×
10.07.2019
219.017.a9af

Результат интеллектуальной деятельности: СПОСОБ НАХОЖДЕНИЯ СОПРЯЖЕННЫХ ВЕКТОРОВ НАПРАВЛЕНИЙ НА ДВИЖУЩИЕСЯ ОБЪЕКТЫ

Вид РИД

Изобретение

№ охранного документа
0002694023
Дата охранного документа
08.07.2019
Аннотация: Изобретение относится к пассивным системам радиовидения миллиметрового диапазона длин волн, предназначенным для наблюдения за малоразмерными движущимися объектами. Технический результат изобретения заключается в возможности повысить вероятность обнаружения всех движущихся объектов и точность определения их пространственных координат. Для радиометрической системы, состоящей из двух взаимно удаленных радиометров со сканирующими по пространству антеннами, орты направлений на объекты образуются линией визирования антенн и запоминаются в угловых координатах азимута и угла места элементов матриц радиоизображений. При движении объектов орты получают неучтенное приращение, что приводит к ошибкам сопряжения и определения пространственных координат объектов. Способ позволяет находить сопряженные пары ортов векторов направлений на объекты в системе двух радиометров в условиях движущихся объектов и случайных помех за счет определения скорости изменения координат ортов с учетом моментов времени их образования.

Изобретение относится к пассивным системам радиовидения миллиметрового диапазонов длин волн [1], предназначенным для наблюдения за малоразмерными движущимися объектами. При обнаружении объектов [1], определении дальностей до них и оценивании пространственных координат в пассивной системе двух и более наблюдателей первоочередной задачей является поиск сопряженных пар ортов векторов направлений на соответствующие объекты, если число этих объектов больше одного.

В оптических систем видимого и инфракрасного диапазонов длин волн орты направлений на объекты формируются прохождением лучей через фокусы оптических линз, которые отображаются в матрицах изображений практически мгновенно. Поэтому время получения изображений мало по сравнению с временем перемещения объектов в поле видимости.

Для радиометрической системы, состоящей из двух радиометров с синхронно сканирующими по пространству антеннами, орты направлений на объекты образуются линией визирования антенн и запоминаются в угловых координатах азимута и угла места элементов матриц радиоизображений (РИ). При известной скорости построчного сканирования вычисляются и запоминаются моменты времени формирования ортов. Для сопряженных ортов направлений на один и тот же объект моменты времени их образования в общем случае отличаются. Это объясняется как движением объектов, так и различной ориентацией систем координат радиометров.

Наряду с изображениями объектов в матрицах РИ присутствуют изображения ложных образований, обусловленных помехами, и соответственно имеются ложные орты случайных направлений. В связи с этим требуется разработка способа поиска сопряженных векторов направлений на объекты и определения их пространственных координат, учитывающего движение объектов и наличие случайных помех.

В качестве прототипа рассмотрим способ нахождения сопряженных пар векторов [2, с. 182-186] в системе двух наблюдателей, основанный на свойстве компланарных векторов. Применительно к радиометрической системе способ заключается в следующем.

1. Для двух радиометров, взаимно удаленных на базовое расстояние d0, формируются орты i-x и j-x направлений на объекты a(i), и b(j), где ma и mb - число ортов в первом и втором радиометрах.

2. Рассматриваются i-e, j-е варианты соединения ортов в пары. Для каждого i-го, j-го варианта вычисляется показатель J(i, j) необходимого условия сопряжения:

представляющий модуль смешанного произведения трех векторов: вектора a(i); вектора b'=Pb(j), где Р - матрица поворота осей координат при переходе в систему координат первого радиометра; τ - орт базового вектора d=d0τ, указывающего направление от первого радиометра ко второму.

3. Показатель (1) сравнивается с малым положительным числом ε. Если J(i, j)>ε, то данный вариант соединения ортов отвергается. Если J(i, j)≤ε, то i-й, j-й вариант считается правдоподобным, так как, если векторы а(i) и b(j) являются сопряженными (направлены на один и тот же объект), то указанные три вектора лежат в одной плоскости, и их смешанное произведение близко к нулю (с точностью до ошибок сопряжения).

4. Из всех пар соединения ортов выбираются неповторяющихся пар с наименьшими значениями показателей (1).

5. Для каждой выбранной пары сопряженных ортов а(i) и b(j) вычисляются оценки дальностей до соответствующего объекта ra(i) и rb(j), а также векторы оценок пространственных координат объекта Ma(i)=ra(i)a(i) и Mb(j)=rb(j)b(j) в системах координат двух радиометров.

Данный способ обладает следующими недостатками.

