×
06.07.2019
219.017.a7a5

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ОКИСЛЕННОГО ГРАФИТА

Вид РИД

Изобретение

Аннотация: Изобретение предназначено для химической промышленности и может быть использовано при получении теплоизоляционного наполнителя огнезащитных композиций, конструкционных материалов, катализаторов и сорбентов. В реактор с мешалкой загружают 2-28% раствор серного ангидрида в серной кислоте, дозируют 30-34% раствор НО, порционно вводят порошковый кристаллический графит. Массовое соотношение графит:раствор серного ангидрида в серной кислоте: пероксид водорода = 1: (5-6): (0,15-0,2). Смесь перемешивают 30 мин при (40±10)С, охлаждают, отжимают. Отработанный раствор серного ангидрида в серной кислоте можно направлять на повторное использование. Окисленный графит промывают водой, отжимают и помещают при перемешивании в водный раствор аммиака при температуре, не превышающей 40С, на 30 мин. Отжимают, промывают водой, сушат. Кислые промывные воды нейтрализуют отработанным аммиаком и аммиачными промывными водами. Образовавшийся водный раствор сульфата аммония используют как минеральное удобрение. После термообработки при 900С насыпная плотность графита менее 6 кг/м. Процесс взрывобезопасен, уменьшено количество промывных вод. 1 табл.

Изобретение относится к химии углеграфитовых материалов, а именно к способу получения окисленного графита, используемого при производстве терморасширяющегося графита, применяемого в качестве теплоизоляционного наполнителя огнезащитных покрытий металлических, древесных и полимерных поверхностей, для создания углерод-углеродных конструкционных материалов, гетерогенных катализаторов, сорбентов и других целей.

Известен способ получения окисленного графита обработкой бихроматом калия в среде серной кислоты с последующей фильтрацией и водной промывкой [К.Е. Махорин, А.П.Кожан, А.С.Сидоренко, В.С.Рябчук, В.Н.Александров, В.В.Веселов, Н. М. Заяц, А. М. Романюха, авт. св. СССР 1664743, кл. С 01 В 31/04, заявл. 11.04.1989. Опубл. 1991, БИ 27].

Недостатком способа является наличие в промывных водах ядовитых соединений хрома и сложность их утилизации.

Известен также способ получения окисленного графита обработкой перекисью водорода в среде серной кислоты [A.Hirschvogen, F.Wanger, US Раt 4091083, кл. С 01 В 31/00; 31/04, 1978].

Согласно этому способу графит с размером частиц 700...75 мкм обрабатывается в среде серной кислоты 80...90% пероксидом водорода в соотношении 2...5 мас. ч. пероксида к 100 мас. ч. серной кислоты до образования разновидности окисленного графита - гидросульфата графита.

Недостатком является неоднородность конечного продукта, что связано с образованием в синтезе зон локального перегрева с температурой выше 60oС при обработке графита смесью серной кислоты и пероксида водорода и приводит в итоге к получению вещества, являющегося смесью частично расширенного и окисленного графита.

К другим недостаткам способа следует отнести высокую пожароопасность 80. ..90% пероксида водорода, выделение при его разложении в среде серной кислоты экологически вредного озона и сернистого газа.

Наиболее близким к изобретению по технической сущности является способ получения однородного окисленного графита введением 35...55% пероксида водорода под слой серной кислоты при непрерывном охлаждении, интенсивном перемешивании, барботаже воздуха, что позволяет свести к минимуму разложение пероксида водорода, с последующей дозировкой графита в охлажденную смесь [А. И.Криворуков, И.А.Башарин, Д.В.Смирнов. Патент РФ 2057065, кл. С 01 В 31/04, заявл. 26.10.93, опубл. 27.03.96. БИ 9 - прототип].

Полученный окисленный графит представляет собой соединение внедрения - графит, интеркалированный серной кислотой.

