×
02.07.2019
219.017.a2da

Результат интеллектуальной деятельности: Приемник лазерных импульсов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области приема оптического излучения и касается приемника лазерных импульсов. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с двумя рабочими положениями. В состав устройства введен привод шторки, включающий укрепленную на корпусе пружину кручения, соосно связанную с коромыслом, одно из плеч которого притянуто к корпусу растяжкой с усилием, определяемым заданным быстродействием привода шторки, а на свободном плече коромысла закреплена шторка. Соотношение плеч коромысла выбрано таким образом, чтобы при изменении длины растяжки на величину Δс, шторка перемещалась на заданное расстояние между исходным и рабочим положениями. Растяжка представляет собой токопроводящую нить, к концам которой подведен источник управляющего электрического сигнала, при подаче которого температурное расширение растяжки от ее нагрева протекающим электрическим током составляет величину Δс. Технический результат заключается в обеспечении работоспособности устройства для высокоэнергетических входных сигналов и максимальной чувствительности для малых сигналов при минимальных габаритах устройства и его максимальном быстродействии и надежности. 2 з.п. ф-лы, 1 ил.

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и других светолокационных устройств.

Известны приемники оптических сигналов [1] для систем импульсной лазерной локации, предназначенные для преобразования в электрические сигналы отраженных удаленными объектами зондирующих импульсов лазерного излучения и временной привязки электрических импульсов для определения их задержки τ относительно момента излучения лазерного зондирующего импульса. По этой задержке судят о дальности R до отражающего объекта по формуле R = сτ/2, где с - скорость света. Подобным образом построены приемники оптических сигналов [2-3], содержащие фоточувствительный элемент и схему обработки сигнала. Указанные устройства имеют ограниченный динамический диапазон, препятствующий применению таких приемников в измерителях дальности и другой аппаратуре с повышенными требованиями к точности. Существует ряд технических решений, имеющих целью расширение динамического диапазона и повышение точности временной фиксации принятых сигналов [4-5]. Однако эти решения не обеспечивают работоспособность приемника, если энергия входного излучения превышает уровень лучевой прочности фоточувствительного элемента.

Наиболее близким по технической сущности к предлагаемому изобретению является приемник оптических сигналов, содержащий фоточувствительный элемент, схему обработки сигнала, светоделитель, фотодатчик, устройство задержки и оптический затвор, установленный перед фоточувствительным элементом [6]. В данном приемнике оптический затвор не открывается, если сигнал с фотодатчика превышает пороговое значение, соответствующее уровню входного излучения, превышающего порог лучевой прочности фоточувствительного элемента. В противном случае затвор открывается, и входное излучение поступает на фоточувствительный элемент. Время задержки сигнала в линии задержки должно превышать время реакции затвора на управляющий импульс от фотодатчика. Таким образом, обеспечивается функционирование устройства не только в рабочем динамическом диапазоне отраженных сигналов, но и за его пределами - в условиях высокоэнергетических входных сигналов.

Недостаток приемника [6] - потери излучения в светоделителе, устройстве задержки и оптическом затворе, а также ограничения по быстродействию затвора, вынуждающие увеличивать задержку сигнала в устройстве задержки. Это, в свою очередь, приводит к потерям в приемном тракте, искажению формы принимаемого сигнала, увеличению габаритов устройства, особенно за счет светоделителя, устройства задержки и оптического затвора.

Задачей изобретения является обеспечение работоспособности приемника оптических сигналов для высокоэнергетических входных сигналов и наивысшей чувствительности для слабых входных сигналов при минимальных габаритах устройства и его максимальном быстродействии и надежности.

