×
29.06.2019
219.017.9c76

Результат интеллектуальной деятельности: СПОСОБ КОНТРОЛЯ ПРОФИЛЯ ЗОНЫ СОПРЯЖЕНИЯ ЦИЛИНДРИЧЕСКОЙ ЧАСТИ С ЗАТЫЛОВАННОЙ ГРАНЬЮ РОЛИКА ПОДШИПНИКА КАЧЕНИЯ ТУРБОМАШИНЫ

Вид РИД

Изобретение

Правообладатели

№ охранного документа
0002393426
Дата охранного документа
27.06.2010
Аннотация: Изобретение относится к измерительной технике. Сущность: профиль поверхности ролика геометрически ограничен первой зоной, соответствующей затылованной грани ролика, второй зоной, соответствующей месту сопряжения цилиндрической части с затылованной гранью ролика, и третьей зоной, соответствующей цилиндрической части ролика. Способ заключается в том, что измеряют профиль поверхности ролика. С использованием результатов расчета первой производной измеренного профиля, рассчитывают для каждой из геометрических зон ролика сегменты прямой, моделирующие первую производную измеренного профиля. Рассчитывают радиусы кривизны профиля поверхности ролика путем определения первой производной сегментов прямой. Сравнивают рассчитанные радиусы кривизны с предварительно определенными пороговыми значениями для контроля непрерывности указанных радиусов. Технический результат: обеспечение контроля зон сопряжения цилиндрической и затылованной частей ролика подшипника качения. 3 з.п. ф-лы, 2 ил.

Область техники

Настоящее изобретение касается контроля качества профиля цилиндрических роликов, используемых при изготовлении подшипников качения турбомашины.

Уровень техники

Подшипники качения широко применяются в области самолетостроения. В турбомашинах подшипники качения позволяют в частности удерживать в рабочем положении вращающийся первый вал относительно коаксиально расположенного по отношению к нему второго вала. Подобные подшипники состоят главным образом из шариков или цилиндрических роликов, удерживаемых в рабочем положении посредством дорожек качения, образованных наружным и внутренним кольцами подшипника. Как правило, в турбомашинах шарикоподшипники используются в качестве опор, испытывающих осевые нагрузки, а роликовые подшипники - в качестве опор, работающих в условиях воздействия радиальных нагрузок.

Элементы качения, используемые в турбомашине, в частности цилиндрические ролики, подвергаются в турбомашине воздействию многочисленных механических напряжений. Несмотря на то, что количество выходов из строя подшипников скорее низко, нежели высоко, тем не менее, целесообразно повысить надежность подшипников, в частности за счет контроля профиля роликов. Контроль надежности цилиндрического ролика подшипника включает в себя в частности анализ общего профиля ролика. Этот анализ может выполняться с помощью измерительных инструментов, стандартных как по форме, так и по профилю поверхности, например, таких как машина для определения шероховатости, оборудованная индуктивным датчиком посредством алмазной или лазерной головки.

На практике торцы цилиндрических роликов подшипников подвергают затыловке для того, чтобы избежать образования в указанных местах чрезмерных концевых напряжений. Зоны сопряжения этих двух затылованных граней с цилиндрической частью роликов также могут служить источником недопустимых по величине (с точки зрения обеспечения надежности роликов) контактных напряжений. Между тем существующее стандартное измерительное оборудование не позволяет контролировать эти соединительные зоны. В самом деле, большинство известных инструментов способны измерять лишь простые и однообразные по форме профили (такие, как профили плоской круглой, сферической или цилиндрической формы) и не позволяют измерять надежным образом смешанные по форме профили (представляющие собой комбинацию простых по форме профилей), прилегающие к зонам сопряжения затылованных граней с цилиндрической частью роликов. Кроме того, контроль надежности цилиндрического ролика подшипника не предусматривает никакого требования в отношении подобных сопрягаемых зон.

Краткое изложение существа изобретения

Технической задачей настоящего изобретения является устранение указанных недостатков и создание способа контроля профиля зоны сопряжения цилиндрической части с затылованной гранью ролика подшипника качения.

