×
05.07.2019
219.017.a5f5

Результат интеллектуальной деятельности: БЕСТРАНСФОРМАТОРНЫЙ МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ СРЕДНЕГО НАПРЯЖЕНИЯ И СПОСОБ ДЛЯ УПРАВЛЕНИЯ БЕСТРАНСФОРМАТОРНЫМ МНОГОУРОВНЕВЫМ ПРЕОБРАЗОВАТЕЛЕМ СРЕДНЕГО НАПРЯЖЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002693573
Дата охранного документа
03.07.2019
Аннотация: Изобретение относится к области электротехники и может быть использовано в приводах переменного тока среднего напряжения, гибких системах передачи и системах передачи постоянного тока высокого напряжения. Техническим результатом является упрощение управления многоуровневым преобразователем. Многоуровневый преобразователь включает в себя однофазные конфигурации. Однофазная конфигурация имеет первый полумостовой (HB) модуль, второй HB модуль, разделенные первым конденсатором, связанным с DC-линией, и модуль с фиксированной нейтралью (NPC), подсоединенный к первому НВ модулю и второму НВ модулю. Кроме того, однофазная конфигурация имеет первое отдельное переключающее устройство и второе отдельное переключающее устройство, причем первое отдельное переключающее устройство операционно соединено с первым НВ модулем и модулем NPC и второе отдельное переключающее устройство операционно соединено со вторым НВ модулем и модулем NPC. Преобразователь дополнительно включает в себя узел вывода мощности, содержащий несколько фаз и обеспечивающий многофазную переменную (АС) мощность, причем однофазная конфигурация подает питание на одну из нескольких фаз узла вывода мощности.3 н. и 17 з.п. ф-лы, 11 ил., 4 табл.

ОБЛАСТЬ ТЕХНИКИ

[0001] Аспекты настоящего изобретения, в общем, относятся к бестрансформаторному многоуровневому преобразователю среднего напряжения и способу для управления бестрансформаторным многоуровневым преобразователем среднего напряжения.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

[0002] Традиционно многоуровневые преобразователи мощности используются в применениях приводов переменного тока (АС) среднего напряжения, гибких систем передачи АС (FACTS) и систем передачи постоянного тока (DC) высокого напряжения (HVDC), поскольку одиночные силовые полупроводниковые устройства не могут обрабатывать высокое напряжение.

[0003] Многоуровневые преобразователи мощности содержат многоуровневые топологии, которые обеспечивают гибкий способ последовательного соединения переключателей, тем самым позволяя обрабатывать напряжения, превышающие номинал устройства. Потребность промышленности в приводах среднего напряжения вызвала значительные исследования в этой области, в которой большинство применений включают в себя приводы для насосов, воздуходувок, компрессоров, конвейеров и тому подобного. Существует ограниченное количество топологий, которые обеспечивают многоуровневые напряжения и пригодны для применений среднего напряжения. Наиболее известными топологиями являются топология с фиксированной нейтралью (NPC), топология плавающего конденсатора (FC) и многоуровневая топология с каскадным H-мостом.

[0004] Каскадный многоуровневый преобразователь является предпочтительной топологией во многих применениях среднего и высокого напряжения. Эта топология хорошо зарекомендовала себя в промышленности в течение более двух десятилетий, но она также имеет определенные недостатки, в основном затраты, связанные со специальным трансформатором, требуемым для подачи отдельной мощности на каждую силовую ячейку. Кроме того, каскадная многоуровневая топология традиционно реализовывалась только в применениях однонаправленного потока мощности, поэтому она не может обеспечить рекуперативное торможение в применении к двигателю. Например, возможна четырехквадрантная операция, но такая операция значительно увеличила бы стоимость силовой ячейки и все равно требует трансформатора. Модульный многоуровневый преобразователь является еще одной топологией, которая еще находится в разработке. Эта топология может работать с трансформатором или без него, поэтому она может быть полезной в приложениях, где требуется рекуперативное торможение; однако эта топология требует увеличения количества полупроводников, и ее работа при низкой скорости/высоком крутящем моменте является весьма сложной задачей. На нижнем конце уровня мощности среднего напряжения как каскадные, так и модульные многоуровневые топологии имеют тенденцию быть очень дорогостоящими.

КРАТКОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

[0005] В кратком описании, аспекты настоящего изобретения относятся к бестрансформаторному многоуровневому преобразователю, системе электропривода, содержащей бестрансформаторный многоуровневый преобразователь, и способу управления бестрансформаторным многоуровневым преобразователем.

[0006] Первый аспект настоящего изобретения предусматривает многоуровневый преобразователь, содержащий множество однофазных конфигураций, однофазная конфигурация содержит первый полумостовой (HB) модуль и второй HB модуль, разделенные первым конденсатором, соединенным с DC-линией, предоставляющей напряжение на однофазную конфигурацию, модуль с фиксированной нейтралью (NPC), модуль NPC присоединен к первому НВ модулю и второму НВ модулю, первый отдельный переключатель и второй отдельный переключатель, первый отдельный переключатель операционно соединен с первым НВ модулем и модулем NPC, и второй отдельный переключатель операционно соединен со вторым НВ модулем и модулем NPC; и узел вывода мощности, содержащий три фазы и обеспечивающий трехфазную переменную (АС) мощность, причем однофазная конфигурация подает мощность на одну из трех фаз узла вывода мощности.