В патенте, к сожалению, не приведены характеристики окисленного графита (насыпная плотность после вспучивания, зольность, величина концентрации водородных ионов). Способ является экологически опасным, так как не предусматривает путей регенерации или утилизации серной кислоты, методы обезвреживания кислых промывных вод. Из-за использования в процессе пероксида водорода с концентрацией выше 35% способ взрывоопасен. При реализации способа при получении и промывке 1 т окисленного графита ТУ 84-7509103.353-92 образуется до 350 т кислых промывных вод, подлежащих обезвреживанию. Окисленный графит (изготовленный из графита ГТ-1) после термообработки при 900oС имеет насыпную плотность 6...10 кг/м3.

Задачей изобретения является получение окисленного графита с насыпной плотностью после термообработки при 900oС менее 6 кг/м3, повышение взрывобезопасности процесса, уменьшение количества промывных вод, создание малоотходного технологического процесса.

Решение задачи достигается тем, что в отличие от известного способа окисление графита ведут пероксидом водорода в среде 2...28% раствора серного ангидрида в серной кислоте (олеум). Во избежание разложения пероксида водорода и повышения безопасности процесса концентрации пероксида снижена до 30...34%. По завершении окисления, отжатая кислоты, промывки окисленный графит обрабатывается 5...10% водным аммиаком, а способ реализуется следующим образом.

В реактор помещают олеум и при температуре не выше 45oС дозируют при интенсивном перемешивании пероксид водорода, затем при температуре (40±10)oС вводят природный графит марок ГАК-3, ГТ-1 или ГТ-2. Смесь компонентов выдерживают при температуре (40±10)oС 30 минут, охлаждают до температуры не выше 30oС и направляют на фильтрацию и отжим. Отработанный олеум направляют на повторное использование, а образующаяся после повторного использования серная кислота поступает на регенерацию.

Окисленный графит промывают на фильтре водой, отжимают, помещают при перемешивании и температуре не выше 50oС в реактор, заполненный водным раствором аммиака, выдерживают при перемешивании 30 минут, отжимают на фильтре, промывают водой и сушат в вакуумном термошкафу при температуре не выше 70oС и давлении 20...200 мм рт.ст. 8...12 часов или провяливают на воздухе.

Кислые промывные воды нейтрализуют отработанными аммиачными водами, а образовавшийся водный раствор сульфата аммония используют как минеральное удобрение.

В результате реализации способа из 100 мас. ч. графита перечисленных марок образуется 125...130 мас. ч. окисленного графита с насыпной плотностью после термообработки при 900oС 3...5,5 кг/м3, рН водной вытяжки 3,5...7,0 при отсутствии дополнительно внесенной зольности.

Существенное отличие предлагаемого способа от прототипа заключается в использовании в техпроцессе в качестве среды для окисления графита 2...28% олеума и в качестве окислителя 30...34% пероксида водорода, что в сочетании с выбранными технологическими режимами позволяет:
1. повысить безопасность процесса за счет использования в процессе пероксида водорода с концентрацией не выше 30...34%, ограничения температур дозирования пероксида водорода в олеум (не более 45oС), графита в реакционную смесь и выдержки реакционной смеси (не более 50oС), что практически исключает возможность неконтролируемого распада пероксида водорода;
2. отработанный олеум с концентрацией по серному ангидриду выше 2% повторно использовать в последующих операциях окисления графита, олеум меньшей концентрации и отработанную серную кислоту подавать на укрепление смешением с концентрированным олеумом или регенерацию;
3. получить неожиданный эффект снижения насыпной плотности окисленного графита после терморасширения до 3,0...5,5 кг/м3.

Другое отличие состоит в том, что окисленный графит после выделения из кислой реакционной смеси и первой промывки водой в количестве 5 мас. ч. на 1 мас. ч. графита обрабатывается дополнительно в реакторе 30 минут при перемешивании и температуре не более 50oС водным раствором аммиака в количестве 5 мас. ч. на 1 маc. ч. графита. При этом избыточная неотжатая кислота нейтрализуется полностью с образованием сульфата аммония, а интеркалированная в графите кислота нейтрализуется частично.

