×
29.06.2019
219.017.9d8b

Результат интеллектуальной деятельности: ПРИЗМАТИЧЕСКИЙ ДЕТЕКТОР

Вид РИД

Изобретение

Аннотация: Изобретение относится к области регистрации ионизирующих излучений, к области обнаружения источника ионизирующего излучения на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д. Технический результат - экспресс-определение координаты заряженной частицы. В призматическом детекторе ионизирующего излучения сцинтиллирующие элементы выполнены в виде стержней с сечением в виде равностороннего треугольника, стержни установлены в ряд параллельно и вплотную друг к другу, между их вершинами расположен такой же ряд стержней треугольного сечения, а параллельно с зеркальным отображением расположены еще два ряда стержней. 1 ил.

Изобретение относится к области регистрации ионизирующих излучений, к области обнаружения источника ионизирующего излучения на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д.

Известен детектор нейтронов, содержащий волоконный модуль, собранный из слоев полимерных сцинтиллирующих оптических волокон, уложенных попеременно в двух взаимно перпендикулярных направлениях, и электронно-оптическую систему регистрации оптического излучения, выходящего из торцов этих волокон, электронно-оптическая система содержит фотоприемники. Патент США №4942302, МПК G01T 3/06, 1990 г.

Указанное устройство имеет низкую эффективность, т.к. не обеспечивает двухкоординатную регистрацию протонов отдачи с пробегом меньше поперечного сечения одиночного волокна, а также имеет ограничения по количеству волокон в слое и числу слоев, накладываемые числом используемых фотоприемников. Устройство имеет ограниченное пространственное разрешение, определяемое сечением волокна.

Известен детектор нейтронов, выполненный в виде блока из слоев полимерных сцинтиллирующих волокон, уложенных попеременно в двух взаимно перпендикулярных направлениях, содержащий электронно-оптическую систему регистрации оптического излучения, выходящего из торцов этих волокон.

Диаметр волокон равен половине длины свободного пробега протона отдачи в материале волокна. Патент Российской Федерации №2119178, МПК G01T 3/06, 1998 г.

Детектор нейтронов сложен для реализации, имеет низкую эффективность, низкое пространственное разрешение, предназначен для регистрации быстрых нейтронов, не позволяет идентифицировать излучение и определять направление излучения. Размеры элементов ограничены и представляют собой волокна с поперечным размером не более 1 мм.

Известен многослойный детектор, выполненный в виде блока из слоев полимерных сцинтиллирующих оптических элементов, изготовленных из набора материалов, плотность которых монотонно возрастает от первого ряда к последнему, и фотоприемники. Рекламный листок Института физики твердого тела Российской Академии Наук, Черноголовка, Московской области. 2005 г. «Антитеррористические просвечивающие установки для экспрессного выявления взрывчатых веществ».

Недостатком детектора и установки в целом является необходимость получения изображения скрытых предметов при просвечивании рентгеновским излучением предметов в явочном порядке. Детектор предназначен для регистрации лишь рентгеновского излучения.

Известен координатно-чувствительный детектор, содержащий блок из водородосодержащих сцинтиллирующих элементов, уложенных рядами попеременно в двух взаимно перпендикулярных направлениях, и фотоприемники. Сцинтиллирующие элементы выполнены в виде стержней с прямоугольным сечением, на одной или двух гранях каждого стержня выполнены пазы, в пазах размещены сцинтиллирующие волокна, на торцах волокон расположены фотодиоды, фотодиоды обеспечены выводами для соединения со схемами регистрации вспышек. Патент Российской Федерации на полезную модель №54440, МПК G01T 3/06, 2006 г. Прототип.

Прототип обладает низкой технологичностью изготовления детектора (обработка каждого отдельного стержня, выполнение в нем канавок и т.п.), а также низким пространственным разрешением, определяемым сечением стержня

Данное изобретение устраняет недостатки и аналогов и прототипа.

Задачей изобретения является разработка детектора ионизирующих излучений для визуализации пространственного распределения плотности потока ионизирующих излучений с улучшенными свойствами: повышенной эффективностью и пространственным разрешением, стабильностью, механической прочностью, сроком службы. Разработка детекторов практически любой площади, не требующих высоковольтного питания и специальных помещений.

Техническим результатом изобретения является экспресс-определение координаты заряженной частицы.