[0007] Второй аспект настоящего изобретения предусматривает способ для управления многоуровневым преобразователем, содержащий обеспечение однофазных конфигураций, включающих в себя множество переключающих устройств; и переключение множества переключающих устройств с использованием широтно-импульсной модуляции (PWM), при этом множество переключающих устройств переключается с одной и той же частотой переключения, и при этом множество комплементарных пар управляющих сигналов PWM используется для переключения множества переключающих устройств.

[0008] Третий аспект настоящего изобретения предусматривает систему электропривода, содержащую узел источника питания, содержащий линию постоянного тока (DC); многоуровневый преобразователь, связанный с DC-линией для выработки многофазной мощности, причем преобразователь содержит однофазные конфигурации, при этом DC-линия предоставляет напряжение на однофазные конфигурации, причем однофазная конфигурация содержит первый полумостовой (НВ) модуль и второй HB модуль, разделенные первым конденсатором, связанным с DC-линией, модуль с фиксированной нейтралью (NPC), причем модуль NPC присоединен к первому НВ модулю и второму НВ модулю, первый отдельный переключатель и второй отдельный переключатель, причем первый отдельный переключатель операционно соединен с первым НВ модулем и модулем NPC, и второй отдельный переключатель операционно соединен со вторым НВ модулем и модулем NPC; и узел вывода мощности, содержащий три фазы и обеспечивающий трехфазную переменную мощность, причем однофазная конфигурация подает питание на одну из трех фаз узла вывода мощности.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0009] Фиг. 1 иллюстрирует схему варианта осуществления предлагаемой топологии для одной фазы бестрансформаторного многоуровневого преобразователя в соответствии с примерным вариантом осуществления настоящего изобретения.

[0010] Фиг. 2 иллюстрирует схему другого варианта осуществления предлагаемой топологии для одной фазы бестрансформаторного многоуровневого преобразователя в соответствии с примерным вариантом осуществления настоящего изобретения.

[0011] Фиг. 3 иллюстрирует графическое представление расположения несущих, содержащего различные несущие, по отношению к волновой форме опорного сигнала для одной фазы бестрансформаторного многоуровневого преобразователя в соответствии с примерным вариантом осуществления настоящего изобретения.

[0012] Фиг. 4 иллюстрирует схему варианта осуществления системы, содержащей бестрансформаторный многоуровневый преобразователь, в частности, трехфазный преобразователь (инвертор) напряжения электропривода, в соответствии с примерным вариантом осуществления настоящего изобретения.

[0013] Фиг. 5 иллюстрирует схему варианта осуществления каскадно-противоположно включенной компоновки, содержащей трехфазные инверторы напряжения электропривода, как показано на фиг. 4, в соответствии с примерным вариантом осуществления настоящего изобретения.

[0014] Фиг. 6 иллюстрирует графические представления смоделированных волновых форм выходного напряжения и тока, полученных с PSPWM в бестрансформаторном многоуровневом преобразователе для одной фазы в соответствии с примерным вариантом осуществления настоящего изобретения.

[0015] Фиг. 7 и фиг. 8 иллюстрируют графические представления смоделированных напряжений конденсаторов, связанных с DC-линией, полученных с PSPWM в бестрансформаторном многоуровневом преобразователе для одной фазы в соответствии с примерным вариантом осуществления настоящего изобретения.

[0016] Фиг. 9 иллюстрирует графическое представление смоделированных напряжений конденсаторов модуля NPC, полученных с PSPWM в бестрансформаторном многоуровневом преобразователе для одной фазы в соответствии с примерным вариантом осуществления настоящего изобретения.

[0017] Фиг. 10 и фиг. 11 иллюстрируют графические представления смоделированных волновых форм выходных токов и линейных напряжений, полученных с PSPWM в бестрансформаторном многоуровневом преобразователе для трех фаз, соответственно, в соответствии с примерным вариантом осуществления настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ

[0018] Чтобы облегчить понимание вариантов осуществления, принципов и признаков настоящего изобретения, они поясняются ниже со ссылкой на реализацию в иллюстративных вариантах осуществления. В частности, они описаны в контексте бестрансформаторного многоуровневого преобразователя, системы электропривода, содержащей такой бестрансформаторный многоуровневый преобразователь, и способа для управления таким бестрансформаторным многоуровневым преобразователем. Однако варианты осуществления настоящего изобретения не ограничены использованием в описанных устройствах или способах.

[0019] Компоненты и материалы, описанные ниже как составляющие различные варианты осуществления, предназначены для иллюстрации, а не для ограничения. Многие подходящие компоненты и материалы, которые выполняли бы такую же или аналогичную функцию, как материалы, описанные здесь, подразумеваются входящими в объем вариантов осуществления настоящего изобретения.

[0020] Описанный бестрансформаторный многоуровневый преобразователь содержит пятиуровневую топологию среднего напряжения, которая может использоваться для применений электропривода среднего напряжения. Применения среднего напряжения представляют собой применения, например, двигателей переменного тока (АС) среднего напряжения, например, используемых в управлении промышленными процессами, работающих в диапазоне выше 1 кВ и/или ниже 50 кВ, в частности, между 4,16 кВ и 13,8 кВ.

[0021] Фиг. 1 иллюстрирует схему варианта осуществления предлагаемой топологии для одной фазы бестрансформаторного многоуровневого преобразователя в соответствии с примерным вариантом осуществления настоящего изобретения.

