.016.a96d

Способ производства листового проката с регулируемым пределом текучести из стали унифицированного химического состава

Изобретение относится к области производства высокопрочных сталей улучшенной свариваемости для применения в судостроении, строительстве морских сооружений, транспортном и тяжелом машиностроении и др. отраслях промышленности. Получение проката унифицированного химического состава в листах...
Тип: Изобретение
Номер охранного документа: 0002675441
Дата охранного документа: 19.12.2018
26.12.2018
№218.016.ab74

Способ производства горячекатаных листов из низколегированной стали класса прочности к60 толщиной до 40 мм

Изобретение относится к металлургии, в частности к производству на реверсивном толстолистовом стане горячекатаного проката толщиной до 40 мм для магистральных труб. Cпособ включает нагрев непрерывнолитых заготовок, черновую прокатку в раскат промежуточной толщины, его подстуживание, чистовую...
Тип: Изобретение
Номер охранного документа: 0002675891
Дата охранного документа: 25.12.2018
09.02.2019
№219.016.b86d

Способ производства низкоуглеродистой стали с повышенной коррозионной стойкостью

Изобретение относится к области черной металлургии и может быть использовано для получения низкоуглеродистых сталей с повышенной коррозионной стойкостью для производства полосового проката. В способе осуществляют выплавку металла в сталеплавильном агрегате, выпуск жидкого металла в...
Тип: Изобретение
Номер охранного документа: 0002679375
Дата охранного документа: 07.02.2019
20.02.2019
№219.016.be84

Коррозионно-стойкая высокопрочная немагнитная сталь и способ ее термодеформационной обработки

Изобретение относится к металлургии конструкционных сталей и сплавов, содержащих в качестве основы железо с заданным соотношением легирующих и примесных элементов и предназначено для использования в различных областях промышленности. Нагревают слиток из коррозионно-стойкой высокопрочной...
Тип: Изобретение
Номер охранного документа: 0002392348
Дата охранного документа: 20.06.2010
20.02.2019
№219.016.c092

Способ получения бездефектных поковок для длинномерных изделий типа роторов или валов

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении поковок для длинномерных изделий типа роторов или валов. Полученный из отлитого кузнечного слитка блок подвергают осадке. Из осаженного блока удаляют центральную дефектную зону путем его прошивки...
Тип: Изобретение
Номер охранного документа: 0002302921
Дата охранного документа: 20.07.2007
20.02.2019
№219.016.c15a

Аустенитная коррозионно-стойкая сталь для хлоридсодержащих сред и изделие, выполненное из нее

Изобретение относится к области металлургии, а именно к составам коррозионно-стойких аустенитных сталей повышенной прочности, и может быть использовано при производстве листовых деталей и сварных конструкций из них. Сталь содержит углерод, кремний, хром, никель, марганец, азот, медь, бор,...
Тип: Изобретение
Номер охранного документа: 0002413031
Дата охранного документа: 27.02.2011
01.03.2019
№219.016.cb81

Способ криогенно-деформационной обработки стали

Изобретение относится к области черной металлургии, конкретнее к способам обработки коррозионно-стойких аустенитных сталей, и может быть использовано, например, для изготовления тяжелонагруженных деталей в машиностроении. Для получени стали с высокими прочностными характеристиками,...
Тип: Изобретение
Номер охранного документа: 0002394922
Дата охранного документа: 20.07.2010
06.03.2019
№219.016.d2d6

Хладостойкая свариваемая arc-сталь повышенной прочности

Изобретение относится к области металлургии, а именно к производству листового проката из хладостойкой arc-стали повышенной прочности и улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, машиностроении, мостостроении и других отраслях промышленности....
Тип: Изобретение
Номер охранного документа: 0002681094
Дата охранного документа: 04.03.2019
+ добавить свой РИД