×
26.06.2019
219.017.92b3

Результат интеллектуальной деятельности: Способ исследования физико-химических процессов на нагруженном контакте

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам контроля физико-химических процессов, вызывающих разрушение рабочей поверхности в парах трения при предельных нагрузках. Подготавливается образец, состоящий из двух пластин или из двух коаксиальных отрезков трубы, материалы которых соответствуют материалам испытываемого контакта, на одну из сторон образца наносят слой взрывчатого вещества, с обратной стороны обеспечивают контакт образца с твердой или демпфирующей средой, нагружение осуществляют путем подрыва взрывчатого вещества, образец пилят так, чтобы зона контакта была доступна для исследования, и проводят необходимую пробоподготовку для удаления остатков абразивного материала от инструмента, исследуют зону контакта на предмет появления продуктов механо-химических процессов, прошедших в нагруженной зоне, судят о физико-химических процессах на границе по составу, количеству и морфологии продуктов, фиксированных в зоне контакта. Технический результат: обеспечение возможности установления механизмов разрушения рабочих поверхностей и их пространственной локализации в практически значимых условиях нагружения. 2 з.п. ф-лы, 8 ил., 5 табл.

Изобретение относится к методам контроля физико-химических процессов, вызывающих разрушение рабочей поверхности в парах трения при предельных нагрузках. Метод может быть применен для исследования механизмов износа в парах трения поршень-цилиндр двигателей внутреннего сгорания или насосов, а также каналов стволов артиллерийского оружия. При моделировании нагрузок исследуемых процессов осуществляется подрывом заряда взрывчатого вещества.

Известны прямые методы, способы и устройства испытания [1-6] для получения информации об изнашивании пар трения, позволяющие подобрать удовлетворительные пары трения и дать прогноз их живучести при оптимальных условиях эксплуатации. В этом случае контролируются либо параметры изнашивания, либо продукты изнашивания материалов пар трения, растворенные в смазочных материалах.

Общим недостатком существующих методов и способов является исследование продуктов разрушения, которые содержатся в смазывающих добавках из зоны реакции. Основным недостатком прямых методов является невозможность исследования продуктов, сформированных непосредственно в результате физико-химических процессов и вызывающих разрушение.

Известны методы исследования разрушения поверхности с применением техники атомно-силового микроскопа [7], которые показали, что причиной начала разрушения является физико-химические и структурные изменения на поверхности даже в отсутствие видимой деформации поверхности (мезоскопический масштаб). Это позволяет [7,8] изучить исследуемый процесс в режиме сверхнизкого износа, что невозможно при других методах. Однако данные методы не применимы изучения причин разрушения в условия реальных нагрузок с высокой интенсивностью для механических систем типа цилиндр-поршень или канал ствола.

Известны методы исследования разрушения поверхности с применением техники атомно-силового микроскопа, электронного микроскопа с контролем характеристического рентгеновского излучения с изучаемой поверхности [9]. Данный метод позволил установить механо-химические процессы, которые протекают в зоне контакта индентора и исследуемой поверхности.

Недостатком данного метода является делокализация продуктов механо-химических реакций и, как следствие, не возможность сопоставления продуктов износа с местом их возникновения и\или физико-химическим процессом. Кроме того, такой метод не допускает исследования механизма износа поверхности в присутствии технологической смазки или адсорбированных тонкодисперсных твердых частиц или аэрозолей.

Техническим результатом предлагаемого способа является обеспечение возможности установления механизмов разрушения рабочих поверхностей и их пространственной локализации в практически значимых условиях нагружения.

Целью изобретения является выбор оптимальных условий эксплуатации механизмов и выбор методов и материалов, обеспечивающих защиту рабочих поверхностей [10, 11].

Технический результат достигается тем, что при создании предельной механической нагрузки взрывом, сначала подготавливают образец, состоящий из двух пластин или из двух коаксиальных отрезков трубы, материалы которых соответствуют материалам испытываемого контакта, на одну из сторон образца наносят слой взрывчатого вещества, с обратной стороны обеспечивают контакт образца с твердой или демпфирующей средой, нагружение осуществляют путем подрыва взрывчатого вещества, образец пилят так, чтобы зона контакта была доступна для исследования и проводят необходимую пробоподготовку для удаления остатков абразивного материала от инструмента, исследуют зону контакта на предмет появления продуктов механо-химических процессов, прошедших в нагруженной зоне, судят о физико-химических процессах на границе по составу, количеству и морфологии продуктов, фиксированных в зоне контакта.

Кроме этого, толщину слоя и энергетические параметры взрывчатого вещества выбирают так, чтобы зона нагружения по физическим и геометрическим параметрам соответствовала геометрии реального процесса, например геометрии зоны контакта медного пояска цилиндра с поверхностью поршня или ствола.

