×
27.06.2019
219.017.92ec

Результат интеллектуальной деятельности: Способ оценки степени интеграции остеозамещающих материалов

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, а именно к количественной оценке степени остеоинтеграции материалов, а также их влиянию на репаративную регенерацию костной ткани. Способ оценки степени интеграции остеозамещающих материалов включает оценку степени интеграции имплантата по рентгеноспектрометрической картине границы «кость – имплантат», при этом методом рентгеновского спектрального микроанализа определяют отношение кальция и фосфора в периимплантной области костного ложа, на основании полученных данных рассчитывают индекс остеоинтеграции , и при ≥ 1 судят о присутствии остеоинтеграции имплантата, при от 1 до 0,5 судят о том, что остеоинтеграция не выражена, а при < 0,5 судят об отсутствии остеоинтеграции, при этом индекс остеоинтеграции рассчитывают по формуле:

Изобретение относится к медицине, а именно к экспериментальной биологии, имплантологии и тканевой инженерии и может быть использовано в фундаментальной науке и на этапе доклинического экспериментального исследования новых остеозамещающих материалов для количественной оценки степени остеоинтеграции материалов, а также их влияния на репаративную регенерацию костной ткани, как трабекулярной, так и кортикальной.

Известен способ определения регенерационной способности костной ткани путем вычисления денситометрического индекса и его оценки в динамике [1]. Согласно этому способу у больных исследуют минеральную плотность костной ткани в различные периоды: до операции, через 1.5 месяца и через 4.5 месяца после операции. Производят измерение минеральной плотности костной ткани (МПКТ) последовательно в левой и правой пяточной кости и в дистальных метафизах правой и левой лучевой кости. Полученные показатели МПКТ пациента суммируют и определяют индекс по их среднему значению, который принимают за исходное. Затем проводят денситометрическое исследование МПКТ через 1.5 месяца после операции и аналогичным образом вычисляют индекс. При выявлении увеличения индекса от исходного значения через 1.5 месяца более 1% определяют благоприятный прогноз регенерации костной ткани, в остальных случаях прогноз считают неблагоприятным.

Точность прогнозирования регенерации костной ткани, достигаемая данным способом, не может быть высокой, поскольку минеральную плотность кости в нем оценивают косвенно, что затрудняет получение количественных данных о завершенности процесса регенерации костной ткани. Кроме того, данный способ не позволяет адекватно оценить остеоархитектонику, восстановление которой является одним из критериев зрелости костной ткани. Не представляется применимым этот способ для экспериментальной оценки интеграции имплантанта в интерфейс костной ткани, так как проводится invivo. Необходимо отметить и то, что применение рентгенологических методов оценки минеральной плотности создает дополнительную лучевую нагрузку на пациента.

Известен также косвенный способ оценки степени остеоинтеграции, основанный на денситометрической оценке плотности костной ткани при проведении компьютерной томографии [2]. Способ включает анализ возможности сравнения изображений, предварительное выделение исследуемой области и совмещение изображений, повышение качества изображений, выбранных для сравнения, выделение контура имплантата и оценку показателей плотности периимплантатной области. Снижение или повышение этой плотности свидетельствует об отсутствии или наличии остеоинтеграции соответственно.

Существенные недостатки данного способа заключаются в том, что в нем для анализа изменений периимплантной плотности необходимо исследование срезов, полностью анатомически совпадающих в пространстве, при этом практически невозможно провести идентичное позиционирование пациентов при выполнении снимка. Нередко снимки выполняются на разных видах оборудования: ортопантомографах, компьютерных томографах, при различных физико-технических условиях съемки объекта, что также затрудняет адекватный анализ изображений. Способ не позволяет в полном объеме оценить остеоархитектонику, восстановление которой является одним из критериев зрелости костной ткани. Кроме того, недостатком способа является его категориальное значение, а не количественное. Способ также проводится invivo, а потому не применим для экспериментальной оценки интеграции имплантанта в интерфейс костной ткани. Как сказано выше, применение рентгенологических методов оценки минеральной плотности создает дополнительную лучевую нагрузку на пациента.