1. Способ не учитывает движение объекта на промежутке времени между двумя моментами ta(i) и tb(j), ta(i)≠tb(j), образования ортов а(i) и b(j), из-за чего нарушается условие компланарности векторов..

2. Близость показателя (1) к нулю не всегда означает сопряжение векторов а(i) и b(j), то есть принадлежность одному объекту, так как в одной плоскости могут лежать векторы, не принадлежащие одному объекту. Поэтому требуется дополнительная проверка на достаточность сопряжения.

Заявляемое техническое решение направлено на устранение этих недостатков.

Технический результат предлагаемого технического решения достигается применением способа нахождения сопряженных векторов направлений на движущиеся объекты, который заключается в формировании i-x, j-x пар ортов a(i) и b(j) векторов направлений на объекты в системах координат двух взаимно удаленных на базовое расстояние d0 сканирующих радиометров, вычислении в системе координат первого радиометра смешанного произведения векторов a(i), b(j) и орта τ базового вектора и сохранении тех i-x, j-x неповторяющихся пар ортов, для которых модуль смешанного произведения не превышает малого положительного числа, отличающийся тем, что в последовательности периодов сканирования, начиная со второго, для каждой пары векторов a(i), b(j) вычисляется приращение Δa(i) для орта а(i) умножением длины промежутка времени между двумя моментами времени образования пары ортов a(i) и b(j) на вектор скорости изменения координат орта a(i), определяемый за один период сканирования радиометра, после чего для измененного орта a(i), орта b(i) и орта τ вычисляют их смешанное произведение и, если модуль смешанного произведения не превышает малого положительного числа, то находят в системах координат радиометров оценки дальностей до объекта ra(i), rb(j), векторы пространственных координат объекта Ma(i)=ra(i)a(i), Mb(j)=rb(j)b(j) и вычисляют показатель сопряжения по формуле: и, если показатель I(i, j) не превышает заданного порога, то вектор Ma(i) и показатель I(i, j) запоминают в отдельных массивах в последовательности периодов сканирования, после чего по истечении заданного числа периодов из указанных массивов извлекают неповторяющиеся группы запомненных векторов пространственных координат объектов с наименьшими суммарными значениями показателей.

Алгоритмически способ сводится к следующим операциям.

1. В первом периоде сканирования (n=1, n - номер периода) радиометров формируются орты i-х и j-x направлений an(i), и bn(j), где ma и mb - число ортов в радиометрах.

1.1. Рассматриваются i-e, j-e варианты соединения ортов в пары. Для каждого i-го, j-го варианта вычисляется показатель J(i, j) необходимого условия сопряжения по формуле (1), который сравнивается с порогом зависящим от модуля разности моментов времени образования ортов Δt=ta(i)-tb(j). Если J(i,j)>α, то данный вариант соединения ортов отвергается.

1.2. Если J(i,j)≤α, то i-я, j-я пара считается перспективной. Ей присваивается g-й номер группы перспективных векторов, к которой будут присоединяться другие векторы в последующих периодах сканирования (нумерация g - в порядке выполнения неравенства, Gn - число групп в n-м периоде). Запоминаются: момент времени T(g)=ta(i) образования орта a(i); начальное значение показателя правдоподобия I(g)=0 g-й группы; орт A(g)=ak(i) или номер орта ia(g)=i.

2. Во втором и последующих периодах (n=2, 3,…,N) сканирования радиометров также формируются орты i-x и j-x направлений an(i), и bn(j),

2.1. Рассматриваются i-e, j-e варианты соединения ортов в пары. Каждая i-я, j-я пара ортов an(i) и bn(j) ставятся в соответствие сформированным в предыдущем (n-1)-м периоде g-м группам Для орта an(i) вычисляется вектор скорости изменения координат орта за один период сканирования:

νn(i)=(1/Δt)⋅[an(i)-A(g)], Δt=ta(i)-Tb(g).

Вычисляется приращение орта Δan(i)=[tb(j)-ta(i)]⋅νn(i) и орт an(i) меняется прибавлением к нему приращения Δan(i).

2.2. Для измененного орта an(i) и орта bn(j) вычисляется показатель J(i, j) необходимого условия сопряжения по формуле (1), который сравнивается с малым положительным числом ε. Если J(i, j)>ε, то данный вариант соединения ортов отвергается.

2.3. Если J(i, j)≤ε, то для an(i) и bn(j) вычисляются оценки дальностей и по формуле, полученной на основе минимизации показателя (2) по ra(i) и rb(j). Вычисляются оценки векторов координат предполагаемых объектов: и

2.4. Вычисляется показатель достаточного условия сопряжения I(i, j) по формуле (2), который сравнивается с порогом β. Если I(i, j)>β, то i-я, j-я пара векторов далее не рассматривается.