Эта задача решается за счет того, что в известном приемнике лазерных импульсов, содержащем корпус с оптическим входом, фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом, оптический затвор выполнен в виде шторки с двумя рабочими положениями, а в состав устройства введен привод шторки, включающий укрепленную на корпусе пружину кручения, соосно связанную с коромыслом, одно из плеч которого длиной L1 притянуто к корпусу растяжкой с усилием F, определяемым заданным быстродействием привода шторки, а на свободном плече коромысла длиной L2 закреплена шторка, соотношение плеч коромысла выбрано таким образом, чтобы при изменении длины растяжки на величину Δс шторка перемещалась на заданное расстояние между исходным и рабочим положениями, в исходном положении шторка перекрывает фоточувствительный элемент, а в рабочем положении находится вне его поля зрения, причем растяжка представляет собой токопроводящую нить, к концам которой подведен источник управляющего электрического сигнала, при подаче которого температурное расширение растяжки от ее нагрева протекающим электрическим током составляет величину Δс, а усилие растяжки в исходном состоянии удовлетворяет условию где mэ - эквивалентная масса шторки с учетом элементов ее крепления, t - заданное время перевода шторки из исходного положение в рабочее, Fпред - предел прочности растяжки, к<1 - коэффициент запаса прочности.

В состав приемника лазерных импульсов может быть введен логический модуль, один вход которого связан с выходом схемы обработки сигнала, второй вход является управляющим входом, а выход подключен к источнику управляющего электрического сигнала.

Шторка может быть выполнена полупрозрачной с коэффициентом пропускания τ, отвечающим условию где Fфпу - энергетическая чувствительность приемника; Emin - минимальная энергия высокоэнергетического сигнала поступающего на фоточувствительныи элемент; Emax - максимальная энергия высокоэнергетического сигнала; Епду - предельно допустимый уровень энергии сигнала, поступающего на фоточувствительный элемент.

На чертеже фиг. 1 представлена функциональная схема приемника лазерных импульсов.

Приемник лазерных импульсов (фиг. 1) состоит из фоточувствительного элемента 1 (например, фотодиода) и схемы обработки сигнала 2, включающей предусилитель 3, усилитель 4 и формирователь выходного сигнала 5, выход которого является выходом устройства. Перед фоточувствительным элементом расположена шторка 6 с приводом в виде пружины кручения 7, соосно с которой к свободному концу пружины прикреплено коромысло 9, на одном из плеч коромысла закреплена шторка 6, а второе плечо притянуто растяжкой 10 к корпусу 11 так, чтобы шторка перекрывала рабочую площадку фоточувствительного элемента. К концу растяжки, связанному с коромыслом, подключен выход источника управляющего электрического сигнала 12, вход которого подключен к выходу логического модуля 13, один из входов которого связан с выходом схемы обработки сигнала 2, а второй является его управляющим входом. Приемник лазерных импульсов размещен в герметичном корпусе 11, через оптическое окно которого принимаемое излучение поступает на фоточувствительный элемент 1.

Устройство работает следующим образом.

В исходном состоянии полупрозрачная шторка 6 находится перед рабочей площадкой фоточувствительного элемента 1, ослабляя поступающие на нее сигналы в 1/τ раз. При подаче на растяжку управляющего сигнала от формирователя 12 растяжка под действием протекающего через нее тока нагревается, и ее исходная длина увеличивается на величину Δс = αсΔТ, где α - коэффициент температурного расширения, ΔT - приращение температуры. В результате на шторку действует сила где М=FL1 момент силы F, создаваемой при закручивании пружины растяжкой 10, L1 - длина плеча коромысла, связанного с растяжкой, L2 - длина плеча коромысла, на котором закреплена шторка. Под действием силы шторка перемещается на расстояние S, открывая рабочую площадку фоточувствительного элемента. При отключении управляющего сигнала длина растяжки принимает первоначальное значение с, и коромысло со шторкй возвращается в исходное положение, закрывая рабочую площадку фоточувствительного элемента. Если шторка выполнена полупрозрачной, в ее исходном положении фотоприемное устройство может принимать высокоэнергетические сигналы, превышающие уровень номинальной чувствительности ФПУ в 1/τ раз и более без ущерба для фоточувствительного элемента.