Профиль поверхности ролика качения турбомашины ограничивается, по меньшей мере первой зоной, соответствующей месту расположения затылованной грани ролика, по меньшей мере второй зоной, соответствующей месту сопряжения цилиндрической части и затылованной грани ролика, и третьей зоной, соответствующей цилиндрической части ролика. В соответствии с предлагаемым изобретением, способ контроля профиля зоны сопряжения цилиндрической части c затылованной гранью ролика заключается в том, что измеряют профиль поверхности ролика путем расчета первой производной измеряемого профиля, рассчитывают для каждой из указанных геометрических зон ролика сегменты прямой, моделирующие первую производную измеряемого профиля и отфильтровывают те искажения, которые могут наложиться на измеряемый профиль, рассчитывают радиусы кривизны профиля поверхности ролика путем определения первой производной сегментов прямой и сравнивают расчетные радиусы кривизны с предварительно определенными пороговыми значениями, чтобы иметь возможность контролировать непрерывность этих радиусов.

Способ согласно предлагаемому изобретению позволяет определить характеристику профиля ролика путем простой обработки точек подвергаемого измерению профиля. Таким образом, возможно провести надежный контроль качества профиля ролика, в частности качества зоны сопряжения затылованной грани с цилиндрической частью ролика.

Преимущественно на этапе расчета сегментов прямой осуществляют выбор теоретического профиля поверхности ролика, рассчитывают первую производную теоретического профиля, чтобы получить для каждой из геометрических зон ролика теоретические сегменты прямой, а также рассчитывают расстояния между первой производной измеряемого профиля и теоретическими сегментами прямой.

В этом случае этап минимизации расстояния между первой производной измеряемого профиля и теоретическими сегментами прямой предпочтительно выполняют методом наименьших квадратов. Теоретический профиль поверхности первой геометрической зоны ролика может иметь форму круговой арки, теоретический профиль поверхности второй геометрической зоны ролика - форму другой круговой арки, а теоретический профиль поверхности третьей геометрической зоны ролика может вообще иметь прямолинейный вид.

Краткое описание чертежей

Характеристики и преимущества настоящего изобретения поясняются приведенным ниже описанием со ссылками на сопровождающие чертежи, на которых:

фиг.1 изображает блок-схему последовательности этапов реализации способа согласно изобретению;

фиг.2А - профиль цилиндрического ролика, полученный при реализации способа, согласно изобретению;

фиг.2В - диаграмму первой производной геометрических зон Z1-Z5 согласно изобретению;

фиг.2С - теоретические сегменты ε прямой D1-D5 для теоретического профиля согласно изобретению.

Подробное описание предпочтительного варианта реализации изобретения

В нижеследующем описании раскрыт способ контроля профиля поверхности цилиндрического ролика подшипника качения турбомашины. Следует отметить, что предлагаемое изобретение применимо также и для контроля профиля поверхности деталей турбомашины, отличных от роликов подшипника, например таких деталей, как ножки лопаток, для которых контроль профиля имеет очень важное значение.

Способ контроля профиля согласно изобретению может быть реализован посредством информационной системы, в частности, такой как рабочая информационная станция, оборудованная программным обеспечением для цифровой обработки данных и связанная с инструментом измерения профиля поверхности геометрической детали.

Профиль поверхности цилиндрического ролика подшипника качения геометрически может ограничиваться по меньшей мере первой зоной, соответствующей затылованной грани, второй зоной, соответствующей месту сопряжения цилиндрической части с затылованной гранью указанного выше ролика, и третьей зоной, соответствующей цилиндрической части ролика.

На первом этапе (100) способа оператор производит измерение профиля поверхности контролируемого цилиндрического ролика. Это измерение может выполняться с помощью машины известной конструкции для определения шероховатости, например, измерительным прибором, оснащенным индуктивным датчиком с алмазной или лазерной головкой. В этих приборах датчик крепится на подвижном опорном рычаге, способном перемещаться таким образом, чтобы датчик мог свободно отслеживать профиль поверхности контролируемого ролика.