2.5. Если I(ρ)≤β, то орт an(i) прикрепляется к g-й группе, давая ей продолжение под новым ρ-м номером (нумерация ρ - в порядке выполнения неравенства, Ln - число групп, сформированных в n-м периоде). Для ρ-й группы запоминаются: момент времени образования орта T(ρ)=ta(i), сам орт А(ρ)=an(i) или номер орта ia(ρ)=i; вектор оценок пространственных координат Причем векторы, присоединенные к g-й группе в предыдущих периодах 2, 3,…, n-1, переписываются в массив M(s, ρ), Вычисляется суммарный показатель правдоподобия ρ-й группы: I(ρ)=I(g)+I(i, j).

2.6. Если g-я группа не получает подтверждения в n-м периоде, то фиксируется пропуск наблюдения и проверяется подтверждение в следующем (n+1)-м периоде. При этом используется определенная логика сброса неподтвержденных групп. Орты an(i) и bn(j), не вошедшие в состав подтвержденных групп, рассматриваются как начальные данные для вновь появляющихся объектов. Для них выполняются операции п. 1 и осуществляется анализ на подтверждение в последующих периодах сканирования.

2.7. По окончании операций в n-м периоде, где меняются обозначения: номер группы ρ меняется на g, число групп Ln - на Gn.

3. После выполнения операций п. 2 в последнем N-м периоде среди LN ρ-х групп выделяются групп, которые характеризуются наименьшими значениями показателей I(ρi), и не имеют общих векторов в массиве М(n, ρ), Вначале выделяется номер ρ1 группы с наименьшим показателем I(ρ1), этот номер исключается из дальнейшего рассмотрения в массивах I(ρ) и М(n, ρ). Затем выделяется номер ρ2 и т.д. Допускается возможность выделения групп с минимальным количеством π общих векторов (например, π=1 или 2).

4. Для выделенных групп у оценки векторов пространственных координат объектов M(n, ρi), передаются на алгоритм определения траекторных параметров движения обнаруженных объектов и их сопровождения ( - оценка числа m).

Предложенный способ позволяет находить сопряженные пары ортов векторов направлений на объекты в системе двух радиометров в условиях движущихся объектов и случайных помех. Это дает возможность повысить вероятность обнаружения всех движущихся объектов и точность определения их пространственных координат по сравнению с методами, не учитывающими движение объектов. Способ может найти применение в существующих радиотехнических и оптических системах пассивного видения при наблюдении за несколькими объектами.

Литература

1. Пассивная радиолокация: методы обнаружения объектов / Под ред. Р.П. Быстрова и А.В. Соколова. М.: Радиотехника, 2008. 320 с.

2. Цифровая обработка изображений в информационных системах: учеб. пособие / И.С. Грузман, B.C. Киричук и др. Новосибирск: Изд-во НГТУ, 2002. 352 с.

Способ нахождения сопряженных векторов направлений на движущиеся объекты, заключающийся в формировании i-x, j-x пар ортов (i) и b(j) векторов направлений на объекты в системах координат двух взаимно удаленных на базовое расстояние d сканирующих радиометров, вычислении в системе координат первого радиометра смешанного произведения векторов (i), b(j) и орта τ базового вектора d=dτ и сохранении тех i-x, j-x неповторяющихся пар ортов, для которых модуль смешанного произведения не превышает малого положительного числа, отличающийся тем, что в последовательности периодов сканирования начиная со второго для каждой пары векторов (i), b(j) вычисляется приращение Δ(i) для орта (i) умножением длины промежутка времени между двумя моментами времени образования пары ортов (i) и b(j) на вектор скорости изменения координат орта (i), определяемый за один период сканирования радиометра, после чего для измененного орта (i), орта b(i) и орта τ вычисляют их смешанное произведение и, если модуль смешанного произведения не превышает малого положительного числа, то находят в системах координат радиометров оценки дальностей до объекта r(i), r(j), векторы пространственных координат объекта M(i)=r(i)(i), M(j)=r(j)b(j) и вычисляют показатель сопряжения по формуле:I(i, j)=||M(i)-PM(j)-d||, где Р - матрица поворота осей координат, и, если показатель I(i, j) не превышает заданного порога, то вектор M(i) и показатель I(i, j) запоминают в отдельных массивах в последовательности периодов сканирования, после чего по истечении заданного числа периодов из указанных массивов извлекают неповторяющиеся группы запомненных векторов пространственных координат объектов с наименьшими суммарными значениями показателей.
Источник поступления информации: Роспатент

