×
10.07.2019
219.017.aa9a

СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ СТРЕЛКА НА МЕСТНОСТИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к измерительной технике, в частности к определению местоположения объекта с использованием звуковых волн, в частности местоположения стрелка на местности. Способ определения местоположения стрелка на местности заключается в том, что включают запись звуковых сигналов при регистрации ударных волн от пролетавшей сверхзвуковой пули и дульной волны от расширяющихся газов со среза ствола чувствительными элементами, обработку этих сигналов с помощью процессора, по результатам которой судят о местоположении источника звука. Новым в способе является то, что предварительно чувствительные элементы закрепляют неподвижно относительно оптической оси устройства видеозаписи, синхронно с записью звуковых сигналов не менее чем 3-мя чувствительными элементами осуществляют запись видеоизображения вероятного местоположения источника звука с помощью, по крайней мере, одного устройства видеозаписи, установленного с возможностью изменения направления съемки и положения в пространстве, при последующей обработке сигналов совмещают по времени момент прихода дульной волны и ближайший по времени к этому моменту кадр из записанного видеозаряда, на который и наносят отметку о местоположении стрелка. При этом запись видеоизображения осуществляют в оптическом или инфракрасном или ином диапазоне. Технический результат, достигаемый изобретением, заключается в обеспечении безопасности, возможности указания направления нахождения противника, дальности до него путем создания способа, позволяющего не только определить направление источника звука, но и обнаружить ("увидеть") его. 1 з.п. ф-лы, 6 ил.
Реферат Свернуть Развернуть

Область техники

Изобретение относится к измерительной технике, в частности к определению местоположения объекта с использованием звуковых волн, в частности местоположения стрелка на местности.

Уровень техники

В настоящее время способы определения траектории движения сверхзвукового артиллерийского снаряда достаточно хорошо разработаны. В меньшей степени разработаны способы пеленгации огневых позиций снайперов. Поэтому большое внимание уделяется разработке способов определения местоположения стрелка на местности и систем поиска снайперов, которые найдут применение в органах охраны правопорядка, в армии и т.д.

Известен способ определения траектории движения сверхзвукового снаряда, описанный в патенте на изобретение "Акустическая система "контр-снайпер" [1], предназначенный для определения движения сверхзвукового снаряда и включающий в себя регистрацию ударных волн и волн сжатия, по крайней мере, двумя чувствительными элементами с известным взаимным местоположением, преобразование собранной информации в информационный сигнал временного ряда, обработку этих сигналов с помощью процессора, при которой учитывают время прихода и амплитуды составляющих скачков уплотнения с каждого чувствительного элемента, классифицируют их как в качестве возможных компонентов взрывной волны, скачка уплотнения или ни того, ни другого и, исходя из баллистического коэффициента сверхзвукового снаряда как функции амплитудного напряжения (Vp) и наклона волны N (V/T), взятых из информации о временном ряде, и относительного времени прихода скачка уплотнения судят о предполагаемой траектории движения сверхзвукового снаряда.

Данный способ несмотря на сложность, трудоемкость и значительные капитальные затраты для создания системы позволяет осуществить регистрацию звуковых волн, возникающих при распространении движущегося со сверхзвуковой скоростью объекта и определить его траекторию.

К недостаткам вышеуказанного способа следует отнести необходимость наличия системы ориентации на местности и отсутствие возможности получения звукового изображения объектов.

Из оптики известно, что качество изображения зависит от длины волны. Согласно критерию Релея изображения двух близких светящихся (некогерентных) точек можно еще считать раздельными, если центр дифракционного пятна, соответствующего одной точке, совпадает с первым дифракционным минимумом во второй точке. В соответствии с критерием Релея наименьшее угловое разрешение δϕ между удаленными точечными источниками, изображения которых еще можно считать раздельными, равно:

В общем случае, в геометрической оптике считается, что обычное двумерное изображение можно получить только в том случае, если диаметр линзы d≫λ. В этом случае дифракционные эффекты пренебрежимо малы, и поэтому можно пренебречь волновой природой света. В акустике, как правило, мы имеем дело с достаточно длинными волнами. Например, звуковая волна с частотой 1 КГц имеет длину волны около 34 см. Если попытаться создать некоторый прибор с разрешением в 1°, который бы позволил получить звуковое изображение, используя звуковые волны с частотой 1 КГц, то несложный расчет показывает, что диаметр акустической линзы или зеркала должен быть около 24 метров. По этой причине обычный способ построения звукового изображения практически нереализуем. Лишь для ультразвука, у которого длина волны меньше 2 см, в настоящее время удалось создать устройства приемлемых размеров, формирующие звуковое изображение. Недостатком ультразвука является то, что в обычной атмосфере ультразвуковые волны затухают на расстояниях порядка нескольких десятков метров. В связи с этим ультразвук получил основное применение лишь в плотных средах, таких как вода, где затухает более медленно. Звуковые волны диапазона 100-10000 Гц могут распространяться в атмосфере на большие расстояния, но из-за большой длины волны их трудно использовать подобно оптическим волнам для получения изображения источника звука. А ведь именно эти звуковые волны в большинстве случаев являются неотъемлемым атрибутом боя. Выстрелы противника, взрывы и т.п. являются источником этих звуков, которые редко сливаются вместе. Даже при стрельбе очередями интервал между выстрелами составляет около 0.1 секунды, что многократно превышает длительность самого выстрела. В частности, низкочастотные звуковые волны уже используются для пеленгации огневых позиций в ряде зарубежных систем, например "Pilar" (Франция) [2]. Но подобные системы, как правило, довольно громоздки и требуют значительное время на разворачивание.

Поэтому представляется заманчивым использовать эти звуки не только для пеленгации огневых позиций снайперов, но и для получения их изображения.

В привязке к этой проблеме, если под регистрацией ударных волн и волн сжатия понимать ударные волны от пролетевшей сверхзвуковой пули и дульной волны от расширяющихся газов со среза ствола чувствительными элементами, то тогда способ определения траектории движения сверхзвукового снаряда, описанный в патенте на изобретение "Акустическая система "контр-снайпер" [1]), как наиболее близкий по технической сущности, можно выбрать в качестве прототипа.

К недостаткам вышеуказанного способа-прототипа следует отнести его неприемлемость для определения местоположения снайпера на местности в движении и отсутствие возможности получения звукового изображения движущегося объекта.

Раскрытие изобретения

Технический результат, достигаемый изобретением, заключается в обеспечении безопасности, возможности указания направления нахождения противника, дальности до него путем создания способа, позволяющего не только определить направление источника звука, но и обнаружить ("увидеть") его.

Указанный технический результат в заявляемом изобретении достигается тем, что в способе определения местоположения стрелка на местности, включающем запись звуковых сигналов при регистрации ударных волн от пролетевшей сверхзвуковой пули и дульной волны от расширяющихся газов со среза ствола чувствительными элементами, обработку этих сигналов с помощью процессора, по результатам которой судят о местоположении источника звука, новым является то, что предварительно чувствительные элементы закрепляют неподвижно относительно оптической оси устройства видеозаписи, синхронно с записью звуковых сигналов при регистрации ударных волн не менее чем 3-мя чувствительными элементами, осуществляют запись видеоизображения вероятного местоположения источника звука с помощью, по крайней мере, одного устройства видеозаписи, установленного с возможностью изменения направления съемки и положения в пространстве, а при последующей обработке сигналов совмещают по времени момент прихода дульной волны и ближайший по времени к этому моменту кадр из записанного видеоряда, на который и наносят отметку о местоположении стрелка. При этом запись видеоизображения осуществляют в оптическом или инфракрасном или ином диапазоне.

Синхронная запись звуковых сигналов не менее чем 3-мя чувствительными элементами и видеоизображения вероятного местоположения источника звука с помощью одного или нескольких устройств видеозаписи, установленных с возможностью изменения направления съемки и положения в пространстве, позволяет с высокой точностью определить местоположение стрелка на местности.

Предварительное неподвижное закрепление чувствительных элементов относительно оптической оси устройства видеозаписи позволяет упростить отображение местоположения стрелка на местности.