Измеренный профиль поверхности преобразуется в последовательность сигналов, отражающих положение датчика в процессе его перемещения вдоль поверхности ролика. Эти сигналы передаются на связанную с датчиком рабочую информационную станцию для цифровой обработки данных для получения множества точек геометрических координат Ni, схематически отображающих геометрический профиль поверхности контролируемого ролика. Точки Ni эквидистантны полному постоянному числу шагов измерения и их количество равно числу n (например, около 8000).

На следующем этапе (200) используют полученные геометрические точки и получают первую производную измеренного профиля поверхности, то есть получают n геометрических точек Ni, образующих профиль. Этот этап, который может быть реализован с помощью расчетного программного обеспечения, которым оборудована рабочая информационная станция, позволяет получить геометрические координаты N'i для n точек.

На этапе (300) способа, который будет описан более подробно ниже, для каждой из вышеописанных геометрических зон ролика рассчитываются сегменты прямой, моделирующие первую производную измеренного профиля. Проведение расчета, выполняемого посредством программного обеспечения, которым оборудована рабочая информационная станция, позволяет отфильтровывать систематические и случайные высокочастотные искажения, которые накладываются на измеряемый профиль.

С помощью программного обеспечения определяют первую производную сегментов прямой, рассчитанных в ходе предыдущего этапа и рассчитывают на этапе 400 радиусы кривизны профиля поверхности подлежащего контролю ролика.

И, наконец, на последнем этапе (500) способа производят сравнение радиусов кривизны, рассчитанных указанным выше образом, и в частности радиусов кривизны в зоне сопряжения цилиндрической части с затылованными гранями ролика, с предварительно определенными пороговыми значениями. В зависимости от полученных в ходе сравнения результатов оператор принимает решение, необходимо или нет сохранять рассматриваемый ролик в подшипнике качения турбомашины. Определение указанных выше пороговых значений производится экспериментальным путем. Выбор конкретных пороговых значений производится с учетом места расположения рассматриваемого подшипника в турбомашине, его геометрических характеристик, характеристик конструкционных материалов и, в частности, с учетом уровня контактного давления, существующего между наиболее нагруженным роликом и дорожками качения.

В случае зон сопряжения цилиндрической части и затылованных граней ролика, указанные пороговые значения могут, например, соответствовать минимальному радиусу кривизны. При значениях радиуса кривизны, меньших указанного минимального значения, цилиндрический ролик вообще не подлежит отбору. Подобный минимальный радиус кривизны определяется экспериментальным путем. В качестве примера можно привести следующие данные: для цилиндрического ролика, имеющего длину вдоль оси, равную около 14 мм, минимальный радиус кривизны может быть около 100 мм.

Другим способом отбора роликов, рассматриваемым в качестве дополнительного к предыдущему, является способ, заключающийся в сравнении между собой двух радиусов кривизны двух зон сопряжения цилиндрической части с затылованными гранями ролика. В том случае, если обнаружится значительное расхождение в значениях указанных радиусов кривизны, обусловленное несимметричностью рассматриваемого ролика, последний подлежит исключению из отбора.

Моделирование первой производной измеряемого профиля

Рассмотрим способ реализации этапа (300) моделирования первой производной измеряемого профиля поверхности. Как указано выше, рассматриваемый этап выполнялся с помощью программного обеспечения, которым оборудована рабочая информационная станция.

На первом этапе этого производят выбор теоретического профиля поверхности цилиндрического ролика, подвергаемого контролю. При этом теоретический профиль ролика выбирают с учетом конкретных размеров ролика, подвергаемого контролю.

На фиг.2А схематически представлен пример частичного и теоретического профиля цилиндрического ролика 10, предназначенного для использования в турбомашине. Подобный цилиндрический ролик симметричен с одной стороны в отношении своей главной оси Х-Х, а с другой - в отношении средней оси Y-Y, которая перпендикулярна главной оси Х-Х.

Профиль поверхности ролика ограничивается с геометрической точки зрения: двумя первыми зонами Z1 и Z5, которые соответствуют двум затылованным граням ролика; двумя вторыми зонами Z2 и Z4, каждая из которых соответствует сопряжению цилиндрической части с одной из затылованных граней ролика; и третьей зоной Z3, соответствующей цилиндрической части ролика. Первые зоны Z1 и Z5 и вторые зоны Z2 и Z4 симметричны по отношению к средней оси Y-Y ролика.