[0022] Фиг. 1 иллюстрирует однофазную конфигурацию 10, здесь также упоминаемую как однофазный модуль 10, с предложенной топологией для одной фазы А трехфазного инвертора напряжения электропривода. Для каждой фазы примерного инвертора, предложенная топология содержит два полумостовых (HB) модуля 42, 44, разделенных конденсатором C2 DC-линии, модуль 46 с фиксированной нейтралью (NPC) и два отдельных переключающих устройства Q2, Q2N.

[0023] Схема для первого НВ модуля 42 содержит силовые полупроводниковые переключающие устройства Q1 и Q1N и конденсатор C1, рассчитанный на одну четверть подаваемого напряжения Vdc линии постоянного тока DC-линии 14. Схема для второго НВ модуля 44 включает в себя силовые полупроводниковые переключающие устройства Q5 и Q5N и конденсатор C3, рассчитанный на одну четверть подаваемого напряжения Vdc линии постоянного тока DC-линии 14.

[0024] Конфигурация модуля 46 с фиксированной нейтральной точкой (NPC) содержит силовые полупроводниковые переключающие устройства Q3, Q3N, Q3C, Q3CN, Q4, Q4N и конденсаторы C4, C5. Оба конденсатора C4, C5 рассчитаны на одну четверть подаваемого напряжения Vdc DC-линии. Еще один конденсатор С2 разделяет два HB модуля 42, 44, причем конденсатор С2 рассчитан на половину напряжения Vdc на шине DC-линии. Кроме того, предложенная топология модуля 10 содержит два отдельных переключающих устройства Q2 и Q2N, каждый из которых расположен между одной из НВ конфигураций 42, 44 и конфигурацией 46 NPC.

[0025] Переключающие устройства Q1, Q1N, Q2, Q2N, Q3, Q3N, Q3C, Q3CN, Q4, Q4N, Q5, Q5N могут включать в себя, к примеру и без ограничения указанным, силовые транзисторы, такие как биполярные транзисторы с изолированным затвором (IGBT). Как показано на фиг. 1, не имеется переключающих устройств, соединенных последовательно. Согласно описанному варианту осуществления, предложенная топология содержит в общей сложности 12 переключающих устройств Q1, Q1N, Q2, Q2N, Q3, Q3N, Q3C, Q3CN, Q4, Q4N, Q5, Q5N на каждую фазу.

[0026] DC-линия 14 содержит положительный входной вывод Р и отрицательный входной вывод N. Входное напряжение DC-линии 14 может быть обеспечено, например, стандартным трансформаторным/ диодным выпрямителем. В качестве альтернативы, может использоваться компоновка каскадно-противоположно включенных инверторов, как показано, например, на фиг. 5, для типовой бестрансформаторной топологии электропривода. Описанная топология согласно фиг. 1 вырабатывает выход как потенциал фазного напряжения фазы A и фазный выходной ток ΙOUT.

[0027] Фиг. 2 иллюстрирует схему другого варианта осуществления предложенной топологии для одной фазы А бестрансформаторного многоуровневого преобразователя в соответствии с примерным вариантом осуществления настоящего изобретения. Фиг. 2 иллюстрирует альтернативную топологию по отношению к фиг. 1, где одинаковые ссылочные позиции согласно фиг. 1 используются для обозначения тех же самых элементов на фиг. 2. Следует отметить, что, для простоты, приведенные далее варианты осуществления описаны со ссылкой на примерный вариант осуществления согласно фиг. 1. Специалисту в данной области техники должно быть понятно, что варианты осуществления, показанные на фиг. 1 и 2, могут легко заменяться друг другом, и что описанные далее варианты осуществления, которые теперь описываются со ссылкой на фиг. 1, также применимы к варианту осуществления согласно фиг. 2. Варианты осуществления согласно фиг. 1 и 2 аналогичны, но расположение конденсаторов C1, C3 DC-линии в соединении с двумя НВ конфигурациями 42, 44 отличается.

[0028] На фиг. 1, QxN, QxCN указывают, что соответствующее переключающее устройство переключается комплементарным образом относительно Qx, QxC. Например, переключающее устройство Q1N переключается комплементарным образом относительно Q1 и т.д. Это означает, что Qx-QxN и QxC-QxCN можно рассматривать как комплементарные переключающие пары, в которых когда одно из переключающих устройств, например Q1, включено, комплементарное переключающее устройство QIN отключено.

[0029] Каждое переключающее устройство Q1, Q1N, Q2, Q2N, Q3, Q3N, Q3C, Q3CN, Q4, Q4N, Q5, Q5N однофазной конфигурации 10 реагирует на управляющие сигналы S1, S1N, S2, S2N, S3, S3N, S4, S4N от контроллера, в частности, от контроллера PWM. Согласно варианту осуществления, четыре пары переключающих сигналов S1/S1N, S2/S2N, S3/S3N, S4/S4N используются для управления всеми переключающими устройствами Q1, Q1N, Q2, Q2N, Q3, Q3N, Q3C, Q3CN, Q4, Q4N, Q5, Q5N. Управляющие сигналы Sx/SxN являются комплементарными сигналами, что означает, что, например, когда S1 включен (1), S1N выключен (0).