Обработка сигналов, при которой совмещают по времени момент прихода дульной волны и ближайший по времени к этому моменту кадр из записанного видеоряда, на который и наносят отметку о местоположении стрелка, способствует высокой точности определения как местоположения стрелка на местности, так и дальности до него.

Запись видеоизображения, осуществляемая в оптическом, или инфракрасном, или ином диапазоне, позволяет определить место расположения источника звука на местности без предварительной топографической привязки.

При реализации данного способа можно не только определить направление на противника, дальность до него, но и "увидеть" источники звука непосредственно на поле боя, в том числе "увидеть" одиночный источник звука, например транспортное средство, движущееся в лесу, по звуку его двигателя.

Кроме того, дополнительным преимуществом заявляемого способа является возможность нахождения направления только на один, самый громкий источник звука. При такой постановке задачи исчезает необходимость в разделении двух некогерентных источников звука в пространстве, так как эти источники разделяются во времени.

Дополнительно, если запись изображения ведется как в оптическом, так и в инфракрасном диапазоне, причем видеоданные пишутся в кольцевой видеобуфер (длительностью не менее 2 секунд), то появляется возможность увидеть инфракрасную вспышку пороховых газов на срезе ствола. Для этого нужно вытащить из видеобуфера кадр, соответствующий моменту самого выстрела (tвыстрела на фигуре 2). Для вычисления tвыстрела используются записанные акустические сигналы с микрофонов после обнаружения ударной волны. Далее инфракрасная вспышка накладывается из видеобуфера инфракрасного диапазона на соответствующий кадр видеобуфера обычного оптического диапазона.

Краткое описание чертежей

На фигурах 1-6 отображена реализация предлагаемого способа определения местоположения стрелка на местности.

На фигуре 1 представлена общая схема устройства, где 1 - чувствительные элементы (микрофоны), 2 - устройство видеозаписи (видеокамера), соединенное с монитором 3 и через аналого-цифровой преобразователь 4 с процессором 5:

На фигуре 2 показана схема обработки сигналов, где 6 - ударная волна - признак начала записи звука, 7 - дульная волна, 8 - метка положения стрелка.

На фигуре 3 показан вид корреляционного пика, который представляет собой поверхность двумерной функции корреляций между каналами микрофонов при стрельбе из винтовки СВД (снайперская винтовка Драгунова) с расстояния 330 метров.

На фигуре 4 изображено место этого же выстрела (винтовка СВД с расстояния 330 метров) в виде цветного пятна с яркостью, меняющейся в зависимости от величины амплитуды.

На фигуре 5 показан внешний вид экспериментального устройства, где 1 - микрофоны, 2 - видеокамера или цифровой фотоаппарат, 9 - звукопоглощающий экран.

На фигуре 6 проиллюстрированы вычисленные огневые позиции стрелков, наложенные на видеоизображение.

Осуществление изобретения

Способ определения местоположения стрелка на местности реализуется следующим образом. Чувствительные элементы предварительно закрепляют неподвижно относительно оптической оси каждого устройства видеозаписи. Затем при обнаружении ударных волн от пролетевшей сверхзвуковой пули и дульной волны от расширяющихся газов со среза ствола записывают звуковые сигналы не менее чем 3-мя чувствительными элементами и осуществляют синхронную запись видеоизображения области вероятного местоположения источника звука с помощью одного или нескольких устройств видеозаписи, установленных с возможностью изменения направления съемки и положения в пространстве. При последующей обработке сигналов совмещают по времени момент прихода дульной волны и ближайший по времени к этому моменту кадр из записанного видеоряда, на который и наносят отметку о местоположении стрелка. Причем запись видеоизображения осуществляют в оптическом, или инфракрасном, или ином диапазоне.

Заявляемый способ реализуется на устройстве, представленном на фиг.1 и выполненном в виде 4 чувствительных элементов (микрофонов) 1, неподвижно установленных относительно оптической оси каждого устройства видеозаписи 2, размещенного с возможностью изменения направления съемки и положения в пространстве и соединенного с монитором 3 и через аналого-цифровой преобразователь 4 с процессором 5.

