×
29.06.2019
219.017.a0bf

Результат интеллектуальной деятельности: СПОСОБ ЛАЗЕРНО-ИСКРОВОГО СПЕКТРАЛЬНОГО АНАЛИЗА ДЛЯ ОПРЕДЕЛЕНИЯ ЭЛЕМЕНТНОГО СОСТАВА ОБРАЗЦА ВЕЩЕСТВА

Вид РИД

Изобретение

Аннотация: Изобретение относиться к способам спектрального анализа. При реализации способа образец помещают на платформу подвижного трехкоординатного микропозиционера, определяют на поверхности образца точку для формирования плазмы, генерируют импульсы фемтосекундным комплексом, фокусируют лазерное излучение на исследуемый образец. При этом два одинаковых по мощности луча формируют посредством светоделителя, а плазму формируют путем фокусировки этих лучей, направляемых под переменными углами, посредством системы зеркало-линза на поверхность образца с временной задержкой относительно друг друга посредством оптической схемы задержки и регистрируют эмиссионный спектр образца. Местоположение точки формирования плазмы на поверхности образца определяют либо до спектрального анализа, либо во время спектрального анализа образца. Технический результат - возможность анализа в глубине образца. 3 з.п. ф-лы, 3 ил.

Изобретение относиться к методам анализа и регистрации, может быть использовано в области лазерной спектроскопии и аналитической химии для дистанционного определения макро- и микросостава твердых, жидких и газообразных материалов, в частности для проведения экологического мониторинга состояния атмосферы и гидросферы.

Лазерно-искровая спектроскопия (ЛИС) использует спектры плазмы лазерного пробоя для анализа твердых образцов, жидкостей и газовых сред. Пробой формируется при фокусировке импульсного лазерного излучения на поверхности образца, это приводит к достаточно сильному локальному нагреву, что вызывает испарение вещества. При дальнейшем росте температуры резко усиливается процессы диссоциации и ионизации, и линейчатый спектра плазмы формируют молекулы, ионы и атомы. С помощью монохроматора и специального фотоэлектрического детектора регистрируется спектр излучения низкотемпературной плазмы, состоящий из отдельных спектральных линий, присущих элементам, входящим в состав исследуемого образца.

Использование фемтосекундных лазерных импульсов предельно упрощает процесс мгновенного испарения и ионизации вещества без влияния теплопередачи по объему образца и экранирования лазерного излучения плазмой факела. Эти факторы значительно улучшают воспроизводимость анализа.

Способ фемтосекундного лазерно-искрового анализа позволяет анализировать любые типы образцов, с отличным пространственным разрешением по поверхности и глубине, причем манипуляцию можно осуществлять бесконтактно, не касаясь самих образцов. Также анализируемый материал не требует дополнительной подготовки перед началом исследования, что в свою очередь позволяет работать в режиме реального времени.

Фемтосекундный лазерно-искровой спектральный анализ по сравнению со спектральным анализом, использующим микросекундные и наносекундные лазерные импульсы, обладает рядом преимуществ, которые связаны с физическими особенностями распространения ультракоротких лазерных импульсов в различных средах. Это обстоятельство позволяет повысить контраст эмиссионных линий и повысить, таким образом, чувствительность метода по обнаружению элементов.

Известен способ регистрации двухимпульсного пробоя при двухугловой накачке короткими лазерными импульсами (патент CN №1945342, G01N 21/17, опубл. 11.04.2007 г.), в котором используется лазер с фемтосекундной длительностью импульса. Лазерное излучение, создающее пробой на поверхности твердого образца, проходит по оптическому пути, состоящему из светоделителя, двух линий задержки, поляризатора, поворотных зеркал и фокусирующих линз. Энергия и интенсивность во взаимодействующих импульсах различна. Результатом является получение физических параметров исследуемого объекта, а именно диэлектрическая постоянная, коэффициент отражения, коэффициент пропускания.

К недостаткам данного способа следует отнести наличие различной энергии в импульсах, которая не намного увеличивает чувствительность метода, невозможность углового контроля при столкновении импульсов. Помимо вышеуказанного недостатками способа являются трудоемкость в построении оптической схемы, приводящей к снижению мобильности способа и ограниченность в результатах измерений без возможности регистрации эмиссионных спектров.