[0030] Фиг. 1 в связи с таблицей I, представленной ниже, иллюстрируют, как управляющие сигналы S1/S1N, S2/S2N, S3/S3N, S4/S4N назначаются переключающим устройствам Q1, Q1N, Q2, Q2N, Q3, Q3N, Q3C, Q3CN, Q4, Q4N, Q5, Q5N относительно одной фазы:

[0031] Таблица I: Назначение сигнала PWM

Сигнал Переключающее устройство
S1 Q1, Q5
S1N Q1N, Q5N
S2 Q2
S2N Q2N
S3 Q3, Q3C
S3N Q3N, Q3CN
S4 Q4
S4N Q4N

[0032] Четыре переключающих сигнала S1, S2, S3, S4 и их соответствующие комплементарные переключающие сигналы S1N, S2N, S3N, S4N могут быть получены из любого модулятора PWM с использованием способа несущей PWM с фазовым сдвигом или способа PWM с фазовым распределением или других подходящих способов PWM.

[0033] Способ несущей PWM с фазовым сдвигом (PSPWM) является способом, используемым для многих многоуровневых приложений, таких как, например, топология каскадных H-мостов. использованием способа несущей PSPWM, синусоидальная волновая форма, которая является опорной для конкретной фазы, сравнивается, например, с по существу треугольной несущей, чтобы получить случаи переключения для конкретного переключающего устройства, например переключающий сигнал S2 для переключающего устройства Q2. Могут использоваться другие несущие, такие как, например, трапециедальные несущие. Затем простой логический инвертор может подавать сигнал для S2N. Отдельная несущая используется для каждого из других сигналов S1, S3, S4, причем несущие являются по существу треугольными несущими. Фазовый сдвиг Тshift между несущими одной фазы определяется формулой (1), где ТS является частотой переключения, используемой для всех переключающих устройств:

(1).

[0034] Фиг. 3 иллюстрирует графическое представление расположения несущих, содержащего различные несущие, по отношению к волновой форме опорного сигнала для одной фазы бестрансформаторного многоуровневого преобразователя в соответствии с примерным вариантом осуществления настоящего изобретения. Фиг. 3 показывает типовое расположение несущих в соответствии с принципом, описанным выше, содержащее четыре различные несущие 30, 32, 34, 36 для четырех различных управляющих сигналов S1, S2, S3, S4, причем несущие содержат треугольные волновые формы, по отношению к волновой форме 38 опорного сигнала, содержащего синусоидальную волновую форму.

[0035] Хотя способ несущей PSPWM является одним из наиболее широко используемых принципов для генерации команд для переключающих устройств, могут использоваться другие методы PWM. Например, оптимизированный метод PWM описан в патенте США № 9,184,673 на имя Mihalache (ʺPULSE WIDTH MODULATION CONTROL FOR A MULTLEVEL CONVERTERʺ), содержание которого включено в настоящий документ посредством ссылки. Следует отметить, что, для простоты, представленные здесь варианты осуществления описаны в отношении способа несущей PSPWM для обеспечения управляющих команд на переключающие устройства.

[0036] В таблице II, представленной ниже, показаны возможные уровни напряжения для примерной топологии, показанной на фиг. 1, где потенциал А фазного напряжения измеряется относительно отрицательного входного вывода N. В таблице II, сигнал Sx включен (1), когда соответствующее переключающее устройство (устройства) Qx, приводимое в действие сигналом Sx, включено. Сигнал Sx выключен (0), когда переключающее устройство (устройства) Qx, управляемое сигналом Sx, выключено.

[0037] Фазное напряжение VAN может быть обеспечено как функция переключающих команд, то есть переключающих управляющих сигналов, и напряжения Vdc DC-линии, как представлено в формуле (2):

(2).

[0038] Таблица II: Выходное фазное напряжение VAN по отношению к фиг. 1:

S1 S2 S3 S4 VAN
0 0 0 0 0
0 0 0 1 V
0 0 1 0 V
0 0 1 1 2V
0 1 0 0 V
0 1 0 1 2V
0 1 1 0 2V
0 1 1 1 3V
1 0 0 0 V
1 0 0 1 2V
1 0 1 0 2V
1 0 1 1 3V
1 1 0 0 2V
1 1 0 1 3V
1 1 1 0 3V
1 1 1 1 4V

[0039] Мгновенные токи IС1, IС3, IС4, IС5 через конденсаторы CI, C3, C4 и C5 могут быть выражены, как указано в формулах (3)-(6), соответственно:

(3);

(4);

(5);

(6).

[0040] Для поддержания напряжений конденсаторов C1, C3, C4, C5 на желательных значениях, средние токи C1, C3, C4, C5 должны быть равны нулю. Хотя имеется три конденсатора C1, C2, C3 на DC-линии 14, при напряжении внутреннего конденсатора C2, в два раза превышающем напряжение внешних конденсаторов C1 и C3, если внешние конденсаторы C1 и C3 могут поддерживаться на их корректном значении напряжения в одну четверть напряжения Vdc DC-линии, то напряжение внутреннего конденсатора C2 также будет иметь корректный уровень.