Заявляемый способ определения местоположения стрелка на местности осуществляют следующим образом. Чувствительные элементы 1 предварительно закрепляют неподвижно относительно оптической оси устройства видеозаписи 2, каждое из которых устанавливают с возможностью изменения направления съемки и положения в пространстве. При обнаружении ударной волны 6 синхронно с записью звуковых сигналов с помощью амплитудно-цифрового преобразователя 4 и процессора 5, регистрирующих ударные волны от пролетевшей сверхзвуковой пули и дульной волны 7 от расширяющихся газов со среза ствола не менее чем 3-мя чувствительными элементами 1, осуществляют запись видеоизображения вероятного местоположения источника звука устройством видеозаписи 2. При последующей обработке сигналов совмещают по времени момент прихода дульной волны и ближайший по времени к этому моменту кадр из записанного видеоряда, на который и наносят отметку о местоположении стрелка 8.

На предприятии изготовлен возможный вариант экспериментального устройства, показанный на фиг.5. В предположении, что скорость звука известна и с точки зрения повышения точности, более эффективно расположить все чувствительные элементы (микрофоны) 1 в одной плоскости, перпендикулярной оптической оси устройства видеозаписи (видеокамеры или цифрового фотоаппарата) 2. Для того чтобы уменьшить воздействие на микрофоны отраженных волн сбоку и сзади, их предлагается расположить перед звукопоглощающим экраном (например, из стекловаты, поролона или другого поглощающего материала) 3. При плоском расположении микрофонов 1 обеспечивается наиболее высокая точность пеленгации. Ориентировочный размер микрофонной антенны примерно 20-30 см. При таких размерах изменение направления на источник звука на 1 градус соответствует изменению прихода фронта волны на 0.6 см, что хорошо согласуется с частотой дискретизации. При частоте дискретизации 41 КГц на канал волна успевает между тактами пройти 0.7 см. Таким образом, можно предположить, что устройство будет способно обеспечить обнаружение источника звука с точностью около 1 градуса. В связи с этим целесообразно видеоизображение также покрыть сеткой с шагом в 1 градус.

В момент обнаружения дульной волны производят захват видеоизображения и на это неподвижное изображение накладывают метку цели с указанием дальности. Поэтому в системе может быть использована как цифровая видеокамера, так и инфракрасная видеокамера ночного видения. Кроме того, для того чтобы рассмотреть указанную устройством позицию стрелка с большим увеличением, можно ввести в устройство вторую длиннофокусную видеокамеру. При этом можно предусмотреть программу, реагирующую на движение.

Для того чтобы выяснить практическую реализуемость предлагаемого способа, на полигоне был проведен следующий эксперимент. Восемь микрофонов были расположены на плоской подставке диаметром 35 см аналогично тому, как это изображено на фиг.5. Для имитации видеокамеры использовался цифровой фотоаппарат, оптическая ось которого совпадала с перпендикуляром к плоскости микрофонов.

На фиг.3 показана поверхность двумерной функции корреляций между каналами микрофонов 1 при стрельбе из винтовки СВД с расстояния 330 метров. Направление прихода звуковых волн вычисляется методом определения максимума суммы межканальных корреляций по 4-16 каналам.

На фиг.4 этот же выстрел изображен в виде цветного пятна с яркостью, меняющейся в зависимости от величины амплитуды. При этом яркость "накладываемого звукового изображения" зависит от величины корреляций (потока энергии в данном направлении). Цвет в данной точке зависит от частоты звука.

Точность определения местоположения стрелка на местности определялась на устройстве (фиг.5) с помощью серии однотипных выстрелов. Разброс вычисленной точки положения стрелка от выстрела к выстрелу соответствует возможной ошибке. Как видно из фиг.6, разброс для 14 выстрелов с двух различных огневых позиций составил не более 0,5 градуса как по вертикали, так и по горизонтали. Этот результат продемонстрировал потенциально высокую точность обнаружения стрелка на местности.