Известен способ лазерно-искрового спектрального анализа (патент RU №2300094, G01N 21/36, опубл. 25.05.2007 г.) осуществляемый импульсным наносекундным лазером. Форма импульса представляет собой 2-8 следующих друг за другом гигантских импульсов с интервалом 10-30 мкс на фоне импульса свободной генерации, который с помощью системы фокусировки направляется на исследуемое вещество, образуя лазерный факел, излучение которого регистрируют и затем по полученным эмиссионным спектрам определяют элементный состав вещества.

Недостатком данного способа является физическая особенность наносекундных импульсов, которые не позволяют работать с объектами малого объема и при большой плотности мощность выбросы испаренного вещества загрязняют фокусирующую оптику. Также контраст линий относительно фона ниже, чем при возбуждении фемтосекундными импульсами, что приводит к меньшей чувствительности метода.

Наиболее близким к заявляемому изобретению является способ компонентного анализа (патент US №6407811, G01J 3/30, опубл. 18.06.2002 г.), позволяющий использовать способы лазерно-искровой спектроскопии и лазерно-искровой флуоресценции (ЛИФ) для обнаружения следовых компонент в жидкостях, атмосфере и на поверхности твердых тел. Процесс плазменного пробоя происходит по схеме взаимодействия затравочного наносекундного лазерного импульса, создающего первоначальную плазму на поверхности исследуемых образцов и довозбуждающего импульса перенастраиваемого лазера с задержкой относительно первого импульса, задаваемой секвенсором. Длительность и интенсивность варьируются в зависимости от состава материала. Длина волны перестраиваемого лазера совпадает с длиной волны наиболее интенсивной линии исследуемого элемента.

Недостатком данного прототипа является невысокая чувствительность при наносекундном пробое, который сопровождается высокой интенсивностью фона, а при больших плотностях мощности приводит к загрязнению фокусирующей оптики. Также к недостаткам известного способа следует отнести и то, что способ является сложным и трудоемким, т.к. необходимо предварительно расшифровать спектр и выбрать наиболее интенсивную линии и только затем перестраиваемый лазер настраивается на длину волны интенсивной линии элемента, и проводится процедура спектрального анализа. Также невозможна работа с объектами размером менее 1 мм, так как в процессе плазмообразования они полностью разрушаются. К другим недостаткам, не касающимся физических параметров способа, можно отнести отсутствие мобильности и оперативности, дороговизна, громоздкость схемы, использующей несколько лазеров для создания подобного взаимодействия.

Задача изобретения состоит в разработке лазерно-искрового спектрального анализа для определения элементного состава, как на поверхности, так и в глубине (до 1 мм) исследуемых образцов, кроме того, проводить спектральный анализ сложных по форме и различных по структуре и составу образцов, а также образцов размером менее 1 мм с использованием фемтосекундного излучения.

Поставленная задача решается тем, что в способе лазерно-искрового спектрального анализа для определения элементного состава образца вещества, включающем генерацию импульсов, фокусировку лазерного излучения на исследуемый образец, формирование плазмы, как минимум одним лазерным импульсом, и регистрацию эмиссионного спектра образца, образец помещают на платформу подвижного трехкоординатного микропозиционера, определяют на поверхности образца точку формирования плазмы, генерацию импульсов осуществляют фемтосекундным комплексом, при этом два одинаковых по мощности луча формируют посредством светоделителя, а плазму формируют путем фокусировки этих лучей, направляемых под переменными углами посредством системы зеркало-линза на поверхность образца с временной задержкой относительно друг друга посредством оптической схемы задержки.

Кроме того, местоположение точки формирования плазмы на поверхности образца определяют либо до спектрального анализа, либо во время спектрального анализа образца.

Временная задержка между лучами относительно друг друга составляет от 100 пс до 1 нс, а плазму формируют путем фокусировки лучей, направляемых под переменными углами от 45 до 90 градусов.

Одним из отличительных признаков заявляемого изобретения является фемтосекундный двухимпульсный способ возбуждения, который позволяет повысить чувствительность и оперативность. При данном способе анализа повышается контраст эмиссионных линий элементов, присутствующих в исследуемом материале, за счет короткой длительности импульса и физических особенностей, возникающих в среде при последовательном воздействии двух импульсов равной энергии на вещество. Низкая интенсивность фона относительно интенсивностей линий атомов и ионов позволяет обнаружить микроконцентрации элементов, входящих в состав образца.