Известен широко применяемый способ изучения остеоинтеграции, основанный на гистологическом исследовании и цитоморфометрии [3]. В нем после декальцинации извлекали имплантат путем надреза на боковой стороне костного блока и последующего отделения стержня. Проводку костного блока осуществляли через батарею спиртов возрастающей концентрации и заливали в парафин по общепринятым гистологическим методикам. На роторном микротоме изготавливали серийные срезы толщиной 5-7 мкм, которые окрашивали гематоксилином и эозином. Морфологическое исследование проводили по общепринятым критериям, а именно: количественная и качественная оценка характеристики клеточных элементов и гистологических проявлений процессов репарации в области имплантата (реакция на имплантат, выраженность воспалительной реакции на чужеродную ткань, преобладающий вид ткани в зоне имплантата).

Существенным ограничением этого способа является оценка степени остеоинтеграции костной ткани без самого имплантанта, так как изготовить гистологический срез, включающий кость и металлический компонент, представляется крайне сложной задачей. Низкая разрешающая способность светового микроскопа, невозможность анализа трехмерных изображений создает сложности с визуализацией трещины и других структурных изменений, возникающих на границе «имплантант – костная ткань». При гистологическом исследовании проводится преимущественно качественная оценка реакции костной ткани на имплантант, получение точных количественных данных затруднено.

В работе [4], посвященной изучению свойств пористых титановых имплантатов, остеоинтеграция оценивалась по визуальным признакам рентгеноспектрометрической картины границы «кость – имплантант» и выражалась в баллах. При этом на 4 балла оценивали отсутствие разобщения и разряжения костной ткани между имплантантом и костью; на 3 балла — разобщение между имплантантом и костью линейного характера без признаков резорбции и разряжения костной ткани; на 2 балла — разобщение между имплантантом и костью с признаками резорбции и разряжения костной ткани; на 1 балл оценивали миграцию имплантанта и его нахождение вне костного ложа. В области имплантации отмечали наличие или отсутствие местной воспалительной реакции, далее выполняли балльную оценку стабильности имплантанта и характера его контакта с костью. При этом на 4 балла оценивали отсутствие видимой подвижности имплантанта в костном ложе; на 3 балла — подвижность имплантанта в одной горизонтальной плоскости; на 2 балла — подвижность имплантанта в двух горизонтальных плоскостях; на 1 балл — подвижность имплантанта в вертикальной плоскости. Контакт имплантантов с костной тканью и макроскопический характер регенерата оценивали на 4 балла в случае полного покрытия имплантанта новообразованной костной тканью на уровне поверхности материнской кости; на 3 балла — в случаях, когда костный регенерат частично покрывал имплантант с образованием костного козырька; на 2 балла – при покрытии имплантанта фиброзной тканью; на 1 балл - при резорбции костной ткани в пришеечной части имплантанта.

Главным недостатком данного способа является субъективность оценивания показателей активности остеоинтегративных процессов. К недостаткам относится и его категориальное значение, выражаемое в баллах, а не истинное количественное значение.

Задача настоящего изобретения заключается в разработке объективного, более точного способа оценки степени интеграции остеозамещающих материалов при их имплантации для замещения дефектов костной ткани.

Метод рентгеновского спектрального микроанализа, реализованный в сканирующей электронной микроскопии, позволяет определить содержание различных химических элементов в периимплантной области. Ключевую роль в остеорегенераторных процессах играют кальций и фосфор, поэтому в заявленном способе степень интеграции имплантанта по рентгеноспектрометрической картине границы «кость – имплантант» оценивают по соотношению кальция и фосфора в периимплантной области костного ложа.

Периимплантная область условно делится на три зоны в зависимости от удаленности от границы «имплантант - костная ткань»:

I. 100 мкм;

II. 101-499 мкм;

III. 500 мкм.

Последовательно в радиальном направлении выбирается 12 аттестационных точек, расположенных в I и III зонах, в которых методом рентгеновского спектрального микроанализа определяется процентное содержание кальция и фосфора (цифровое значение Ca и P определяется в процентах атомного веса энергетических спектров эмитированного рентгеновского излучения, возникающего при взаимодействии электронного пучка и атомов объекта костной ткани). Затем рассчитывается индекс остеоинтеграции по формуле:

,

где – индекс остеоинтеграции,

– процентное содержания кальция, соответствующее i точке в периимплантной зоне, расположенной на удалении 100 мкм от имплантанта,

– процентное содержания фосфора, соответствующее i точке в периимплантной зоне, расположенной на удалении 100 мкм от имплантанта,

– процентное содержания кальция, соответствующее j точке в периимплантной зоне, расположенной на удалении 500 мкм от имплантанта,

– процентное содержания фосфора, соответствующее j точке в периимплантной зоне, расположенной на удалении 500 мкм от имплантанта.