С учетом вышеизложенного можно сказать, что промышленная применимость способа определения местоположения стрелка на местности не вызывает сомнений. Он может быть использован для поиска снайперов, для решения задач обеспечения безопасности в органах охраны правопорядка, в армии и т.д. При реализации способа можно увидеть местоположение различных источников звука на поле боя. Можно в качестве устройства видеозаписи, кроме видеокамеры, использовать инфракрасную аппаратуру или прибор ночного видения. Устройство для осуществления способа может быть достаточно компактным. Оно не требует предварительной привязки на местности, поэтому может быть приведено в рабочее состояние в короткое время. В принципе система может быть создана без монитора в виде бинокля (в одной из фокальных плоскостей может быть расположена жидкокристаллическая решетка).

Литература

1. US №6178141, МКИ: G 01 S 5/80, опубл. 23.01.2001 г.

2. www.metravib.fr.

1.Способопределенияместоположениястрелканаместности,включающийзаписьзвуковыхсигналовприрегистрациичувствительнымиэлементамиударныхволнотпролетевшейсверхзвуковойпулиидульнойволныотрасширяющихсягазовсосрезаствола,обработкуэтихсигналовспомощьюпроцессора,порезультатамкоторойсудятоместоположенииисточниказвука,отличающийсятем,чточувствительныеэлементыпредварительнозакрепляютнеподвижноотносительнооптическойосиодногоилинесколькихустройстввидеозаписи,прирегистрацииударныхволнотпролетевшейсверхзвуковойпулиидульнойволныотрасширяющихсягазовсосрезастволасинхронносзаписьюзвуковыхсигналов,неменеечем3чувствительнымиэлементамиосуществляютзаписьвидеоизображениявероятногоместоположенияисточниказвукаспомощьюодногоилинесколькихустройстввидеозаписи,установленныхсвозможностьюизменениянаправлениясъемкииположениявпространстве,припоследующейобработкесигналовсовмещаютповременимоментприходадульнойволныиближайшийповременикэтомумоментукадриззаписанноговидеоряда,накоторыйинаносятотметкуоместоположениистрелка.12.Способопределенияместоположениястрелканаместностипоп.1,отличающийсятем,чтозаписьвидеоизображенияосуществляютвоптическомилиинфракрасномдиапазоне.2
Источник поступления информации: Роспатент

Showing 21-30 of 91 items.
19.04.2019
№219.017.2f3c

Генератор высоковольтных импульсов

Изобретение относится к области электротехнической промышленности, в частности к импульсной технике, и может быть использовано для питания импульсных источников света, искровых камер, лазеров и ускорителей, работающих как в импульсном, так и в импульсно-периодическом режиме. В генераторе...
Тип: Изобретение
Номер охранного документа: 0002352056
Дата охранного документа: 10.04.2009
19.04.2019
№219.017.2f41

Устройство охлаждения (варианты)

Изобретение относится к области космической техники и радиотехники. Технический результат - повышение эффективности охлаждения, улучшение массогабаритных характеристик, расширение области применения. Устройство охлаждения, содержащее корпус из теплопроводного материала с охлаждаемой...
Тип: Изобретение
Номер охранного документа: 0002355139
Дата охранного документа: 10.05.2009
19.04.2019
№219.017.2fd8

Понижающий стабилизатор

Понижающий стабилизатор относится к области электрорадиотехники и может быть использован в качестве блоков питания. Исток р-канального проходного транзистора (1) с изолированным затвором подключен к входной шине (2), а сток подключен к входу сглаживающего фильтра (3). Выход сглаживающего...
Тип: Изобретение
Номер охранного документа: 0002339072
Дата охранного документа: 20.11.2008
19.04.2019
№219.017.2fdc

Разрядник

Изобретение относится к области электрорадиотехники и может быть использовано в коммутаторах для сильноточных импульсных ускорителей заряженных частиц, для импульсных генераторов токов и т.п. Техническим результатом является увеличение ресурса, повышение надежности, электрической прочности и...
Тип: Изобретение
Номер охранного документа: 0002339139
Дата охранного документа: 20.11.2008
19.04.2019
№219.017.3084