Для фиксации продуктов механо-химических процессов в ходе нагружения контакта на одну или обе поверхности образца, расположенные в зоне предстоящего нагружения контакта, наносят технологическую смазку или адсорбируют тонкодисперсные частицы или осаждают аэрозоль.

Анализ источников (патентов, авторских свидетельств, отечественных и зарубежных монографий и статей) и проверка работоспособности предлагаемого способа в лабораторных модельных экспериментах позволяют подтвердить его новизну, изобретательский уровень и промышленную применимость.

Пример реализация способа:

Предлагаемый способ реализован в лабораторных условиях на примере исследования физико-химических процессов на нагруженном контакте сталь - медь, моделирующих протекание механо-химических процессов при перемещении медного уплотнительного кольца по внутренней поверхности стального цилиндра, например двигателя внутреннего сгорания или канала ствола.

При проведении эксперимента выполнялись следующие технологические операции и получены результаты.

1. Подготавливался отрезок стальной трубы, марка стали которого соответствует марке стали цилиндра оригинала.

2. Подготавливался отрезок медной трубы, внешний диаметр которой соответствует внутреннему диаметру стальной трубы, а длина которого равна длине отрезка стальной трубы.

3. Проводилась обработка поверхности обоих отрезков труб для удаления посторонних примесей известными способами.

4. Проводилась обработка поверхности обоих отрезков труб для нанесения смазки и/или аэрозолей известными способами.

5. Отрезок медной трубы вводился в отрезок стальной до совмещения краев отрезков.

6. Контакт медного и стального отрезков труб герметизировался покрытием тонким слоем битумного лака.

7. Медная трубка наполнялась демпфирующим веществом, состав (формула) которого подбирался опытным путем в каждом конкретном исследовании.

8. Концы исследуемого образца герметизировались медными пробками, длина которых превосходила их диаметр в полтора - два раза.

9. Образец окружался взрывчатым веществом, толщину слоя и энергетические параметры которого выбирали так, чтобы зона нагружения по физическим и геометрическим параметрам были сопоставимы с параметрами реального процесса.

10. Проводили подрыв заряда взрывчатого вещества.

11. Распиливали полученный образец на элементы (см. Фиг. 1).

12. Удаляли механические загрязнения.

13. Исследовали зону контакта сталь - медь методами электронной микроскопии и рентгеновской спектроскопии.

14. По перераспределению примесей на границе фаз был установлен механизм физико-химических процессов износа.

Результаты экспериментов в виде фото и спектров представлены ниже.

Для "бездефектной" границы результаты представлены на фото (Фиг. 2) и в таблице 1.

Processing option: All elements analysed (Normalised). All results in atomic %.

Для "малодефектной" границы результаты представлены на фото (Фиг. 3) и в таблице 2.

Processing option: All elements analysed (Normalised). All results in atomic %.

Спектры характеристического рентгеновского излучения на границе «сталь - медь» на графике (фиг. 4) и фото (Фиг. 5).

Пример влияния водной аэрозоли на структуру границы «сталь - медь» представлен в таблице 3 и на фото (Фиг. 6).

Пример изображения границы в режиме вторичных электронов представлен в таблице 4 и на фото (Фиг. 7). Яркость изображения обратно пропорциональна атомному номеру элементов.

Пример абразивных элементов, зафиксированных по месту возникновения в результате физико-химических процессов на границе при нагружении, представлены в таблице 5 и на фото (Фиг. 8).

По результатам анализа экспериментальных данных был исследован физико-химический процесс нагружения на контакте «сталь - медь» и установлен механизм разрушения при перемещении медного уплотнительного кольца по внутренней поверхности стального цилиндра, например, двигателя внутреннего сгорания или канала ствола. Установлено, что механизм обусловлен гидродинамическими явлениями, протекающими в приповерхностных слоях обоих материалов. В современной теории такой механизм пока не рассматривается.

Список использованных источников

1. RU 2494368 (2012). Устройство для определения износа канала ствола артиллерийского оружия. Устройство содержит датчики и блок измерения скорости снаряда, по величине которой судят о "фактическом износе ствола".

2. RU 2494369 (2012). Устройство для определения износа стволов многоствольных пушек артиллерийского оружия. Устройство, содержащее датчики и блок измерения скорости снаряда, отличающееся тем, что дополнительно введены датчики и логические элементы, формирующие сигналы для блока учета выстрелов.

3. RU 2498266 (2012). Устройство для определения износа канала ствола артиллерийского оружия. Устройство содержит два датчика и блок измерения скорости снаряда, аналого-цифровой преобразователь, блок памяти, передающее устройство, приемное устройство, индикатор "фактического износа ствола". Устройство по п. 1, отличающееся тем, что блок анализа скорости движения снаряда содержит несколько пороговых устройств.