Возбуждение плазмы двухимпульсным фемтосекунным лазерным излучением более эффективно, по сравнению с одноимпульсным из-за более высокого соотношения сигнала к сплошному фону, что приводит к более высокой чувствительности метода ЛИС. Также анализируемый материал не требует дополнительной подготовки перед началом исследования.

Заявляемый способ позволяет повысить точность, чувствительность, воспроизводимость и оперативность анализа при взаимодействии фемтосекундного двухимпульсного лазерного излучения с исследуемым образцом размером менее 1 мм как на поверхности, так и в глубине (до 1 мм), что является техническим результатом заявляемого решения.

Совокупность существенных признаков заявленного способа лазерно-искрового спектрального анализа для определения элементного состава образца вещества имеет причинно-следственную связь с достигнутым техническим результатом, т.е. благодаря данной совокупности существенных признаков способа стало возможным решить поставленную техническую задачу.

На основании изложенного можно заключить, что заявленный способ лазерно-искрового спектрального анализа для определения элементного состава образца вещества является новым, обладает изобретательским уровнем, т.е. он явным образом не следуют из уровня техники и пригоден для промышленного применения.

Изобретение поясняется чертежами, где на фиг.1 приведена экспериментальная схема, позволяющая осуществить способ фемтосекундного лазерно-искрового спектрального анализа для определения элементного состава образца вещества, на фиг.2 - сравнение интенсивностей эмиссионных линий, зарегистрированных при одноимпульсном режиме возбуждения в водных растворах MgSO4 и NaCl, на фиг.3 - сравнение интенсивностей эмиссионных линий, зарегистрированных при двухимпульсном режиме возбуждения в водных растворах MgSO4 и NaCl.

Принятые обозначения: 1 - лазер накачки Millennia Pro (Diode - Pumped, CW Visible Laser Systems) - рабочая длина волны 532 нм и генератор Tsunami (Mode - locked Ti:sapphire Laser) - рабочая длина волны 780-850 нм, длительность импульса <30 фс; 2 - лазер накачки Empower (Intracavity - Doubled, Diode - Pumped Nd:YLF Laser Systems) - рабочая длина волны 527 нм, длительность импульса - 100 нс и усилитель Spitfire PRO (Ti:Sapphire Regenerative Amplifier Systems) - рабочая длина волны 780-820 нм, длительность импульса - 40-80 фс, энергия в импульсе 1.1 мДж, частота 1 кГц; 3 - светоделитель (GVD 50/50), 4 - оптическая линия задержки, состоящая из поворотных зеркал 5 и транслятора-микропозиционера 6; 7 и 8 - подвижные поворотные зеркала, 9 и 10 - линзы с фокусным расстоянием 100 мм; 11 - исследуемый образец вещества; 12 - линза с фокусным расстоянием 100 мм; 13 - система регистрации спектров (ICCD камера PicoStar HR (La Vision, GMBH) и полихроматор SpectraPro 25001; 14 - компьютер, через который осуществляется управление всем комплексом; 15 - контроллер трехкоординатного позиционера BSC103.

Способ лазерно-искрового спектрального анализа для определения элементного состава образца вещества осуществлен в ходе научно-исследовательских работ по изучению оптического пробоя на поверхности водных растворов MgSO4 и NaCl при возбуждении двумя фемтосекундными лазерными импульсами.