Технический результат достигается тем, что в призматическом детекторе ионизирующего излучения, содержащем сцинтиллирующие элементы, выполненные в виде стержней, и фотодиоды, обеспеченные выводами для соединения со схемами регистрации сцинтилляционных вспышек, сцинтиллирующие элементы выполнены в виде стержней с сечением в виде равностороннего треугольника, фотодиоды расположены на треугольных торцах стержней, стержни установлены в ряд параллельно и вплотную друг к другу, между их вершинами расположен такой же ряд стержней треугольного сечения, а параллельно с зеркальным отображением расположены еще два ряда стержней, плоскости смежного дополнительного ряда расположены на плоскостях стержней предыдущего ряда.

Сущность изобретения поясняется на чертеже, где: 1, 2, 3, 4, - смежные стержни треугольного сечения, а кругами обозначены фотодиоды.

Детектор работает следующим образом. Для вычисления координаты Х используют значения сигналов, зарегистрированных в стержнях, лежащих на траектории движения ионизирующей частицы (см. чертеж) во временном интервале (временном окне), определяемом свойствами сцинтиллятора, характеристиками электроники и энергией частиц. Для пластмассового сцинтиллятора, фотодиодного фотоприемника и релятивистской частицы временное окно может составлять от нескольких единиц до нескольких десятков наносекунд.

На чертеже приведен случай, когда ионизирующая частица вызывает сигналы в стержнях 1, 2, 3, 4. Эти сигналы пропорциональны отрезкам АВ, ВС, CD и DE: N1=k·AB, N2=k·BC, N3=k·CD и N4=k·DE.

Отрезки АВ, ВС, CD, DE являются проекциями участков траектории частицы в соответствующих смежных стержнях детектора на торцевую поверхность детектора.

Коэффициент пропорциональности k определяется углом между траекторией частицы и торцевой поверхностью детектора и не зависит от энергии частицы и пути, проходимого в детекторе. Это условие справедливо, если ионизационные потери малы по сравнению с энергией частицы. Величины N1, N2, N3, N4 измеряются количеством фотоэлектронов, рожденных в фотоприемном устройстве (фотодиоде) каждого стержня.

Выберем прямоугольную систему координат X, Y, Z с началом в точке с. Рассмотрим проекцию траектории частицы на плоскость XZ. Для определения координаты х точки С необходимо определить координаты х и z точек В и D (xB, zB xD, zD), являющихся точками пересечения траектории частицы смежных сторон треугольников abc и acd, а также треугольников cde и cef.

Уравнение траектории записывается как:

(x-xВ)/(xВ-xD)=(z-zB)/(zB-zD).

В системе координат для плоскости XY z=0, следовательно

xC=zB/(zD-zB)·(xB-xB)+xB.

Рассмотрим определение координат xB, zB. Выберем систему координат, как это показано на чертеже. Координата Х определяется из решения уравнения прямой, проходящей через точки В и D, которая записывается следующим образом:

где xB, xD, zB, zD - X и Z координаты точек В и D.

Из подобия треугольников BAA', BCC', DCC'' и DEE'' следует, что:

ZB=N2/(N1+N2)·H,

ZD=N3/(N3+N4)·H.

Подставляя выражения (2) в уравнение (1), с учетом того, что в выбранной системе координат z=0, получаем:

Максимальная ошибка в определении х координаты точки С определяется выражением:

Наихудший случай для определения ZB, XB, ZD, XD, когда N1=N2=N3=N4=N/2 и траектория частицы перпендикулярна плоскости XY. При этом N - количество фотоэлектронов, рожденных в фотоприемном устройстве при прохождении ионизирующей частицей в сцинтилляционной пластине отрезка длиной G.

Выражение (4) можно переписать как:

где I - сигнал, возникающий при прохождении частицей в сцинтилляторе отрезка единичной длины.

Приведем численные оценки стандартных отклонений для стержней из полистирола с углом при вершине 90°, Н=1 см, G/2=1 см и мюонов космического происхождения, с характерной величиной удельных потерь энергии 2 МэВ/см. Предположим, что фотоприемными устройствами являются фотодиоды, занимающие половину площади торцевой поверхности. Мюон в стержнях 1 и 2 проходит путь в 1 см. При этом выделяется 2 МэВ энергии и рождается в общей сложности 20000 фотонов. Для стержней длиной >1 м фотоны, падающие на поверхность стержня вне угла полного внутреннего отражения (УПВО), претерпевают, по меньшей мере, около 100 соударений с его стенками. При коэффициенте отражения при однократном соударении, равном 0.95, доля фотонов, дошедших до торца стержня, составит 0.95100=6×10-3. Следовательно, фотонами вне УПВО можно пренебречь. УПВО для границы между материалами с оптическими плотностями n1 (воздух) и n2 (материал стержня) определяется выражением: УПВО=arcsin(n1/n2).