Для перекрытия шторкой рабочей площадки фоточувствительного элемента должно выполняться условие где dшт - рабочий диаметр полупрозрачного участка шторки; dфчэ - диаметр рабочей площадки фоточувствительного элемента; а - расстояние от шторки до поверхности фоточувствительного элемента; α - угол зрения фоточувствительного элемента; Δ - погрешность фиксации поперечного положения шторки при отсутствии управляющего сигнала на входе привода. В величину А входят как погрешности юстировки, так и температурный уход в диапазоне окружающих температур.

Коэффициент ослабления шторки τ определяется ожидаемым уровнем высокоэнергетической лазерной засветки от внешнего источника. Шторка может быть выполнена в виде прозрачной плоскопараллельной пластины с полупрозрачным покрытием, нанесенным, например, путем металлизации. Толщина этого покрытия определяет необходимую величину τ при сохранении габаритно-присоединительных параметров. Если при закрытой полупрозрачной шторке на выходе схемы обработки 2 формируется сигнал, это свидетельствует о наличии на входе фоточувствительного элемента 1 высокоэнергетического сигнала. Тогда логический модуль 13 предотвращает прохождение управляющего сигнала на формирователь 12, и шторка остается в исходном состоянии.

Предельно допустимое значение силы F определяется прочностью растяжки.

Пример 1.

Нихром Х20Н80 ГОСТ 8803-89 сплав твердый.

Предел прочности 0,77 ГПа. Принятая удельная нагрузка σпред = 0,1 ГПа.

Проволока диаметр 0,1 мм, длина 20 мм. Площадь сечения Sнихр = 0,00785 мм2 = 7,85-10-9 м2. Рабочая нагрузка F = σпред⋅ Sнихр = 0,1⋅7,85 = 0,8 Н.

При температурном расширении нихромовой нити 10 пружина 7 поворачивает коромысло 9 с моментом силы М = FL1. Тогда, если суммарная эквивалентная масса кольца и шторки равна m, ускорение шторки

Эквивалентная масса шторки включает эквивалентные по моменту инерции массы самой шторки mш, оправы m0, коромысла mk, растяжки mp и пружины mп.

Пример 2.

Пружина кручения арт. ST17310 [8] имеет следующие параметры.

Dt = 0,6 мм - диаметр проволоки; Di=2мм внутренний диаметр; nv = 2 - количество пружинящих витков; Mn = 9,3 - максимальный допустимый момент, Н⋅мм; ϕ = 32 - угол вращения в градусах при Mn; плотность 7,7 г/см3. Эквивалентная масса mп ~ 0,5⋅10-6 кг.

Растяжка - нихром, проволока 0,1 мм; длина 20 мм; плотность 8 г/см3. Эквивалентная масса mp = 1,6⋅10-6 кг.

Коромысло - титан, пластина 0,2×2 мм; L1 = 5 мм; L2 = 10 мм; плотность 4,5 г/см3. Эквивалентная масса m к ~ 15⋅10-6 кг.

Шторка - 2×2×0,2, стекло К8 ГОСТ 3514-76с металлизацией; плотность 2,51 г/см3. Масса mш = 2⋅10-6 кг.

Из приведенных данных следует, что m ~ mш + mk + mп + mp ~ 20⋅10-6 кг.

Ускорение шторки

Перемещение шторки S = 0,3 мм.

Время перемещения

Рабочая температура растяжки должна существенно превышать эксплуатационный температурный диапазон, чтобы температурные условия внешней среды не оказывали заметного влияния на положение шторки. С другой стороны, температура растяжки не должна быть слишком высокой, чтобы не подвергать растяжку пластическим деформациям при рабочей нагрузке.

Пример 3.

Растяжка - нихромовая проволока длиной с = 20 мм. α = 18⋅10-61/град. Эксплуатационный температурный диапазон Тэксп = 0 ± ΔТэксп. - ΔТэксп = 40°С.