Например, в случае ролика длиной около 14 мм геометрические зоны Z1 и Z5 выбирают следующим образом.

Первые симметричные зоны Z1 и Z5 имеют круговой цилиндрический профиль с радиусом Rd, равным около 500 мм.

Вторые зоны Z2 и Z4 также имеют круговой теоретический профиль с радиусом Rr, значение которого находится в пределах от 100 мм до 200 мм. Осевая длина указанных двух зон находится в диапазоне от 0,7 до 2,1 мм.

Что касается третьей зоны Z3, то она характеризуется наличием теоретического профиля прямолинейной формы, а значение ее конечной длины вдоль оси зависит от величины радиусов сопряжения, в точках, расположенных вдоль касательной, проходящей между затылованными гранями и цилиндрической частью ролика. После реализации, путем нанесения борозд, радиусов сопряжения для значений Rr, находящихся в диапазоне от 100 до 200 мм, конечная прямолинейная часть имеет осевую длину в пределах от 4,3 мм до 7,3 мм, против первоначальной длины, которую она имела до нанесения борозд и которая находилась в пределах от 5,6 до 8,2 мм. Способ контроля согласно изобретению позволяет таким образом пересчитать, путем реализации радиусов сопряжения, первоначальную осевую длину цилиндрической части роликов до устранения острых углов.

Следующий этап заключается в расчете первой производной теоретического профиля, чтобы получить для каждой из геометрических зон с Z1 по Z5 ролика теоретические сегменты прямой.

На фиг.2В показан результат подобного расчета. Пять сегментов прямой с D1 по D5, границы которых определяются пограничными точками с Р1 по Р6, представляют собой первую производную соответствующих геометрических зон с Z1 по Z5.

Геометрическую абсциссу пограничных точек с Р1 по Р6 определяют по предварительно определенному значению осевой длины геометрических зон с Z1 по Z5. Что касается их геометрической ординаты, то ее расчет производят на основании геометрической формулы, представляющей теоретический профиль соответствующих зон с Z1 по Z5 (сегмент прямой для зоны Z3 и круговые арки для других зон).

Каждый из сегментов прямой с D1 по D5 может быть представлен следующим уравнением (Di): y'i=aix+bi (с i переменной от 1 до 5). Направляющий коэффициент аi и ординату с началом в точке bi каждого сегмента прямой Di рассчитывают с помощью предварительно рассчитанных геометрических координат приграничных точек с Р1 по Р6,

Следующий этап моделирования сводится к расчету, для каждой геометрической зоны с Z1 по Z5 теоретического профиля, полного расстояния ε между n геометрических точек N'i, представляющего собой первую производную профиля, измеренного при выполнении предыдущего этапа (200), и теоретическими сегментами ε прямой с D1 по D5 (фиг.2С).

Если рассмотреть зону Zi, границы которой определяются точками Pi и Pi+1, то обнаружится, что она содержит [ni+1-ni+1] точек, образующих измеряемый профиль. Расчет расстояния εi между указанными точками и сегментом прямой (Di) дает тогда:

Расчет полного расстояния ε между n геометрическими точками, образующими первую производную измеренного профиля, и теоретическими сегментами прямой с D1 по D5, производят согласно уравнению:

Следующий этап моделирования состоит в минимизации расстояния ε между первой производной измеряемого профиля и теоретическими сегментами прямой методом наименьших квадратов. В этом случае, если рассматривать расстояние ε как функцию коэффициентов аi и bi (для i переменной с 1 до 5), его значение будет минимальным для значений коэффициентов Ai и Bi согласно:

и для i переменной с 1 до 5

Решение этих десяти уравнений с десятью неизвестными позволяет получить значение коэффициентов Ai и Bi, которые представляют собой минимизацию расстояния εi в каждой из геометрических зон с Z1 по Z5. Этими новыми коэффициентами Ai и Bi являются новый направляющий коэффициент Ai и ордината с началом отсчета в точке Bi новых сегментов прямой D'i (в которой переменная i изменяется от 1 до 5), для которых расстояние с n геометрическами точками N'i, представляющее первую производную измеренного профиля, будет минимальным.