Доля фотонов, движущихся к каждому из торцов элемента внутри УПВО, определяется формулой (1-n1/n2)/2. При n2=1,62 (полистирол) и n1=1 (воздух) эта доля составляет 0,2 от общего количества рожденных фотонов. При этом около 4000 фотонов распространяются вдоль оси стержня внутри УПВО к каждому из торцов. Коэффициент отражения при углах меньше УПВО считаем равным единице. Средний путь фотона в полистироле при длине элемента 2 м составляет около 2,5 м. При типичном значении длины ослабления в полистирольном сцинтилляторе, равном 3 м, поток фотонов на этом пути ослабляется в 2,2 раза. В конечном итоге до каждого из двух торцов стержня дойдет около 1800 фотонов. При условии что фотодиод занимает около половины площади торца, на него попадает около 900 фотонов. При регистрации фотонов фотодиодом с квантовой эффективностью 0,3 (в лучшем случае 0,8) в фотодиоде образуется N=I=270 фотоэлектронов. Тогда с учетом выражения (4) σх=0,32 мм. Для фотодиодов с квантовой эффективностью 0,8 стандартное отклонение становится равными σх=0,19 мм, а при регистрации фотонов на обоих концах стержней и суммировании сигналов на противоположных концах достигает значения σх=0,14 мм.

Призматический детектор ионизирующего излучения, содержащий сцинтиллирующие элементы, выполненные в виде стержней, и фотодиоды, обеспеченные выводами для соединения со схемами регистрации сцинтилляционных вспышек, отличающийся тем, что сцинтиллирующие элементы выполнены в виде стержней с сечением в виде равностороннего треугольника, фотодиоды расположены на треугольных торцах стержней, стержни установлены в ряд параллельно и вплотную друг к другу, между их вершинами расположен такой же ряд стержней треугольного сечения, а параллельно с зеркальным отображением расположены еще два ряда стержней, плоскости смежного дополнительного ряда расположены на плоскостях стержней предыдущего ряда.
Источник поступления информации: Роспатент

Showing 21-25 of 25 items.
09.06.2019
№219.017.7c14

Газонаполненная нейтронная трубка

Изобретение относится к газонаполненным нейтронным трубкам для каротажных работ на нефтяных, газовых и рудных месторождениях. Газонаполненная нейтронная трубка содержит корпус, в котором расположены иммерсионная ионно-оптическая система, мишень, магнитогазоразрядный ионный источник с дисковым...
Тип: Изобретение
Номер охранного документа: 0002366030
Дата охранного документа: 27.08.2009
09.06.2019
№219.017.7c17

Способ формирования нейтронного потока газонаполненной нейтронной трубки

Изобретение относится к способам изготовления газонаполненных нейтронных трубок и формированию нейтронного потока. Способ формирования нейтронного потока газонаполненной нейтронной трубки с ионным источником заключается в том, что создают магнитное поле дисковым и кольцевым магнитами, у...
Тип: Изобретение
Номер охранного документа: 0002366013
Дата охранного документа: 27.08.2009
09.06.2019
№219.017.7d85

Нейтронный датчик

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок. Сущность изобретения заключается в том, что нейтронный датчик содержит источник заряженных частиц, возникающих под действием...
Тип: Изобретение
Номер охранного документа: 0002470329
Дата охранного документа: 20.12.2012
29.06.2019
№219.017.9d4e

Двухкоординатный призматический детектор

Изобретение относится к области регистрации ионизирующих излучений, к области обнаружения источника ионизирующего излучения на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д. Технический результат - повышение эффективности регистрации, расширение...
Тип: Изобретение
Номер охранного документа: 0002354995
Дата охранного документа: 10.05.2009
29.06.2019
№219.017.9f9a

Система неразрушающего контроля изделий

Использование: для неразрушающего контроля изделий. Сущность: заключается в том, что система неразрушающего контроля изделий содержит точечный источник излучения, узел возвратно-поступательного перемещении объекта контроля, матрицу детекторов и блок управления и обработки информации, при этом...
Тип: Изобретение
Номер охранного документа: 0002470287
Дата охранного документа: 20.12.2012
Showing 31-40 of 53 items.
01.03.2019
№219.016.cc0d