Новый технический результат, достигаемый заявленным способом, заключается в повышении точности, объективности и универсальности оценки степени интеграции остеозамещающих материалов, а также в его простоте и высокой воспроизводимости.

Изобретение иллюстрируется рисунками, где на фиг.1 представлена схема деления периимплантной области на зоны в зависимости от расстояния «имплантант – костная ткань»; на фиг.2 –схема расстановки точек аттестации для определения содержания элементов по зонам в зависимости от расстояния до имплантанта; на фиг.3 – перифокальный элементный анализ. 3D титан (показан белой стрелкой), окруженный новообразованной костной тканью (показано белой стрелкой в черном контуре); на фиг.4 –перифокальный элементный анализ, в котором углеродный наноструктурный имплантант показан белой стрелкой и перифокальная костная ткань, показанная черной стрелкой в белом контуре, а также зона низкой минеральной плотности по результатам рентгеновского микроанализа показана белыми стрелками в черном контуре. В таблице приведены результаты элементного состава костной ткани фрагментов медиального мыщелка поствитальной большеберцовой кости кролика породы Шиншилла массой 2 – 2,5 кг, содержащих имплантированные остеозамещающие материалы: пористый титановый иплантант, полученный методом 3D печати, и углеродный наноструктурный имплантант.

Пример выполнения способа. Для исследования забирались фрагменты медиального мыщелка поствитальной большеберцовой кости кролика породы Шиншилла массой 2 – 2,5 кг, содержащие имплантированные остеозамещающие материалы: пористый титановый иплантант, полученный методом 3D печати, и углеродный наноструктурный имплантант (УНИ, производство «Нанотехмедплюс», Россия) в сроке 25 недель после имплантации. При работе с животными соблюдались «Международные рекомендации» (этический кодекс) по проведению медико-биологических исследований с использованием животных» (1985).

Подготовка образцов для сканирующей электронной микроскопии проводилась по стандартной процедуре и включала обезжиривание костных фрагментов в ацетоне, заливку в эпоксидную смолу, шлифовку и полировку, нанесение токопроводящего слоя. Далее изучали элементный состав костной ткани в указанных выше областях с помощью рентгеновского спектрального микроанализа, реализованного в сканирующем электронном микроскопе JSM-6390 LV (Япония). Результаты приведены в таблице.

Исследования показали, что для образцов с пористым титаном больше единицы, следовательно, данный материал претерпевает интеграцию с окружающей его костной тканью. По результатам исследования образцов, содержащих углеродный имплантант, можно говорить об отсутствии интеграции между имплантатом и костной тканью, так как значение меньше 0,5.

Таким образом, заявленный способ позволяет просто с высокой воспроизводимостью, повышенной точностью, объективностью и универсальностью оценивать степень интеграции остеозамещающих материалов.

Источники информации:

1. Патент РФ №2238039 «Способ прогнозирования регенерации костной ткани;

2. Стрельников В.Н. и др. Методика оценки остеоинтеграции дентальных внутрикостных имплантатов на основе автоматической обработки изображений// X-RayArt, 2013, № 3 (02), С. 24-26;

3. Митрошин А.Н. и др. Сравнительная оценка остеоинтеграции винтовых конических и цилиндрических титановых имплантатов, обработанных методом микродугового оксидирования //Фундаментальные исследования. – 2011. – №9– С. 447-451;

4. Байриков И.М. и др. Особенности остеоинтеграции нетканого титанового материала со сквозной пористостью// Современные проблемы науки и образования. – 2016. – № 6.


Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Способ оценки степени интеграции остеозамещающих материалов
Источник поступления информации: Роспатент

Showing 21-30 of 94 items.
20.08.2014
№216.012.ebfc

Чувствительный элемент электрохимического датчика водорода в газовых смесях

Чувствительный элемент электрохимического датчика водорода в газовых смесях. Может быть использован для измерения концентрации водорода в воздухе и в инертном газе. Чувствительный элемент электрохимического датчика водорода в газовых смесях, выполненный в виде таблетки из твердого электролита,...
Тип: Изобретение
Номер охранного документа: 0002526220
Дата охранного документа: 20.08.2014
27.10.2014
№216.013.02e5

Способ измерения кислорода в газовых средах

Использование: для измерения концентрации кислорода в газовых смесях различного состава. Сущность изобретения заключается в том, что используют ячейку с полостью, образованную кислородопроводящим твердым электролитом, на противоположных поверхностях электролита расположены электроды, включая...
Тип: Изобретение
Номер охранного документа: 0002532139
Дата охранного документа: 27.10.2014
10.01.2015
№216.013.1832

Состав шихты для изготовления оксидно-металлического инертного анода

Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия. Состав шихты для изготовления указанного анода включает смесь оксидной и металлической составляющих,...
Тип: Изобретение
Номер охранного документа: 0002537622
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1833

Способ синтеза микро- и нанокомпозиционных алюминий-углеродных материалов

Изобретение относится к способу получения алюминий-углеродных композиционных материалов, которые могут найти применение в авиационной, космической и электротехнической промышленности, а также в производстве шарикоподшипников нового поколения. Способ характеризуется тем, что алюминий или...
Тип: Изобретение
Номер охранного документа: 0002537623
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1868

Способ электрохимического получения алюминий-титановой лигатуры для коррозионностойких алюминиевых сплавов

Изобретение относится к электрохимическому получению лигатурных алюминий-титановых сплавов и может быть использовано для получения коррозионно-стойких алюминиевых сплавов. Способ включает химическое активирование поверхности титана в расплавленных фторидах щелочных металлов и/или калиевом...
Тип: Изобретение
Номер охранного документа: 0002537676
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a0b

Электрохимический генератор с твердым электролитом

Изобретение относится к устройству электрохимического генератора с твердым электролитом, преимущественно для генераторов малой и средней мощности до 15÷20 кВт. Указанный генератор содержит заключенные в корпус с теплоизолирующими стенками, рабочую камеру с батареей топливных элементов, камеру...
Тип: Изобретение
Номер охранного документа: 0002538095
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1fd8

Электрохимический способ получения порошка гексаборида кальция

Изобретение относится к электрохимическому способу получения порошка гексаборида кальция, включающему электролиз солевого расплава, содержащего кальций- и борсодержащие компоненты. Способ характеризуется тем, что используют солевой расплав, содержащий хлорид кальция с добавками оксида кальция и...
Тип: Изобретение
Номер охранного документа: 0002539593
Дата охранного документа: 20.01.2015
10.02.2015
№216.013.2325

Способ измерения кислородосодержания и влажности газа

Изобретение относится к аналитической технике и может быть использовано для измерения кислородосодержания и влажности газов. Способ измерения кислородосодержания и влажности газа. В поток анализируемого газа помещают электрохимическую ячейку с полостью, образованную двумя дисками из...
Тип: Изобретение
Номер охранного документа: 0002540450
Дата охранного документа: 10.02.2015
27.02.2015
№216.013.2c14

Способ изготовления пористых катодных материалов на основе манганита лантана-стронция

Изобретение относится к области электротехники, а именно к способу изготовления пористых катодных материалов на основе манганита лантана-стронция, и может быть использовано для изготовления твердооксидных топливных элементов (ТОТЭ), работающих при высоких температурах. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002542752
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2d53

Способ изготовления электродов электрохимических устройств с твердым электролитом

Изобретение относится к области электротехники, а именно к способу изготовления электродов электрохимических устройств с твердым электролитом. Снижение поляризационного сопротивления электрода, а также улучшение протекания электродных реакций газообмена является техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002543071
Дата охранного документа: 27.02.2015
Showing 21-30 of 30 items.
19.06.2019
№219.017.8a02

Способ оценки реакции закладочного массива по результатам натурных наблюдений за оседаниями земной поверхности

Изобретение относится к горной промышленности и предназначено для количественной оценки натурных наблюдений геомеханической роли закладочного массива (ЗМ) при его взаимодействии с породными целиками (ПЦ) различного производственного назначения. Техническим результатом изобретения является...
Тип: Изобретение
Номер охранного документа: 0002408785
Дата охранного документа: 10.01.2011
05.09.2019
№219.017.c6fa