Перемещение шторки S = 0,3 мм (см. Пример 2). Соответствующее необходимое удлинение растяжки Δс зависит от исполнения коромысла 9, а именно - от соотношения плеч L2/L1. Например, при L2/L1 = 2 удлинение Δс = S/2 = 0,15 мм.

Температурное приращение растяжки

ΔТ = Δс/αс = 0,15/(18⋅10-6⋅20) ~ 420°>>ΔТэксп.

Температура плавления сплава Х20Н80 - Тпл = 1200°С >> ΔТ.

Энергия, необходимая для повышения температуры растяжки, ЕΔТ = βmΔТ, где β -теплоемкость материала растяжки; m - масса прогреваемого объема.

Пример 4. Габариты токопроводящей растяжки 0,01×2 см. Объем VT ~ 2⋅10-4 см3. Плотность сплава Х20Н80 ρТ = 7,94 г/см3; m = ρTVT= 1,6⋅10-6 кг; теплоемкость нихрома β = 0,57 Дж/кгК.

Ет = βmΔТ = 0,57⋅1,6⋅10-6⋅420 = 0,00038 Дж = 0,38 мДж.

Сопротивление нихромовой проволоки где ρR - удельное сопротивление; с - длина растяжки; d - диаметр проволоки.

Импульс тока энергией ЕТ через растяжку может быть прямоугольным длительностью ts или экспоненциальным при разряде через растяжку накопительного конденсатора емкостью СТ, заряженного до напряжения U0.

Пример 5.

ρR = 1,01⋅10-6Ом⋅м (нихром Н20Х80); с = 0,02 м; d = 0,1⋅10-3м.

RT = 2,6 Ом.

Прямоугольный импульс. RT = 2,6 Ом; ts = 5⋅10-4 с; ЕТ = 0,38 мДж. Энергия откуда Ток через растяжку

Экспоненциальный импульс. Постоянная времени разряда конденсатора емкостью С τС~ts/3 = 0,17 мс. Энергия Максимальный ток Imax = U0/RT = 1,3 А.

Описанное техническое решение обеспечивает безопасное применение фотоприемного устройства в составе любой аппаратуры и в любых условиях эксплуатации. При этом габариты и масса шторки с приводом, а также объем логического модуля позволяют встраивать эти узлы в существующие миниатюрные приемники без изменения их типоразмеров. Размещение элементов защиты приемника в составе его герметизированного корпуса обеспечивает их надежность, долговечность и максимальный ресурс работы.

Таким образом, предлагаемое техническое решение обеспечивает работоспособность приемника лазерных импульсов для высокоэнергетических входных сигналов и наивысшую чувствительность для слабых входных сигналов при минимальных габаритах устройства и его максимальном быстродействии и надежности.

Источники информации

1. В.А. Волохатюк и др. "Вопросы оптической локации". - Советское радио, М., 1971.-с. 213.

2. В.Г. Вильнер и др. Анализ входной цепи фотоприемного устройства с лавинным фотодиодом и противошумовой коррекцией. «Оптико-механическая промышленность». №9,1981 г. -с. 593.

3. В.А. Афанасьев и др. Порог чувствительности приемника импульсного оптического излучения с большим входным импедансом. Электронная техника. Серия 11. «Лазерная техника и оптоэлектроника». 1988, в.3. - с. 78-83.

4. В.Г. Вильнер и др. Приемник импульсных оптических сигналов. Патент РФ № 2506547.

5. П.М. Боровков и др. Особенности схемотехники импульсных пороговых ФПУ с малым временем восстановления чувствительности после воздействия импульса перегрузки.«Прикладнаяфизика», № 1, 2015 г. - с. 61-65.

6. Radiation receiver with active optical protection system. USpatentNo6,548,807 - прототип.

7. В.И. Кошкин, М.Г. Ширкевич. «Справочник по элементарной физике». - Наука. М., 1972. - с. 29.