Рентгеновский анализатор

Изобретение относится к регистрации рентгеновского и гамма-излучений, к определению их энергетического спектра, к медицинской рентгеновской томографии, к неразрушающему контролю материалов и изделий радиографическим и томографическим методами, к обнаружению источников ионизирующих излучений, к...
Тип: Изобретение
Номер охранного документа: 0002388015
Дата охранного документа: 27.04.2010
01.03.2019
№219.016.ce1b

Газовый детектор

Изобретение относится к мониторингу, радиационному контролю и может быть использовано в ядерной физике, атомной энергетике, в системах контроля и обеспечения безопасности энергетических ядерных реакторов. Технический результат - уменьшение ослабления излучения люминесцирующей газовой среды при...
Тип: Изобретение
Номер охранного документа: 0002421756
Дата охранного документа: 20.06.2011
11.03.2019
№219.016.d85f

Мишенный блок нейтронного генератора

Изобретение относится к мишеням для ядерных реакций для получения интенсивных потоков быстрых монохроматических нейтронов, в частности к нейтронным генераторам. В нейтронном генераторе, в мишенной камере дополнительно на подложке расположена дейтериевая мишень с системой вращения и охлаждения....
Тип: Изобретение
Номер охранного документа: 0002393557
Дата охранного документа: 27.06.2010
11.03.2019
№219.016.d930

Мишенный блок нейтронного генератора

Изобретение относится к получению нейтронов, к мишеням для ядерных реакций, а именно к получению интенсивных потоков быстрых монохроматических нейтронов, в частности к нейтронным генераторам. Технический результат - упрощение конструкции, повышение интенсивности пучка нейтронов. На подложке...
Тип: Изобретение
Номер охранного документа: 0002388014
Дата охранного документа: 27.04.2010
10.04.2019
№219.017.0448

Газоразрядный источник ионов

Изобретение относится к устройствам для получения пучков ионов и может найти применение в ускорительной технике, ускорительных газонаполненных трубках генераторов нейтронов. В газоразрядном источнике ионов катод и антикатод выполнены в виде цилиндров, в которых аксиально оси источника выполнены...
Тип: Изобретение
Номер охранного документа: 0002371804
Дата охранного документа: 27.10.2009
25.04.2019
№219.017.3b0e

Способ импульсного нейтрон-нейтронного каротажа

Использование: для импульсного нейтрон-нейтронного каротажа. Сущность изобретения заключается в том, что облучают породу импульсным потоком быстрых нейтронов, регистрируют временные распределения потоков тепловых и эпитепловых нейтронов, регистрируют заряд, образованный по крайней мере в одном...
Тип: Изобретение
Номер охранного документа: 0002685762
Дата охранного документа: 23.04.2019
18.05.2019
№219.017.5745

Способ сборки запаянных нейтронных трубок

Изобретение относится к области ядерной техники, в частности к нейтронным генераторам, и может быть использовано в ряде приложений, например в нейтронных трубках, для каротажных исследований. Способ сборки запаянных нейтронных трубок включает изготовление трубчатого высоковольтного изолятора и...
Тип: Изобретение
Номер охранного документа: 0002357386
Дата охранного документа: 27.05.2009
18.05.2019
№219.017.588c

Запаянная нейтронная трубка

Изобретение относится к запаянным нейтронным трубкам и может быть использовано в генераторах нейтронов для исследования геофизических и промысловых скважин. Запаянная нейтронная трубка характеризуется тем, что в трубчатом высоковольтном изоляторе со стороны торцов, перпендикулярных оси...
Тип: Изобретение
Номер охранного документа: 0002362278
Дата охранного документа: 20.07.2009
29.05.2019
№219.017.6569

Плазменный источник проникающего излучения

Изобретение относится к плазменной технике, к устройствам для генерирования нейтронных пучков, в частности к генераторам разовых импульсов нейтронного и рентгеновского излучения, и предназначено для проведения ядерно-физических исследований, изучения радиационной стойкости элементов электронной...
Тип: Изобретение
Номер охранного документа: 0002342810
Дата охранного документа: 27.12.2008
29.05.2019
№219.017.656b

Запаянная нейтронная трубка

Изобретение относится к средствам для лучевой терапии, в частности к запаянным нейтронным трубкам, и может найти применение для внутриполостного и внутритканевого терапевтического облучения онкологических больных. Запаянная нейтронная трубка для внутриполостного облучения онкологических больных...
Тип: Изобретение
Номер охранного документа: 0002342171
Дата охранного документа: 27.12.2008
+ добавить свой РИД