На следующем этапе на базе новых коэффициентов Ai и Bi производят расчет каждого сегмента прямой D'i, расчет координат новых приграничных точек с Р'1 по Р'6, определяющих границы новых сегментов прямой D'i.

При определении координат новых приграничных точек Р'1 и Р'6 расчет сводится к определению мест взаимного пересечения новых сегментов прямой D1 и D6 с прямыми, определяемыми уравнением х=х1 (где х1 представляет собой абсциссу приграничной точки Р1), а х=х6 (где х6 представляет собой абсциссу приграничной точки Р6).

При определении координат других новых приграничных точек с Р'2 по P'6 следует принимать во внимание пересечение прямых D'i-1 и D'i, чтобы получить в итоге следующие координаты для i переменной с 2 до 5:

и

где X'i и Y'i представляют собой координаты новых приграничных точек с Р'2 по P'6.

Следующий этап заключается в сравнении расчетного расстояния ε между первой производной измеренного профиля и теоретическими сегментами прямой с конвергентным расстоянием εconv. В том случае, если расчетное расстояние ε превышает конвергентное расстояние εconv, реализацию способа контроля продолжают далее, начиная с этапа минимизации расстояния ε между первой производной измеренного профиля и новыми сегментами прямой D1 и D6. Этот цикл повторяют до тех пор, пока расчетное расстояние ε остается выше конвергентного расстояния εconv.

Как только расчетное расстояние ε станет ниже конвергентного расстояния εconv, реализацию способа контроля согласно изобретению продолжают, начиная с этапа 400 (фиг.1), причем направляющий коэффициент Ai каждого нового сегмента прямой D'1 и D'6 будет представлять собой в этом случае радиус кривизны каждой геометрической зоны профиля цилиндрического ролика.

Выбор величины, определяющей конвергентное расстояние εconv, зависит главным образом от шероховатости поверхности цилиндрического ролика, подвергаемого контролю. Описанный выше повторный расчет продолжают до тех пор, пока будет уменьшаться расстояние ε. Начиная с некоторого порогового значения, наблюдается небольшое увеличение значения ε, причем указанное увеличение объясняется тем, что расчет конвергентности ε выполнялся лишь для n геометрических точек N'i, представляющих собой первую производную измеренного профиля. Значение расстояния ε, для которого это увеличение было замечено, было подвергнуто регистрации (εmin). При следующих повторах расчет конвергентности останавливался каждый раз, как только расстояние ε становилось, например, ниже εconv=1,001· εmin.

Источник поступления информации: Роспатент

Showing 161-170 of 928 items.
20.12.2013
№216.012.8daf

Упрощенная система регулирования шага лопасти воздушного винта в авиационном турбовальном двигателе

Система регулирования шага лопасти воздушного винта в турбовальном двигателе содержит первую и вторую кольцевые направляющие, активирующий элемент, а также первый и второй блокирующие элементы. Первая кольцевая направляющая обеспечивает установку угла атаки указанной лопасти и имеет первое и...
Тип: Изобретение
Номер охранного документа: 0002501954
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8db2

Система управления оборудованием газотурбинного двигателя, имеющим изменяемую геометрию, в частности, при помощи рычагов управления

Система управления по меньшей мере двумя видами оборудования с изменяемой геометрией, используемого в газотурбинном двигателе, причем данный газотурбинный двигатель содержит по меньшей мере один первый корпус и один второй корпус, и первый вид такого оборудования представляет собой ступень...
Тип: Изобретение
Номер охранного документа: 0002501957
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8db8

Система зажигания в камере сгорания газотурбинного двигателя, включающая свечу полупроводникового типа, камера сгорания, содержащая такую свечу, и газотурбинный двигатель

Система зажигания содержит свечу полупроводникового типа в оболочке, трубку, жестко соединенную с камерой сгорания газотурбинного двигателя, подвижную втулку и средства направления воздуха для охлаждения полупроводника свечи. Подвижная втулка обеспечивает установку свечи в трубку и воспринимает...
Тип: Изобретение
Номер охранного документа: 0002501963
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.91ec