8. Каталог ООО «Виброна».

http://vibrona.ru/wp-content/uploads/2014/04/kruchenie.pdf


Приемник лазерных импульсов
Приемник лазерных импульсов
Приемник лазерных импульсов
Приемник лазерных импульсов
Приемник лазерных импульсов
Приемник лазерных импульсов
Источник поступления информации: Роспатент

Showing 11-20 of 71 items.
10.05.2018
№218.016.4358

Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления

Изобретение относится к способу очистки подложек из ситалла. Способ включает химическую очистку и промывку в деионизованной воде. После промывки в деионизованной воде подложки из ситалла предварительно нагревают в струе высокочастотной плазмы на расстоянии от 60 до 120 мм от среза...
Тип: Изобретение
Номер охранного документа: 0002649695
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.476c

Лазерный дальномер

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит лазерный полупроводниковый излучатель с датчиком тока накачки, двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности, причем...
Тип: Изобретение
Номер охранного документа: 0002650851
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4b60

Способ измерения угловой скорости лазерного гироскопа со знакопеременной частотной подставкой

Изобретение относится к измерительной лазерной технике и может найти применение в при измерении угловой скорости лазерного гироскопа со знакопеременной частотной подставкой. Технический результат – повышение точности. Для этого обеспечено формирование на основе выходного сигнала вращения...
Тип: Изобретение
Номер охранного документа: 0002651612
Дата охранного документа: 23.04.2018
29.05.2018
№218.016.5701

Приемник импульсных лазерных сигналов

Изобретение относится к лазерной технике, а именно к аппаратуре приема лазерного излучения. Приемник импульсных лазерных сигналов содержит фоточувствительный элемент, схему обработки сигнала, выполненный в виде полупрозрачной шторки оптический затвор, привод шторки и логический модуль. Шторка...
Тип: Изобретение
Номер охранного документа: 0002655006
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.570b

Лазерный дальномер

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит передающий канал, включающий лазерный излучатель с передающим объективом и схемой запуска, и приемный канал, включающий фотоприемное устройство с приемным объективом. Причем...
Тип: Изобретение
Номер охранного документа: 0002655003
Дата охранного документа: 23.05.2018
25.08.2018
№218.016.7ef4

Лазерный излучатель

Изобретение относится к лазерной технике, а именно к импульсным твердотельным лазерам. Лазерный излучатель содержит активный элемент и параллельно расположенный источник накачки в виде линейки лазерных диодов, между источником накачки и активным элементом введена призма, в поперечном сечении...
Тип: Изобретение
Номер охранного документа: 0002664768
Дата охранного документа: 22.08.2018
29.03.2019
№219.016.ee10

Способ определения ошибок ориентации измерительных осей лазерных гироскопов и маятниковых акселерометров в бесплатформенной инерциальной навигационной системе

Изобретение относится к приборостроению и может быть использовано для определения ошибок ориентации измерительных осей гироскопов и маятниковых акселерометров в БИНС после температурных, вибрационных или ударных воздействий, а также в процессе эксплуатации. Способ определения ошибок ориентации...
Тип: Изобретение
Номер охранного документа: 0002683144
Дата охранного документа: 26.03.2019
25.04.2019
№219.017.3b2e

Способ компенсации влияния медленного меандра на показания лазерного гироскопа

Изобретение относится к приборостроению и измерительной технике. Сущность изобретения заключается в том, что способ компенсации влияния медленного меандра на показания лазерного гироскопа содержит этапы, на которых предварительно проводят климатические испытания лазерного гироскопа и определяют...
Тип: Изобретение
Номер охранного документа: 0002685795
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3d27

Оптический приемник

Изобретение относится к области приема оптического излучения и касается оптического приемника. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с двумя...
Тип: Изобретение
Номер охранного документа: 0002686386
Дата охранного документа: 25.04.2019
27.04.2019
№219.017.3d72

Приемник лазерного излучения

Изобретение относится к области приема оптического излучения и касается приемника лазерного излучения. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с...
Тип: Изобретение
Номер охранного документа: 0002686406
Дата охранного документа: 25.04.2019
Showing 11-20 of 97 items.
27.06.2015
№216.013.58f6