Способ получения остеопластического керамического материала на основе фосфата кальция

Изобретение относится к области неорганической химии, а именно к получению материалов на основе стронций-замещенного β-трикальцийфосфата, которые могут быть использованы в качестве тканеинженерных остеопластических материалов для аугментации дефектов трабекулярной костной ткани. На основу из...
Тип: Изобретение
Номер охранного документа: 0002699093
Дата охранного документа: 03.09.2019
07.09.2019
№219.017.c8f1

Способ обработки пористых имплантатов на основе металлических материалов

Изобретение относится к изготовлению пористых материалов, в частности имплантатов, предпочтительно из титановых сплавов. Способ обработки пористых имплантатов на основе металлических материалов включает подготовку модели ячеистых структур и изготовление ячеистой структуры при воздействии на...
Тип: Изобретение
Номер охранного документа: 0002699337
Дата охранного документа: 04.09.2019
01.12.2019
№219.017.e982

Способ изготовления биоразлагаемого лакопротеза

Настоящее изобретение относится к области медицины, а именно к способу изготовления биоразлагаемого лакопротеза для временного ношения на основе биоразлагаемого полимерного материала, отличающемуся тем, что в качестве биоразлагаемого полимерного материала используют или биоразлагаемый гомо- или...
Тип: Изобретение
Номер охранного документа: 0002707551
Дата охранного документа: 28.11.2019
13.12.2019
№219.017.ece2

Ячеистая структура имплантатов

Изобретение относится к области аддитивных технологий, применяемых для изготовления имплантатов, предпочтительно, из титановых сплавов. Ячеистая структура имплантатов выполнена в виде объемной решетки с расположением узлов на поверхности пространственных фигур, соединенных перемычками....
Тип: Изобретение
Номер охранного документа: 0002708871
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed63

Ячеистая структура имплантата

Изобретение относится к области медицины, а именно к травматологии и ортопедии, и предназначено для использования при изготовлении, с помощью аддитивных технологий, имплантатов предпочтительно из титановых сплавов. Выполняют имплантат, имеющий ячеистую структуру. Ячеистая структура имплантата...
Тип: Изобретение
Номер охранного документа: 0002708781
Дата охранного документа: 11.12.2019
24.01.2020
№220.017.f989

Имплантат для остеотомии

Изобретение относится к области медицины, а именно к травматологии и ортопедии. Имплантат для остеотомии выполнен из металла или сплава и имеет форму призмы с основанием в виде прямоугольного треугольника, содержащего длинный и короткий катеты и гипотенузу. При этом призма содержит совокупность...
Тип: Изобретение
Номер охранного документа: 0002711753
Дата охранного документа: 21.01.2020
08.02.2020
№220.018.009f

Способ подготовки образцов субхондральной костной ткани человека для изучения ее механических характеристик при одноосном сжатии

Изобретение относится к области биологии и экспериментальной медицины и может применяться при проведении исследовательских работ, связанных с изучением механических свойств образцов костной ткани эпиметафизарной зоны с помощью методов, принятых в материаловедении. Способ подготовки образцов...
Тип: Изобретение
Номер охранного документа: 0002713593
Дата охранного документа: 05.02.2020
28.02.2020
№220.018.06df

Способ оценки интеграции остеозамещающего материала в эксперименте

Изобретение относится к медицине, а именно к гематологии, биохимии, имплантологии, и может быть использовано для оценки интеграции остеозамещающего материала в эксперименте. В периферической крови экспериментального животного-кролика на 45 сутки после имплантации аугмента определяют значения...
Тип: Изобретение
Номер охранного документа: 0002715283
Дата охранного документа: 26.02.2020
12.07.2020
№220.018.3210

Имплантат для замещения костных трабекулярных дефектов

Изобретение относится к области медицины, а именно к оперативной травматологии и ортопедии, и раскрывает имплантат для замещения костных трабекулярных дефектов, выполненный в виде тела вращения. Имплантат характеризуется тем, что тело вращения выполнено из пористого материала, выбранного из...
Тип: Изобретение
Номер охранного документа: 0002726253
Дата охранного документа: 10.07.2020
+ добавить свой РИД