Введение дополнительной обработки окисленного графита аммиачной водой позволяет более чем в 20 раз снизить количество промывных вод. Обработанный окисленый графит после отжима направляется на вакуумную сушку или провяливается на воздухе, а отработанные аммиачные воды с концентрацией по аммиаку 5. . . 10% поступают на нейтрализацию кислых вод, образовавшихся после первой водной промывки. Полученный водный раствор сульфата аммония реализуется как минеральное удобрение. Оставшийся в качестве примеси в окисленном графите сульфат аммония возгоняется при температуре 150oС и не влияет на его качество (ТУ 84-07509103.353-92).

Ниже приведенные соотношения между реагентами, а также их количества, концентрации и температурные режимы являются оптимальными.

Использование в процессе олеума с концентрацией серного ангидрида выше 28% не рационально из-за отсутствия промышленного производства последнего. При использовании олеума с концентрацией по серному ангидриду менее 2% не удается получить продукт с насыпной плотностью после термообработки менее 6 кг/м3.

Применение для окисления графита пероксида водорода в условиях изобретения с концентрацией выше 34% не рекомендуется с точки зрения безопасности процесса, использование пероксида водорода с концентрацией менее 30% отрицательно сказывается на насыпной плотности терморасширенного графита (более 6 кг/м3).

Выбранные массовые соотношения графит:пероксид водорода:олеум 1,0:(0,15. . . 0,20):(5,0...6,0) являются оптимальными и связаны с концентрацией компонентов и насыпной плотностью термообработанного окисленного графита. При концентрации олеума по серному ангидриду выше 15% в реакции используют массовое соотношение компонентов 1,0:0,2:5,0.

При концентрации олеума ниже 15% массовое соотношение компонентов составляет 1,0:0,15:6,0.

При применении для окисления графита меньших количеств пероксида водорода и олеума возрастают вязкость реакционной смеси и насыпная плотность терморасширенного графита; использование больших количеств реагентов приводит только к увеличению количества подлежащих переработке вод и не имеет смысла.

Обработка отжатого после первой водной промывки окисленного графита водным аммиаком в массовом соотношении 5:1 позволяет резко сократить количество промывных вод в результате нейтрализации остатков серной кислоты с образованием сульфата аммония и частично аммонийной соли интеркалированной в графит серной кислоты. Дополнительная промывка водой в соотношении (2...5):1 обеспечивает требуемый уровень рН водной вытяжки окисленного графита 3,5... 7,0.

Возможность реализации способа получения окисленного графита подтверждается следующими примерами.

Пример 1.

В реактор, снабженный мешалкой, загружают 400 мас. ч. 28% олеума ГОСТ 2184-77 и дозируют при перемешивании и температуре не выше 45oС. 16 мас. ч. 30% пероксида водорода ГОСТ 10929-76, а затем при температуре (35±15)oС порционно 80 мас. ч. природного графита аккумуляторного марки ГАК-3 ГОСТ 17022-81, смесь компонентов перемешивают 30 минут при этой температуре, охлаждают до температуры (25±5)oС, окисленный графит отжимают на воронке.

Отработанный олеум с концентрацией по серному ангидриду 14...17% направляют на повторное использование (пример 5).

Окисленный графит промывают на фильтр-воронке водой (5х100 мас. ч.), отжимают и помещают при перемешивании и охлаждении в 500 маc. ч. водного аммиака ГОСТ 9-92, выдерживают при перемешивании и температуре не выше 40oС 30 минут, отжимают на фильтр-воронке, промывают водой (5х100 мас. ч.), сушат в вакуумном термошкафу при температуре (60±10)oС и остаточном давлении 20... 200 мм рт.ст. 8...12 часов. Получают 102 маc. ч. окисленного графита с характеристиками, представленными в таблице.

Кислые промывные воды после первой промывки нейтрализуют отработанным аммиаком и аммиачными промывными водами, а образовавшийся водный раствор сульфата аммония используют как минеральное удобрение.

Пример 2. Аналогично примеру 1. Окисленный графит после промывки от аммиака сушится провялкой на воздухе при 20...25oС 36 часов.

Пример 3-4. Аналогично примеру 1 с использованием в качестве исходного материала графита тигельного марок ГТ-1 и ГТ-2 ГОСТ 4596-75.

Пример 5. Аналогично примеру 1 с использованием отработанного в опыте примера 1 олеума.