Импульсный твердотельный лазер

Изобретение относится к лазерной технике. Импульсный твердотельный лазер содержит активный элемент, осветитель, включающий лампу накачки и отражатель, а также резонатор, включающий призму-крышу и плоское зеркало, установленные с противоположных торцов активного элемента таким образом, что ребро...
Тип: Изобретение
Номер охранного документа: 0002554315
Дата охранного документа: 27.06.2015
10.08.2015
№216.013.6a05

Способ определения высоты летательного аппарата

Изобретение относится к способу определения высоты летательного аппарата. При реализации способа осуществляется N-кратное зондирование подстилающей поверхности импульсами лазерного излучения и его некогерентное накопление принятого отражённого от объекта сигнала. По результатам статистической...
Тип: Изобретение
Номер охранного документа: 0002558694
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f19

Лазерный дальномер

Изобретение относится к измерительной технике и может быть использовано в любой области, где необходимо определить скорость движущегося объекта и расстояние до него, в частности для автоматического определения высоты и вертикальной скорости летательного аппарата. Лазерный дальномер содержит...
Тип: Изобретение
Номер охранного документа: 0002560011
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.775e

Устройство для определения дальности и скорости

Изобретение относится к измерительной технике определения высоты и вертикальной скорости летательного аппарата. Устройство обеспечивает возможность работы в двух режимах. Сигнал от источника направляется на объект, и приемник излучения фиксирует отраженный от объекта сигнал. От приемника...
Тип: Изобретение
Номер охранного документа: 0002562147
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.775f

Способ определения дальности и скорости удаленного объекта

Изобретение относится к способу определения высоты и вертикальной скорости летательного аппарата. Способ включает в себя многократное зондирование объекта импульсами лазерного излучения, прием и регистрацию отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты,...
Тип: Изобретение
Номер охранного документа: 0002562148
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7761

Устройство для измерения высоты и вертикальной скорости летательного аппарата

Изобретение относится к устройству для автоматического определения высоты и вертикальной скорости летательного аппарата. Устройство содержит лазерный передатчик, приемник отраженного объектом излучения, последовательно включенные многоканальный накопитель, связанный с тактовым генератором, и...
Тип: Изобретение
Номер охранного документа: 0002562150
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7d0a

Способ измерения высоты и вертикальной скорости ла

Способ измерения высоты и вертикальной скорости летательного аппарата (ЛА) заключается в многократном зондировании объекта импульсами лазерного излучения, приеме и регистрации отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты. При этом в рабочем режиме полета...
Тип: Изобретение
Номер охранного документа: 0002563607
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d0b

Способ оценки дальности и скорости удаленного объекта

Способ определения дальности и скорости удаленного объекта заключается в многократном зондировании объекта импульсами лазерного излучения, приеме и регистрации отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты и статистической обработке зарегистрированных...
Тип: Изобретение
Номер охранного документа: 0002563608
Дата охранного документа: 20.09.2015
10.04.2016
№216.015.2c63

Лазер с модулированной добротностью резонатора

Изобретение относится к лазерной технике. Лазер с модулированной добротностью резонатора включает активный элемент и резонатор, состоящий из двух зеркал, одно из которых закреплено неподвижно, а второе снабжено приводом и имеет возможность вращения таким образом, чтобы в рабочем положении...
Тип: Изобретение
Номер охранного документа: 0002579548
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c75

Лазер с оптико-механическим затвором

Изобретение относится к лазерной технике. Лазер с оптико-механическим затвором включает корпус, активный элемент и резонатор, состоящий из двух зеркал, одно из которых закреплено неподвижно относительно корпуса, а второе снабжено приводом и имеет возможность вращения таким образом, чтобы в...
Тип: Изобретение
Номер охранного документа: 0002579642
Дата охранного документа: 10.04.2016
+ добавить свой РИД