Исследуемый образец вещества 11 помещают на платформу трехкоординатного микропозиционера 6, управляемого контроллером 15. Фемтосекундный лазерный комплекс, состоящий из лазера накачки 1 с генератором и лазера накачки 2 с усилителем, генерирует ультракороткие импульсы длительностью порядка 45 фс. Выходное излучение, распространяясь в воздухе, попадет на светоделитель 3 и делится на два пучка с одинаковой энергией. Первый луч направляется на оптическую линию задержки 4, состоящую из системы поворотных зеркал 5, установленных на платформу подвижного трехкоординатного микропозиционера 6, позволяющего в режиме реального времени менять длину оптического пути. Второй луч попадает на регулируемое поворотное зеркало 8, которое направляет лазерное излучение на фокусирующую линзу 9 под необходимым углом, то же самое происходит с распространением первого лазерного пучка, выходящего из оптической линии задержки, он направляется на поворотное зеркало 7, а затем фокусируется с помощью линзы 10. Угол, под которым направляются лазерные лучи на поверхность образца 11, может изменяться за счет регулировки положения линз и поворотных зеркал, которые позволяют сталкивать фокусированные лучи не только перпендикулярно, но и под любыми другими углами. Второй лазерный импульс формирует плазму на поверхности образца 11 материала, затем с временной задержкой, которая задается линией оптической задержки 4, первый луч довозбуждает ионизированную среду и усиливает процесс распада и ионизации вещества. Рассеянное излучение собирается линзой 12 и направляется на щель камеры 13 с усилителем яркости, где и происходит регистрация спектра. Также возможно осуществлять временное накопление, необходимое в зависимости от концентрации тех или иных элементов. Полученные данные обрабатываются компьютером 14, оснащенным необходимым программным обеспечением.

Сравнение интенсивностей эмиссионных линий, зарегистрированных при одноимпульсном и двухимпульсном режимах возбуждения в водных растворах MgSO4 и NaCl, показано на фиг.2 и 3. При двухимпульсном ЛИС наблюдалось увеличение отношения сигнала к фону (SBR) для линии Mg II (279.5 нм), которое составляло до 100%, а для эмиссионной линии Na I (588.9 нм) до 15% при временной задержке между первым и вторым импульсом 500 пс. При увеличении задержки регистрировалось уменьшение соотношения SBR.

Данный способ лазерно-искрового спектрального анализа для определения элементного состава образца вещества позволяет исследовать химический состав материала не только по поверхности исследуемых образцов, но и по их глубине. Изобретение может быть использовано для дистанционного определения макро- и микросостава твердых, жидких, сжиженных и газообразных материалов.

Источник поступления информации: Роспатент

Showing 1-6 of 6 items.
20.06.2013
№216.012.4e51

Способ создания светоизлучающего элемента

Изобретение относится к способам изготовления светоизлучающего элемента с длиной волны из ближней инфракрасной области спектра. Диодная светоизлучающая структура формируется на монокристаллическом кремнии с ориентацией поверхности (111) или (100). Активная зона светоизлучающего элемента...
Тип: Изобретение
Номер охранного документа: 0002485631
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e52

Способ создания светоизлучающего элемента

Изобретение относится к способам изготовления светоизлучающего элемента с длиной волны из ближней инфракрасной области спектра. Диодная светоизлучающая структура формируется на монокристаллическом кремнии с ориентацией поверхности (111) или (100). Активная зона светоизлучающего элемента...
Тип: Изобретение
Номер охранного документа: 0002485632
Дата охранного документа: 20.06.2013
27.07.2013
№216.012.5b00

Способ создания светоизлучающего элемента

Изобретение относится к способам изготовления светоизлучающего элемента с длиной волны из ближней инфракрасной области спектра. Диодная светоизлучающая структура формируется на монокристаллическом кремнии с ориентацией поверхности (111) или (100). Активная зона светоизлучающего элемента...
Тип: Изобретение
Номер охранного документа: 0002488917
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5b01

Способ создания светоизлучающего элемента

Изобретение относится к способам изготовления светоизлучающего элемента с длиной волны из ближней инфракрасной области спектра. Диодная светоизлучающая структура формируется на монокристаллическом кремнии с ориентацией поверхности (111) или (100). Активная зона светоизлучающего элемента...
Тип: Изобретение
Номер охранного документа: 0002488918
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5b02

Способ создания светоизлучающего элемента

Изобретение относится к способам изготовления светоизлучающего элемента с длиной волны из ближней инфракрасной области спектра. Диодная светоизлучающая структура формируется на монокристаллическом кремнии с ориентацией поверхности (111) или (100). Активная зона светоизлучающего элемента...
Тип: Изобретение
Номер охранного документа: 0002488919
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5b03

Способ создания светоизлучающего элемента

Изобретение относится к способам изготовления светоизлучающего элемента с длиной волны из ближней инфракрасной области спектра. Диодная светоизлучающая структура формируется на монокристаллическом кремнии с ориентацией поверхности (111) или (100). Активная зона светоизлучающего элемента...
Тип: Изобретение
Номер охранного документа: 0002488920
Дата охранного документа: 27.07.2013
Showing 11-20 of 27 items.
04.04.2018
№218.016.358f