[0041] Отношения, выраженные формулами (3)-(6), могут быть дополнительно упрощены как функция мгновенного значения волновой формы 38 модулирующего опорного сигнала (см. фиг. 3). Предполагая, что фазное опорное напряжение задается как в формуле (7), конденсаторные токи IC1, IС3, IC4, IС5 через конденсаторы C1, С3, С4, С5 могут быть записаны, как показано в таблице III, представленной ниже, как функция фазного тока IOUT и рабочих циклов d1, d2, d3, d4 каждого переключающего сигнала S1, S2, S3 и S4, соответственно:

(7)

[0042] Можно показать, что, в установившихся и идеальных условиях, справедливо соотношение, как показано в формуле (8), что означает, что средние токи через конденсаторы C1, C3, C4 и C5 равны нулю на выходной основной частоте. Это также означает, что конденсаторы C1, C3, C4, C5 могут поддерживать свои напряжения на желательном начальном уровне:

(8)

[0043] Таблица III: Средние токи IC1, IС3, IC4, IС5 конденсаторов как функция тока и рабочих циклов d1, d2, d3, d4 (за один цикл переключения):




IC1
IC3
IC4
IC5

[0044] Однако может иметься несколько неидеальных условий, таких как конечное время переключения устройства, падение напряжения устройства, рассогласования рабочего цикла между переключающими устройствами, динамические шаги и т.д. Все эти условия могут влиять на напряжения на конденсаторах C1, C3, C4, C5. Если не смягчить их, то один или несколько конденсаторов C1, C3, C4, C5 могут дрейфовать вверх или вниз относительно их напряжений от начального состояния.

[0045] Чтобы уравновесить любые эффекты неидеальных условий, четыре рабочих цикла d1, d2, d3, d4 могут быть слегка изменены, чтобы влиять на каждый ток IC1, IС3, IC4, IС5 конденсатора, как это можно видеть, например, в Таблице III. Основываясь на полярности фазного тока и мгновенном местоположении модулирующей волновой формы, ток IC1, IС3, IC4, IС5 через конкретный конденсатор CI, C3, C4, C5 может быть изменен для ускорения или замедления заряда/разряда конкретного конденсатора C1, C3, C4, C5, не оказывая влияния на выходное напряжение конкретного конденсатора, если модификации рабочего цикла следуют формуле (9), которая является условием, достаточным в соответствии с формулой (2):

(9).

[0046] Фиг. 4 иллюстрирует схему варианта осуществления системы, содержащей бестрансформаторный многоуровневый преобразователь, в частности, трехфазный инвертор напряжения электропривода, в соответствии с примерным вариантом осуществления настоящего изобретения.

[0047] На фиг. 4 показана система 100, содержащая трехфазный инвертор 40 напряжения электропривода, содержащий три фазы A, B, C. Каждая фаза содержит однофазную конфигурацию 10, здесь также упоминаемую как однофазный модуль 10, соединенную с DC-линией 14, причем для каждой фазы A, B, C однофазный модуль 10 содержит топологию, как описано на фиг. 1. В качестве альтернативы, инвертор 40 может содержать для одной или нескольких фаз A, B, C однофазный(е) модуль(и) 10 с топологией, как описано на фиг. 2. Как видно из фиг. 4, полная схема показана только для фазы A, а топологии для фаз B и C показаны только схематично.

[0048] Как описано выше, для каждой фазы A, B, C примерного инвертора 40, предложенная топология содержит первый и второй полумостовые (НВ) модули 42, 44, разделенные конденсатором C2 DC-линии, модуль 46 с фиксированной нейтралью (NPC) и два отдельных переключающих устройства Q2, Q2N. Отдельное переключающее устройство Q2 операционно соединено с первым НВ модулем 42 и модулем 46 NPC, а второй отдельный переключатель Q2N операционно соединен со вторым НВ модулем 44 и модулем 46 NPC.

[0049] В соответствии с описанным вариантом осуществления, предложенная топология содержит в общей сложности 12 переключающих устройств на фазу А, В, С. DC-линия 14 обеспечивает напряжение Vdc для однофазных модулей 10. DC-линия 14 является общей для всех фаз А, B, C, что также означает, что конденсаторы C1, C2, C3, связанные с DC-линией 14, являются общими для всех фаз A, B, C. Таким образом, только восемь конденсаторов (обычные конденсаторы C1, C3 DC-линии и конденсаторы C4, C5 каждого однофазного модуля 10) может потребоваться сбалансировать для трехфазного инвертора 40.

[0050] Инвертор 40 может быть операционно связан с контроллером 50, в частности, контроллером широтно-импульсной модуляции (PWM), и двигателем 60, который, в частности, является АС-двигателем. Инвертор 40 может использоваться для привода среднего напряжения, например привода среднего напряжения 4160 В. Бестрансформаторный многоуровневый преобразователь 40 содержит узел 16 вывода мощности и предоставляет трехфазную питающую АС-мощность в качестве выхода через фазные выходные линии 70. АС-выход через линии 70 может быть соединен с нагрузкой, которая в этом примере содержит двигатель 60. Двигатель 60 может приводиться в действие посредством управления частотой и/или амплитудой выходного напряжения, вырабатываемого многоуровневым инвертором 40.

[0051] Двигатель 60 может содержать любой двигатель АС-типа, например синхронный, асинхронный, с постоянным магнитом и может быть рассчитан на низкое напряжение, среднее напряжение или высокое напряжение. Например, АС-двигатели среднего напряжения, такие как те, которые используются в управлении промышленными процессами, могут работать в диапазоне от 4,16 кВ до 13,8 кВ. Может использоваться большее или меньшее напряжение. Может подключаться более одного АС-двигателя 60. Другие нагрузки могут использоваться вместо или в дополнение к двигателю 60. АС-двигатель 60 реагирует на напряжение, подаваемое многоуровневым преобразователем на три фазы A, B, C, например, для увеличения, уменьшения или поддержания скорости или положения.