Тягово-сцепное устройство с подпором

Изобретение относится к области автотранспортного машиностроения, касается тягово-сцепных устройств транспортных средств. Тягово-сцепное устройство с подпором включает буксирное дышло, приспособленное к соединению с тяговым крюком тягача с помощью сцепной петли и снабженное сцепными вилками...
Тип: Изобретение
Номер охранного документа: 0002322361
Дата охранного документа: 20.04.2008
19.04.2019
№219.017.32dc

Полимерный нанокомпозиционный материал

Изобретение относится к полимерным нанокомпозиционным антифрикционным материалам, которые могут быть использованы в системах, работающих при высоких деформирующих нагрузках и в узлах трения. Материал получен совместной механоактивацией смеси порошкообразного сверхвысокомолекулярного полиэтилена...
Тип: Изобретение
Номер охранного документа: 0002432370
Дата охранного документа: 27.10.2011
29.04.2019
№219.017.40d6

Стенд для испытания изделий на совместное воздействие вибрационных и линейных ускорений

Изобретение относится к испытательной технике и может быть использовано для испытаний изделий на совместное воздействие вибрационных и линейных ускорений. Стенд содержит центрифугу, включающую электрический привод, ротор и устройство для передачи вращения с вертикально расположенного вала...
Тип: Изобретение
Номер охранного документа: 0002396531
Дата охранного документа: 10.08.2010
29.04.2019
№219.017.4269

Способ растворения диоксида урана

Изобретение относится к способам переработки материалов, содержащих диоксид урана, и может быть использовано для извлечения урана из отработанного ядерного топлива, а также отходов металлургических и механических операций производства изделий из диоксида урана. Способ растворения диоксида урана...
Тип: Изобретение
Номер охранного документа: 0002339100
Дата охранного документа: 20.11.2008
29.04.2019
№219.017.4290

Поисковый радиационный монитор

Изобретение относится к области ядерного приборостроения, в частности к устройствам для обнаружения радиоактивных ядерных материалов, и предназначено для обнаружения несанкционированного перемещения в ручной клади, грузах и багаже указанных материалов через проходные, контрольно-пропускные...
Тип: Изобретение
Номер охранного документа: 0002303277
Дата охранного документа: 20.07.2007
18.05.2019
№219.017.53f8

Диодный узел генератора сверхвысокочастотного излучения

Устройство относится к сверхвысокочастотной (СВЧ) технике и может быть использовано в мощных генераторах сверхвысокочастотного излучения. Техническая задача предлагаемого решения состоит в усовершенствовании диодного узла для СВЧ генераторов с виртуальным катодом. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002279153
Дата охранного документа: 27.06.2006
Showing 11-13 of 13 items.
06.02.2020
№220.017.ff21

Способ лечения боли при реабилитации онкологических пациентов после проведения хирургических вмешательств на позвоночнике

Изобретение относится к медицине, а именно к онкологии, и касается лечения боли при реабилитации онкологических больных после проведения хирургического вмешательства на позвоночнике. Для этого осуществляют ингаляцию смесью криптона и кислорода в соотношении 70/30 об.%. Процедуру проводят в...
Тип: Изобретение
Номер охранного документа: 0002713455
Дата охранного документа: 05.02.2020
10.07.2020
№220.018.311d

Способ лечения хронической боли

Изобретение относится к экспериментальной медицине, а именно к неврологии, и касается лечения хронической боли. Для этого проводят курс подкожных инъекций медицинского ксенона 99.9%, количеством ксенона, достаточным для анальгезии. Это обеспечивает эффективную и длительную анальгезию при...
Тип: Изобретение
Номер охранного документа: 0002726048
Дата охранного документа: 08.07.2020
20.04.2023
№223.018.4c0e

Применение криптона в терапии соматоформных психических расстройств

Изобретение относится к медицине, а именно к психиатрии, и может быть использовано в терапии соматоформных расстройств. Для этого в нормобарических условиях по открытому или закрытому дыхательному контуру с помощью ингаляционного устройства с контролем посредством газоанализатора проводят...
Тип: Изобретение
Номер охранного документа: 0002769783
Дата охранного документа: 06.04.2022
+ добавить свой РИД