Способ подводной связи

Изобретение относится к технике связи и может использоваться в системах подводной связи. Технический результат состоит в одновременной реализации высокоскоростного стабилизированного оптического канала связи и акустического канала с высокой дальностью действия. Для этого оптоакустический модем...
Тип: Изобретение
Номер охранного документа: 0002645893
Дата охранного документа: 01.03.2018
06.07.2018
№218.016.6cee

Светильник

Изобретение относится к осветительным устройствам, обеспечивающим освещение растений светом, максимально соответствующим спектру солнечного света за счет использования светоизлучающих диодов. При освещении используются светодиоды, спектры излучения которых находятся в диапазоне 410–660 нм....
Тип: Изобретение
Номер охранного документа: 0002660244
Дата охранного документа: 05.07.2018
06.07.2018
№218.016.6d33

Светильник

Изобретение относится к осветительным устройствам, обеспечивающим освещение растений светом, максимально соответствующим спектру солнечного света за счет использования светоизлучающих диодов. Светильник содержит набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне...
Тип: Изобретение
Номер охранного документа: 0002660245
Дата охранного документа: 05.07.2018
14.07.2018
№218.016.711d

Светильник

Светильник, содержащий набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне порядка 400-800 нм, снабженных драйверами, отличается тем, что спектры, составляющие набор отобранных светодиодов, перекрывают друг друга в разных спектральных участках диапазона,...
Тип: Изобретение
Номер охранного документа: 0002661329
Дата охранного документа: 13.07.2018
09.09.2018
№218.016.852a

Светильник

Изобретение относится к осветительным устройствам, обеспечивающим освещение светом, максимально соответствующим спектру солнечного света, за счет использования светоизлучающих диодов. В светильнике, содержащем набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне...
Тип: Изобретение
Номер охранного документа: 0002666454
Дата охранного документа: 07.09.2018
04.10.2018
№218.016.8e2d

Светильник

Изобретение относится к осветительным устройствам, обеспечивающим освещение светом, максимально соответствующим спектру солнечного света за счет использования светоизлучающих диодов. Светильник содержит набор светодиодов с разными спектрами излучения, моделирующими фотосинтетически активную...
Тип: Изобретение
Номер охранного документа: 0002668841
Дата охранного документа: 03.10.2018
19.12.2018
№218.016.a870

Светильник

Изобретение относится к области растениеводства, в частности к осветительным устройствам. Светильник содержит набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне порядка 400-800 нм, снабженных драйверами. При этом из известных светодиодов с разными спектрами отбирают...
Тип: Изобретение
Номер охранного документа: 0002675320
Дата охранного документа: 18.12.2018
06.06.2019
№219.017.7411

Светильник

Изобретение относится к осветительным устройствам, обеспечивающим освещение светом, имитирующим спектр солнечного света за счет использования светоизлучающих диодов. В устройстве использованы светодиоды, пики спектров излучения которых находятся в диапазоне частот 507-650 нм. Спектры...
Тип: Изобретение
Номер охранного документа: 0002690647
Дата охранного документа: 04.06.2019
27.06.2019
№219.017.98e9

Светильник

Изобретение относится к осветительным устройствам, обеспечивающим освещение светом, имитирующим спектр солнечного света за счет использования светоизлучающих диодов. Светильник содержит набор известных светодиодов с разными спектрами излучения, лежащими в диапазоне частот порядка 400-800 нм,...
Тип: Изобретение
Номер охранного документа: 0002692648
Дата охранного документа: 25.06.2019
10.07.2019
№219.017.af05

Способ регистрации сигналов измерительных преобразователей на основе брэгговских решеток, записанных в едином волоконном световоде

Изобретение относится к области мониторинга деформации и термических процессов с использованием контрольно-измерительных систем на основе волоконных брэгговских решеток. Оптический рефлектометр формирует зондирующий импульс, который через циркулятор попадает на первую опрашиваемую брэгговскую...
Тип: Изобретение
Номер охранного документа: 0002413259
Дата охранного документа: 27.02.2011
+ добавить свой РИД