[0052] Контроллер 50 может содержать, например, процессор с памятью, который способен хранить и исполнять конкретные инструкции для реализации проиллюстрированного управления PWM. Контроллер 50 может быть реализован, к примеру и без ограничения указанным, микроконтроллером с внутренней или внешней памятью или процессором цифровых сигналов (DSP) с фиксированной запятой или с плавающей запятой, или программируемым логическим устройством (PLD), или любой комбинацией вышеуказанного.

[0053] Фиг. 5 иллюстрирует схему варианта осуществления каскадно-противоположно включенной компоновки, содержащей трехфазные инверторы напряжения электропривода, как показано на фиг. 4, в соответствии с примерным вариантом осуществления настоящего изобретения.

[0054] Как описано выше, входное напряжение DC-линии 14 может быть обеспечено, например, стандартным трансформаторным/ диодным выпрямителем. Альтернативно, как показано на фиг. 5, каскадно-противоположно включенная компоновка может использоваться для типичной топологии бестрансформаторного электропривода. Компоновка согласно фиг. 5 содержит два инвертора 40, как описано на фиг. 4, причем DC-линия 14, содержащая напряжение Vdc с входными выводами P и N, питает оба инвертора 40, так что каждый инвертор 40 содержит вход или выход в форме трехфазной АС-мощности с тремя фазами A, B, C.

[0055] Фиг. 6 иллюстрирует графические представления смоделированных волновых форм выходного напряжения VOUT и выходного тока IOUT, полученных с PSPWM в бестрансформаторном многоуровневом преобразователе 40 для одной фазы A, B или C, соответственно, в соответствии с примерным вариантом осуществления настоящего изобретения. Параметры моделирования представлены в Таблице IV ниже.

[0056] Таблица IV: Параметры моделирования:

Параметр Значение
C1, C3, C4, C5 Каждый 10000 мкФ
C2 5000 мкФ
Частота переключения 600 Гц
Напряжение
DC-линии
1950*4=7800 В
R нагрузки 5,41 Ом
L нагрузки 7,6 мГн

[0057] Фиг. 7 и фиг. 8 иллюстрируют графические представления смоделированных напряжений конденсаторов C1, C2, C3 DC-линии, причем фиг. 7 иллюстрирует смоделированные напряжения внешних конденсаторов C1 и C3 DC-линии (см., например, фиг. 1), и фиг. 8 иллюстрирует смоделированное напряжение внутреннего конденсатора C2 DC-линии (см., например, фиг. 1), в соответствии с примерным вариантом осуществления настоящего изобретения. Смоделированные напряжения получены при работе многоуровневого инвертора 40 с PSPWM и параметрами моделирования, как показано в таблице IV. Как показано на фиг. 7, конденсаторы C1 и C3 поддерживают свое начальное среднее значение. В результате этого, конденсатор C2 также поддерживает начальное среднее значение, которое составляет половину напряжения Vdc DC-линии и удвоенное значение напряжения конденсаторов C1 и C3.

[0058] Фиг. 9 иллюстрирует графическое представление смоделированных напряжений конденсаторов C4 и C5 модуля 46 NPC (см., например, фиг. 4) в соответствии с примерным вариантом осуществления настоящего изобретения. Смоделированные напряжения получены при работе многоуровневого инвертора 40 с PSPWM и параметрами моделирования, как показано в таблице IV. Как показано на фиг. 9, конденсаторы C4 и C5 также по существу поддерживают их начальное среднее значение, которое составляет одну четверть от напряжения Vdc DC-линии.

[0059] Фиг. 10 и фиг. 11 иллюстрируют графические представления смоделированных волновых форм выходных токов 102, 104, 106 (фиг. 10) и линейных напряжений 110, 112, 114 (фиг. 11), полученных с PSPWM в бестрансформаторном многоуровневом преобразователе 40 для всех трех фаз А, B или C, соответственно, в соответствии с примерным вариантом осуществления настоящего изобретения. Параметры моделирования представлены в таблице IV.

[0060] Суммируя, в соответствии с примерными вариантами осуществления, бестрансформаторный многоуровневый преобразователь 40, как описано здесь, содержит следующие признаки:

- На каждой фазе A, B и C, предложенная топология содержит два полумостовых (НВ) модуля 42, 44, разделенных конденсатором C2 DC-линии, также называемым внутренним конденсатором, модуль 46 с фиксированной нейтралью (NPC) и два отдельных переключающих устройства Q2, Q2N.

- Имеется два конденсатора CI и C3 в DC-линии 14 и два конденсатора C4 и C5 модуля 46 NPC, которые, возможно, потребуется сбалансировать. Каждый из этих конденсаторов рассчитан на четверть от предоставляемого напряжения Vdc на шине DC-линии.

- DC-линия 14 является общей для всех фаз A, B, C; таким образом, для трехфазного инвертора 40 может потребоваться сбалансировать только восемь конденсаторов.