Примеры 6-8. Аналогично примеру 1 с использованием различных количеств и концентраций олеума и пероксида водорода.

Примеры 9-10. Аналогично примеру 1 с использованием различных количеств водного аммиака и промывных вод.

Пример 11 (прототип). 5 мас. ч. 45% пероксида водорода вводят при перемешивании и давлении 0,8 МПа в 30,0 маc. ч. 95% серной кислоты при температуре 20...35oС. Затем в смесь вводят 10 мас. ч. природного графита ГТ-1. Выдерживают реакционную смесь при температуре 35...50oС (саморазогрев реакционной смеси) 15 минут. После выдержки реакционную смесь сливают в 50 мас. ч. воды при охлаждении. Окисленный графит отжимают и промывают 1700 мас. ч. воды для обеспечения рН водной вытяжки не менее 3,5.

Условия осуществления способа по изобретению и прототипу, а также характеристики полученного в примерах 1-11 окисленного графита представлены в таблице.

Данные примеров 1-10 подтверждают существенность выбранных пределов и показывают, что изменение соотношения между реагентами и концентрациями в сторону уменьшения приводят к ухудшению качества окисленного графита (повышению насыпной плотности).

Таким образом, предлагаемый способ позволяет:
- получать окисленный графит с насыпной плотностью после вспучивания при 900oС 3...5,5 кг/м3 (для прототипа в примере 11 - 8,2 кг/м3);
- повысить безопасность процесса за счет использования в качестве окисляющего агента водной перекиси водорода с концентрацией 30...34%;
- повторно использовать отработанный олеум и направлять на регенерацию отработанную кислоту;
- за счет использования аммиачной обработки более чем в 20 раз снизить количество отработанных вод;
- исключить сброс отработанных вод путем использования в качестве минерального азотного удобрения;
- создать экологически чистое производство окисленного графита.

Способполученияокисленногографитаобработкойпорошковогокристаллическогографитасмесьюсернойкислотыипероксидаводородавкачествеокислителя,отличающийсятем,чтополучениеокисленногографитаведутпритемпературе(40±10)Свсмеси2-28%растворасерногоангидридавсернойкислотеи30-34%водногорастворапероксидаводородапримассовомсоотношенииграфит:растворсерногоангидридавсернойкислоте:пероксидводорода1:(5-6):(0,15-0,2).
Источник поступления информации: Роспатент

Showing 41-50 of 169 items.
08.03.2019
№219.016.d5d0

Способ изготовления заряда смесевого твердого ракетного топлива

Изобретение относится к способам изготовления заряда смесевого твердого ракетного топлива (СТРТ) в смесителях непрерывного действия. Способ изготовления заряда СТРТ включает дозирование порошкообразных и жидковязких компонентов, просеивание и транспортирование шнеком порошкообразных компонентов...
Тип: Изобретение
Номер охранного документа: 02198864
Дата охранного документа: 20.02.2003
11.03.2019
№219.016.d63d

Способ изготовления гранулированного термопластичного многокомпонентного бронесостава на основе ацетилцеллюлозы

Изобретение относится к способам изготовления гранулированных термопластичных бронесоставов и может быть использовано при бронировании поверхностей зарядов твердого ракетного топлива к ракетным двигателям и другим энергоисточникам. Способ включает загрузку в обогреваемый оснащенный лопастными...
Тип: Изобретение
Номер охранного документа: 0002278098
Дата охранного документа: 20.06.2006
11.03.2019
№219.016.d691

Защитно-адгезионный подслой для бронирования вкладных зарядов из твердого топлива

Изобретение относится к области ракетной техники, в частности, к разработке защитно-адгезионного подслоя для скрепления бронепокрытия с поверхностью заряда при бронировании вкладных зарядов твердого ракетного топлива двухосновного (баллиститного) типа. Предложен подслой, содержащий...
Тип: Изобретение
Номер охранного документа: 0002280054
Дата охранного документа: 20.07.2006
11.03.2019
№219.016.d6b6