Ориентируемая структура типа катетера или эндоскопа

Настоящее изобретение относится к ориентируемой структуре типа катетера или эндоскопа, предназначенной для обследования изнутри трехмерной системы, такой как турбогенератор (газотурбинный двигатель). Заявленная ориентируемая структура типа катетера или эндоскопа, предназначенная для наблюдения...
Тип: Изобретение
Номер охранного документа: 0002503049
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.94ed

Лопатка турбины, снабженная средством регулирования расхода охлаждающей текучей среды

Лопатка турбины охлаждается внутренним потоком охлаждающей текучей среды, поступающей через отверстия, расположенные внизу хвостовой части лопатки. Лопатка включает в себя регулирующую пластину, снабженную отверстиями, расположенными в соответствии с отверстиями внизу хвостовой части лопатки....
Тип: Изобретение
Номер охранного документа: 0002503819
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.94ef

Герметичность между камерой сгорания и направляющим сопловым аппаратом турбины в газотурбинном двигателе

Газотурбинный двигатель содержит кольцевую камеру сгорания, секторальный направляющий сопловый аппарат турбины, расположенный на выходе камеры, и герметизирующие средства, аксиально размещенные между камерой сгорания и направляющим сопловым аппаратом. Герметизирующие средства содержат кольцевое...
Тип: Изобретение
Номер охранного документа: 0002503821
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.94f0

Турбина высокого давления с усовершенствованной камерой регулирования радиального зазора подвижных лопаток и турбомашина, использующая такую турбину

Турбина высокого давления содержит наружный корпус, распределитель, лопастное колесо, узел, образующий кольцо и размещенный по окружности вращающихся лопастей, устройство для регулирования радиального зазора между законцовками вращающихся лопастей и кольцом, а также кольцевую опору и кольцевой...
Тип: Изобретение
Номер охранного документа: 0002503822
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.94f1

Усовершенствование кольца управления углом установки неподвижных лопаток турбомашины

Турбомашина содержит ступень, включающую лопатки с изменяемым углом установки, размещенные по окружности в корпусе. Каждая лопатка содержит управляющий стержень, радиально выступающий снаружи корпуса и связанный рычагом с общим кольцом управления, соосным упомянутому корпусу и установленным с...
Тип: Изобретение
Номер охранного документа: 0002503823
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.94f2

Система управления оборудованием с изменяемой геометрией газотурбинного двигателя, содержащая, в частности, барабанное соединение

Настоящее изобретение касается системы управления, по меньшей мере, двумя типами оборудования с изменяемой геометрией газотурбинного двигателя, содержащего первый корпус и второй корпус, при этом первым оборудованием является ступень статорных лопаток с изменяемым углом установки компрессора...
Тип: Изобретение
Номер охранного документа: 0002503824
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.94f3

Устройство амортизации вибраций для креплений лопаток газовых лопаточных машин, газовая лопаточная машина, газотурбинный двигатель и высокооборотный винтовой двигатель

Устройство амортизации вибраций для лопатки газовой лопаточной машины, например газотурбинного двигателя, оборудованного вентилятором, или высокооборотного винтового двигателя. Лопатка содержит ножку (6) лопатки, выполненную с возможностью захождения в гнездо (2) диска (1), на котором выполнено...
Тип: Изобретение
Номер охранного документа: 0002503825
Дата охранного документа: 10.01.2014
Showing 1-1 of 1 item.
09.06.2019
№219.017.7bce

Разрушаемая соединительная тяга с амортизатором и упором, предотвращающим реверсивное движение

Изобретение относится к области машиностроения. Соединительная тяга содержит стержень (2), имеющий на каждом своем конце соединительный орган (3, 4) и имеющий геометрическую ось, проходящую через оба эти соединительных органа (3, 4). Стержень (2) содержит предохранительную зону (5) в форме зоны...
Тип: Изобретение
Номер охранного документа: 0002302567
Дата охранного документа: 10.07.2007
+ добавить свой РИД