- Все переключающие устройства Q1, Q1N, Q2, Q2N, Q3, Q3N, Q3C, Q3CN, Q4, Q4N, Q5, Q5N имеют градиент напряжения, равный четверти от предоставляемого напряжения Vdc на шине DC-линии.

- Поскольку не имеется переключающих устройств, соединенных последовательно, предложенный инвертор 40 позволяет упростить управление затвором и приводит к более надежному продукту.

- Можно использовать управление либо посредством широтно-импульсной модуляции с фазовым сдвигом (PSPWM), либо посредством PWM с фазовым распределением (PDPWM). В обоих случаях, эффективная частота переключения выхода в четыре раза превышает частоту переключения отдельного переключающего устройства. Все переключающие устройства Q1, Q1N, Q2, Q2N, Q3, Q3N, Q3C, Q3CN, Q4, Q4N, Q5, Q5N переключаются с одинаковой частотой.

- Предложенный примерный инвертор 40 может использоваться в бестрансформаторном применении (топологии бестрансформаторного типа с каскадно-противоположным включением, см., например, фиг. 5). Но инвертор 40 также может использоваться с выходным (внешним) трансформатором в случае рассогласования входного- выходного напряжения. В этом случае может использоваться гораздо более простой трансформатор.

[0061] Хотя варианты осуществления настоящего изобретения были раскрыты в иллюстративных формах, специалистам в данной области техники должно быть очевидно, что в него могут быть внесены многие модификации, добавления и удаления без отклонения от сущности и объема изобретения и его эквивалентов, как изложено в следующей формуле изобретения.


БЕСТРАНСФОРМАТОРНЫЙ МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ СРЕДНЕГО НАПРЯЖЕНИЯ И СПОСОБ ДЛЯ УПРАВЛЕНИЯ БЕСТРАНСФОРМАТОРНЫМ МНОГОУРОВНЕВЫМ ПРЕОБРАЗОВАТЕЛЕМ СРЕДНЕГО НАПРЯЖЕНИЯ
БЕСТРАНСФОРМАТОРНЫЙ МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ СРЕДНЕГО НАПРЯЖЕНИЯ И СПОСОБ ДЛЯ УПРАВЛЕНИЯ БЕСТРАНСФОРМАТОРНЫМ МНОГОУРОВНЕВЫМ ПРЕОБРАЗОВАТЕЛЕМ СРЕДНЕГО НАПРЯЖЕНИЯ
БЕСТРАНСФОРМАТОРНЫЙ МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ СРЕДНЕГО НАПРЯЖЕНИЯ И СПОСОБ ДЛЯ УПРАВЛЕНИЯ БЕСТРАНСФОРМАТОРНЫМ МНОГОУРОВНЕВЫМ ПРЕОБРАЗОВАТЕЛЕМ СРЕДНЕГО НАПРЯЖЕНИЯ
БЕСТРАНСФОРМАТОРНЫЙ МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ СРЕДНЕГО НАПРЯЖЕНИЯ И СПОСОБ ДЛЯ УПРАВЛЕНИЯ БЕСТРАНСФОРМАТОРНЫМ МНОГОУРОВНЕВЫМ ПРЕОБРАЗОВАТЕЛЕМ СРЕДНЕГО НАПРЯЖЕНИЯ
БЕСТРАНСФОРМАТОРНЫЙ МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ СРЕДНЕГО НАПРЯЖЕНИЯ И СПОСОБ ДЛЯ УПРАВЛЕНИЯ БЕСТРАНСФОРМАТОРНЫМ МНОГОУРОВНЕВЫМ ПРЕОБРАЗОВАТЕЛЕМ СРЕДНЕГО НАПРЯЖЕНИЯ
БЕСТРАНСФОРМАТОРНЫЙ МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ СРЕДНЕГО НАПРЯЖЕНИЯ И СПОСОБ ДЛЯ УПРАВЛЕНИЯ БЕСТРАНСФОРМАТОРНЫМ МНОГОУРОВНЕВЫМ ПРЕОБРАЗОВАТЕЛЕМ СРЕДНЕГО НАПРЯЖЕНИЯ
БЕСТРАНСФОРМАТОРНЫЙ МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ СРЕДНЕГО НАПРЯЖЕНИЯ И СПОСОБ ДЛЯ УПРАВЛЕНИЯ БЕСТРАНСФОРМАТОРНЫМ МНОГОУРОВНЕВЫМ ПРЕОБРАЗОВАТЕЛЕМ СРЕДНЕГО НАПРЯЖЕНИЯ
БЕСТРАНСФОРМАТОРНЫЙ МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ СРЕДНЕГО НАПРЯЖЕНИЯ И СПОСОБ ДЛЯ УПРАВЛЕНИЯ БЕСТРАНСФОРМАТОРНЫМ МНОГОУРОВНЕВЫМ ПРЕОБРАЗОВАТЕЛЕМ СРЕДНЕГО НАПРЯЖЕНИЯ
БЕСТРАНСФОРМАТОРНЫЙ МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ СРЕДНЕГО НАПРЯЖЕНИЯ И СПОСОБ ДЛЯ УПРАВЛЕНИЯ БЕСТРАНСФОРМАТОРНЫМ МНОГОУРОВНЕВЫМ ПРЕОБРАЗОВАТЕЛЕМ СРЕДНЕГО НАПРЯЖЕНИЯ
БЕСТРАНСФОРМАТОРНЫЙ МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ СРЕДНЕГО НАПРЯЖЕНИЯ И СПОСОБ ДЛЯ УПРАВЛЕНИЯ БЕСТРАНСФОРМАТОРНЫМ МНОГОУРОВНЕВЫМ ПРЕОБРАЗОВАТЕЛЕМ СРЕДНЕГО НАПРЯЖЕНИЯ
БЕСТРАНСФОРМАТОРНЫЙ МНОГОУРОВНЕВЫЙ ПРЕОБРАЗОВАТЕЛЬ СРЕДНЕГО НАПРЯЖЕНИЯ И СПОСОБ ДЛЯ УПРАВЛЕНИЯ БЕСТРАНСФОРМАТОРНЫМ МНОГОУРОВНЕВЫМ ПРЕОБРАЗОВАТЕЛЕМ СРЕДНЕГО НАПРЯЖЕНИЯ
Источник поступления информации: Роспатент