Способ смешения компонентов взрывчатых составов и формования из них изделий

Изобретение относится к военной области, конкретно к способу смешения компонентов взрывчатых составов. Способ включает смешение компонентов в вертикальном смесителе планетарного типа без вакуумирования. Вакуумирование при остаточном давлении от 0,5 до 20 мм рт.ст. производят после...
Тип: Изобретение
Номер охранного документа: 0002247100
Дата охранного документа: 27.02.2005
11.03.2019
№219.016.d6c8

Струйная помольная установка

Струйная помольная установка предназначена для получения и гидрофобизации тонко измельченного перхлората аммония в производстве смесевого твердого ракетного топлива. Струйная помольная установка содержит несколько помольных камер с соплом и ударной плитой, испаритель для приема и...
Тип: Изобретение
Номер охранного документа: 0002244701
Дата охранного документа: 20.01.2005
11.03.2019
№219.016.d778

Термостойкий газогенерирующий состав для высокопрочных скважинных элементов

Изобретение относится к области создания газогенерирующих составов для твердотопливных элементов, сжигаемых в интервале обработки продуктивного пласта и обеспечивающих термогазохимическое, барическое и виброволновое воздействия на призабойную зону пласта с одновременной солянокислой обработкой....
Тип: Изобретение
Номер охранного документа: 02233975
Дата охранного документа: 10.08.2004
11.03.2019
№219.016.d7be

Способ получения антиадгезионного покрытия на формообразующей оснастке зарядов ракетного двигателя из смесевого твердого топлива

Изобретение относится к способу получения антиадгезионного покрытия на формообразующей металлической оснастке путем нанесения на очищенную и обезжиренную поверхность оснастки антиадгезионной композиции методом распыления, окунания или кистевым. В качестве антиадгезионной композиции используют...
Тип: Изобретение
Номер охранного документа: 02228345
Дата охранного документа: 10.05.2004
11.03.2019
№219.016.d7c2

Устройство для смешения компонентов взрывчатых составов и прессования изделий из них

Изобретение относится к области смешения взрывчатых составов, в том числе порохов и твердых ракетных топлив, и прессованных изделий из них. Устройство включает в себя верхний и нижний смесители с разъемными корпусами, мешалками с узлами уплотнений и подшипниковыми узлами, и шнековыми...
Тип: Изобретение
Номер охранного документа: 02219149
Дата охранного документа: 20.12.2003
11.03.2019
№219.016.d8f3

Шнековый питатель

Шнековый питатель состоит из расходного бункера (1) с загрузочным люком (2), вала со шнеком (3), корпуса (7) с выгрузочным люком (8) и привода. В корпусе питателя с противоположной от выгрузочного люка стороны выполнен разгрузочный люк (6), снабженный крышкой (5), выполненной заподлицо с...
Тип: Изобретение
Номер охранного документа: 0002381164
Дата охранного документа: 10.02.2010
11.03.2019
№219.016.d97e

Способ изготовления смеси фракций окислителя из класса перхлоратов

Изобретение относится к области подготовки окислителя из класса перхлоратов, применяемого при изготовлении смесевого твердого ракетного топлива (СТРТ). Способ изготовления смеси фракций окислителя из класса перхлоратов включает дозирование и смешивание фракций окислителя. Причем используют...
Тип: Изобретение
Номер охранного документа: 0002378237
Дата охранного документа: 10.01.2010
Showing 41-50 of 82 items.
04.04.2019
№219.016.fbd1

Устройство для нанесения бронирующего покрытия

Устройство для нанесения бронирующего покрытия относится к технике изготовления зарядов ракетных двигателей из твердого топлива и предназначено для формования бронепокрытия на боковой поверхности вкладных канальных зарядов. Устройство содержит основание и обечайку, проходящий через заряд...
Тип: Изобретение
Номер охранного документа: 02209804
Дата охранного документа: 10.08.2003
04.04.2019
№219.016.fbdd

Способ получения полиэфируретанакрилатного олигомера

Изобретение относится к области ракетной техники и касается способа синтеза полиэфируретанового олигомера, являющегося основой для получения ненасыщенных полиэфирных композиций, используемых для создания заливочных бронесоставов. Указанный способ заключается во взаимодействии монометакрилового...
Тип: Изобретение
Номер охранного документа: 0002252943
Дата охранного документа: 27.05.2005
04.04.2019
№219.016.fbe6