Showing 31-40 of 88 items.
10.05.2018
№218.016.3905

Способ оценки параметров распределения времени запаздывания возникновения разряда и устройство для его осуществления

Изобретение относится к индикаторной технике и может быть использовано при исследовании характеристик газоразрядных индикаторов и разработке схем управления для них. Способ оценки параметров распределения времени запаздывания возникновения разряда газоразрядных индикаторов заключается в...
Тип: Изобретение
Номер охранного документа: 0002646897
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3b77

Зонд атомно-силового микроскопа с программируемой динамикой изменения спектральных портретов излучающего элемента, легированного квантовыми точками структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Согласно изобретению кантилевер соединен с электропроводящей зондирующей иглой, вершина которой...
Тип: Изобретение
Номер охранного документа: 0002647512
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3dc7

Способ наблюдения за объектами с помощью радиометра с двумя антеннами

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным (пассивным) системам наблюдения за объектами с помощью сканирующего радиометра, работающего в миллиметровом диапазоне длин волн в условиях повышенного шага сканирования антенны радиометра. Достигаемый технический...
Тип: Изобретение
Номер охранного документа: 0002648270
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.46d0

Способ масс-спектрометрического анализа ионов в трехмерной ионной ловушке и устройство для его осуществления

Изобретение относится к динамической масс-спектрометрии и может быть использовано для создания масс-спектрометров типа трехмерной ионной ловушки с высокой разрешающей способностью и чувствительностью. Технический результат - чувствительности и достоверности анализа масс-спектрометра. В процессе...
Тип: Изобретение
Номер охранного документа: 0002650497
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.47e2

Зонд атомно-силового микроскопа с программируемой динамикой изменения спектральных портретов излучающего элемента на основе квантовых точек структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Согласно изобретению кантилевер соединен с зондирующей иглой, вершина которой закреплена в одной из...
Тип: Изобретение
Номер охранного документа: 0002650702
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.48c7

Способ декодирования ldpc-кодов и устройство для его осуществления

Изобретение относится к системам телекоммуникаций и эфирным видеоинформационным системам вещания и может найти применение в декодерах устройств приема дискретной информации. Технический результат – снижение средней вычислительной сложности декодирования с сохранением качества декодирования...
Тип: Изобретение
Номер охранного документа: 0002651222
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.490c

Способ обработки сигналов для обнаружения и определения толщины прямых линий на изображении

Изобретение относится к области цифровой обработки изображений. Технический результат – обеспечение обнаружения и оценка толщины прямолинейных протяженных объектов на изображении. Способ обработки сигналов включает: вычисление градиентного поля изображения; задание шага изменения по смещению и...
Тип: Изобретение
Номер охранного документа: 0002651176
Дата охранного документа: 18.04.2018
29.05.2018
№218.016.5730

Реверсивная матричная ракетная двигательная система с индивидуальным цифровым управлением величиной тяги каждой реверсивной двигательной ячейки для малоразмерных космических аппаратов

Изобретение относится к двигательным ракетным системам для малоразмерных космических аппаратов и предназначено для использования в качестве маневрового двигателя при выполнении линейных и угловых перемещений. Согласно изобретению плоская монолитная термостойкая диэлектрическая подложка содержит...
Тип: Изобретение
Номер охранного документа: 0002654782
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.57da

Способ бесконтактного определения квантованного холловского сопротивления полупроводников и устройство для его осуществления

Использование: для неразрушающего контроля параметров полупроводников, содержащих вырожденный электронный газ. Сущность изобретения заключается в том, что образец охлаждают, воздействуют на него изменяющимся постоянным магнитным полем с индукцией В и переменным магнитным полем, изменяющимся со...
Тип: Изобретение
Номер охранного документа: 0002654935
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.5893

Микрофокусная рентгеновская трубка прострельного типа с высоким уровнем рассеиваемой на аноде мощности

Изобретение относится к радиационной технике нового поколения, предназначено для улучшения основных характеристик рентгеновского технологического и исследовательского оборудования и может быть использовано в установках стерилизации, дезинфекции, генной модификации, в рентгеноскопии и...
Тип: Изобретение
Номер охранного документа: 0002653508
Дата охранного документа: 10.05.2018
Showing 31-31 of 31 items.
17.06.2023
№223.018.7f47

Способ наблюдения за движущимися объектами многопозиционной системой приемников

Изобретение относится к многопозиционным сканирующим системам наблюдения за объектами в полуактивном и пассивном режимах. Система состоит из нескольких приемников (радиотехнических, радиометрических, оптических), принимающих сигналы отражения или излучения от объектов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002766569
Дата охранного документа: 15.03.2022
+ добавить свой РИД