Showing 81-90 of 1,427 items.
20.09.2013
№216.012.6aac

Способ изготовления вихревой распылительной форсунки для распыления жидкого топлива

Изобретение относится к способу изготовления вихревой распылительной форсунки для распыления жидкого топлива. Подготавливают заготовку, имеющую полый цилиндр с закрывающим его с одной стороны днищем и открытым с другой стороны продольным концом. Вблизи днища в полом цилиндре выполняют по...
Тип: Изобретение
Номер охранного документа: 0002492959
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6bdd

Устройство для опрокидывания металлургического плавильного сосуда, металлургическая плавильная система и способ с применением такой плавильной системы

Изобретение относится к области металлургии, в частности к устройству (1) для опрокидывания металлургического плавильного сосуда (50, 55) электродуговой печи (101, 101'). Устройство содержит опрокидываемую рабочую площадку (2) печи, которая имеет отверстие (3) для размещения плавильного сосуда...
Тип: Изобретение
Номер охранного документа: 0002493264
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c8b

Направляющая или рабочая лопатка для осевого компрессора

Направляющая лопатка компрессора или рабочая лопатка осевого компрессора с осевым направлением, радиальным направлением (R), ступицей компрессора и корпусом компрессора. Направляющая лопатка или рабочая лопатка содержит аэродинамическую поверхность (1) с профильными сечениями (3, 5, 15А-15Е),...
Тип: Изобретение
Номер охранного документа: 0002493438
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d04

Селективный детектор монооксида углерода

Изобретение относится к селективному детектору монооксида углерода. Предложен детектор монооксида углерода, который базируется на двух чувствительных слоях. Второй чувствительный слой является каталитически активным и реагирует равным образом на спирты, в частности этанол, и на монооксид...
Тип: Изобретение
Номер охранного документа: 0002493559
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d07

Способ для определения и оценки индикации вихревых токов, в частности трещин, в испытываемом объекте из электропроводного материала

Изобретение относится к способу определения и оценки трещин в испытываемом объекте из электропроводного материала. Способ включает: нагружение испытываемого объекта электромагнитным переменным полем с предварительно определенной постоянной или переменной частотой (f), определение вихревых...
Тип: Изобретение
Номер охранного документа: 0002493562
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.6fe1

Улавливающий подшипник для улавливания роторного вала машины

Изобретение относится к улавливающему подшипнику для улавливания роторного вала машины. Улавливающий подшипник (2) имеет проходящие вокруг воображаемой геометрической средней оси (М) первое опорное тело (7) и роликовые тела (5). Роликовые тела (5) имеют, каждое, зону (19), которая расположена...
Тип: Изобретение
Номер охранного документа: 0002494292
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.7029

Способ и устройство для распознавания состояния исследуемой создающей шумы машины

Использование: в способе и устройстве для распознавания состояния исследуемой создающей шумы машины. Сущность: в способе и устройстве распознавания состояния исследуемого создающего шумы объекта сгенерированная для по меньшей мере одного эталонного объекта статистическая основная модель...
Тип: Изобретение
Номер охранного документа: 0002494364
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70bd

Способ управления при резервировании многофазного выпрямителя переменного тока с распределенными накопителями энергии

Изобретение относится к области электротехники и может быть использовано для управления выпрямителем переменного тока с распределенными накопителями энергии с тремя фазными модулями, которые имеют соответственно одну верхнюю и одну нижнюю ветвь вентилей, которые снабжены соответственно по...
Тип: Изобретение
Номер охранного документа: 0002494512
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.71f2

Непрерывный прокатный стан с введением и/или выведением прокатных клетей в процессе функционирования

Изобретение предназначено для повышения качества проката. Способ включает непрерывную прокатку в нескольких клетях. Плавность выведения/введения прокатных клетей для замены валков обеспечивается за счет того, что при выведения одной (1'') из прокатных клетей (1, 1'') из непрерывного прокатного...
Тип: Изобретение
Номер охранного документа: 0002494827
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7327

Способ определения меры кусковатости твердого материала в электродуговой печи, электродуговая печь, устройство обработки сигнала, а также программный код и носитель данных

Изобретение относится к области получения металла в электродуговой печи. Технический результат - повышение точности прогнозирования состояния твердого материала в электродуговой печи. Согласно способу определения кусковатости для твердого материала, в особенности скрапа, в электродуговой печи...
Тип: Изобретение
Номер охранного документа: 0002495136
Дата охранного документа: 10.10.2013
+ добавить свой РИД