Состав для очистки смесительного оборудования от остатков взрывчатых составов

Изобретение относится к разработке очищающих составов, предназначенных для очистки смесительного оборудования от остатков вязкотекучих взрывчатых составов. Указанный состав содержит в мас.%: минеральное масло 27,00-33,00; аэросил 0,70-0,80, лецитин 0,05-0,60, резина дробленая (продукт...
Тип: Изобретение
Номер охранного документа: 02233316
Дата охранного документа: 27.07.2004
04.04.2019
№219.016.fbfb

Заряд твердого топлива для газогенераторов

Заряд твердого топлива для газогенераторов, турбогенераторных источников питания, пороховых аккумуляторов давления и других механизмов жизнеобеспечения ракетной и другой техники выполнен в виде цилиндрической бесканальной шашки, бронированной по наружной поверхности и одному торцу. На...
Тип: Изобретение
Номер охранного документа: 02211353
Дата охранного документа: 27.08.2003
04.04.2019
№219.016.fbfc

Заряд твердого топлива для ракетного двигателя управляемой ракеты

Заряд твердого топлива для ракетного двигателя управляемой ракеты включает топливную шашку с центральным каналом и торцевые бронировки. Торцевые бронировки выполнены двухслойными. Внутренний слой бронировки, примыкающий к топливу, выполнен из материала, обеспечивающего высокую адгезию к...
Тип: Изобретение
Номер охранного документа: 02211352
Дата охранного документа: 27.08.2003
10.04.2019
№219.017.014d

Способ фасовки порошкообразного взрывчатого вещества

Изобретение относится к фасовке порошкообразных взрывчатых веществ. Предложен способ фасовки порошкообразного взрывчатого вещества, включающий ссыпку порошкообразного взрывчатого вещества в контейнер, установленный на весах и заполненный инертным газом. Образующуюся в зоне ссыпки пылегазовую...
Тип: Изобретение
Номер охранного документа: 02233257
Дата охранного документа: 27.07.2004
10.04.2019
№219.017.01aa

Способ бронирования заряда твердого ракетного топлива

Изобретение относится к области нанесения на заряды твердого ракетного топлива бронирующего покрытия, которое обеспечивает исключение горения в составе ракетного двигателя забронированных поверхностей. Предлагаемый способ включает в себя послойное нанесение бронирующего состава в зазор между...
Тип: Изобретение
Номер охранного документа: 02223251
Дата охранного документа: 10.02.2004
10.04.2019
№219.017.01b1

Способ изготовления заряда смесевого ракетного твердого топлива

Изобретение относится к области изготовления зарядов ракетного двигателя из смесевого ракетного твердого топлива (СРТТ). Предложенный способ изготовления заряда смесевого ракетного твердого топлива включает в себя дозирование компонентов, перемешивание их для получения топливной массы,...
Тип: Изобретение
Номер охранного документа: 02220935
Дата охранного документа: 10.01.2004
10.04.2019
№219.017.01b2

Заряд ракетного твердого топлива

Заряд ракетного твердого топлива содержит корпус, торцевые манжеты, защитно-крепящий слой, звездообразный канал в донной части заряда с цилиндрическим и коническим участками. Начальная толщина горящего свода в области соплового торца заряда составляет 0,2...0,5 e, донная часть заряда выполнена...
Тип: Изобретение
Номер охранного документа: 02220311
Дата охранного документа: 27.12.2003
10.04.2019
№219.017.01b7

Заряд ракетного твердого топлива

Заряд ракетного твердого топлива содержит корпус, торцевые манжеты, защитно-крепящий слой, головной полузаряд со звездообразным каналом и хвостовой полузаряд с цилиндрическим каналом. Площадь проходного сечения входного участка цилиндрического канала хвостового полузаряда составляет 1,00…1,25...
Тип: Изобретение
Номер охранного документа: 02220312
Дата охранного документа: 27.12.2003
+ добавить свой РИД