4. RU 2245537 (2003). Способ контроля степени износа деталей двигателя, работающих в присутствии смазочного материала. Способ, заключающийся в том, что в ходе эксплуатации двигателя отбирают пробы смазочного материала и определяют в них концентрации элементов продуктов изнашивания, отличающийся тем, что износ деталей определяют периодически в нескольких местах, прогнозируя остаточный ресурс работы деталей.

5. RU 2495400 (2011). Способ оценки фрикционной совместимости пар трения. Способ, заключающийся в том, что производят триботехнические испытания пар трения при различных нагрузках и определяют критическую нагрузку и температуру в момент схватывания, отличающийся тем, что при испытаниях на трение при критических нагрузках определяют время до начала схватывания пары трения, на основе полученных результатов оценивают энергию активации разрушения материала поверхностного слоя и структурно-чувствительный коэффициент, а в качестве критерия фрикционной совместимости пар трения используют расчетное значение времени до схватывания при заданных условиях эксплуатации пары трения.

6. Механика и физика процессов на поверхности и в контакте твердых тел и деталей машин: Межвуз. сб. науч. тр. / Под ред. Н.Б. Демкина. Тверь: ТГТУ, 2006. 232 с. УДК 621.891

7. Derik DeVecchio, Bharat Bhushan, Use of a nanoscale Kelvin probe for detecting wear precursors, Review of scientific instruments (69), N10, 1998, p. 3618-3624

8. Дмитриев А.И., Смаяин А.Ю., Попов В.Л., Псахье С.Г., Многоуровневое моделирование процессов трения и износа на основе численных методов дискретной механики и феноменологической теории/ Физическая мезамеханика 11,4, 2008, с. 15-24.

9. Т. Kasai, X.Y. Fu, D.A. Rigney, A.L. Zharin, Applications of a non-contacting Kelvin probe during sliding, Wear of Materials, (225-229), 1999, p. 1186-1204.

10. Торская E.В. Моделирование фрикционного взаимодействия тел с покрытиями, дис. на соискание уч. степени доктора физико-математических наук, ФГБУН ИПМ РАН им. А.Ю. Ишлинского, Москва, 2014.

11. Гаркунов Д.Н. Триботехника (износ и безызносность), 4-е изд., перераб. и доп. - М.: Изд-во МСХА, 2001. 616 с.


Способ исследования физико-химических процессов на нагруженном контакте
Способ исследования физико-химических процессов на нагруженном контакте
Способ исследования физико-химических процессов на нагруженном контакте
Способ исследования физико-химических процессов на нагруженном контакте
Способ исследования физико-химических процессов на нагруженном контакте
Источник поступления информации: Роспатент

Showing 1-6 of 6 items.
27.04.2013
№216.012.3b3c

Способ динамической градуировки датчиков давления

Изобретение относится к области приборостроения, в частности к способам градуировки и испытаний датчиков давления путем воздействия на них столба жидкости. Сущность: градуировку низкочувствительного датчика осуществляют поэтапно с использованием эталонного высокочувствительного датчика. При...
Тип: Изобретение
Номер охранного документа: 0002480725
Дата охранного документа: 27.04.2013
20.02.2014
№216.012.a27e

Электролизер для получения водорода и озон-кислородной смеси

Изобретение относится к технологии электрохимических производств, в частности к конструкции электролизеров для получения водорода и озон-кислородной смеси, и может найти применение для нужд энергетики (охлаждение водородных генераторов на ТЭЦ, ГРЭС и АЭС), электроники (очистка поверхности...
Тип: Изобретение
Номер охранного документа: 0002507313
Дата охранного документа: 20.02.2014
10.07.2014
№216.012.da33

Водосодержащий пороховой взрывчатый состав

Изобретение относится к области водосодержащих промышленных взрывчатых веществ (ПВВ) на основе гелеобразной матрицы, сенсибилизированной пироксилиновым порохом. Водосодержащий пороховой взрывчатый состав включает порох пироксилиновый или его смесь с баллиститным порохом 40,0-65,0 мас.%,...
Тип: Изобретение
Номер охранного документа: 0002521637
Дата охранного документа: 10.07.2014
10.01.2015
№216.013.17a9

Водосодержащий взрывчатый состав

Изобретение относится к области производства водосодержащих промышленных взрывчатых веществ на основе загущенного водного раствора горючего и окислителей, сенсибилизированного взрывчатыми материалами. Водосодержащий взрывчатый состав содержит сбалансированный водный раствор горючего и...
Тип: Изобретение
Номер охранного документа: 0002537485
Дата охранного документа: 10.01.2015
10.02.2016
№216.014.c480

Гелеобразный водосодержащий пороховой взрывчатый состав

Изобретение относится к водосодержащим промышленным взрывчатым составам на основе гелеобразной матрицы, сенсибилизированной пироксилиновым порохом. Взрывчатый состав включает порох пироксилиновый или его смесь с баллиститным порохом, натриевую селитру, аммиачную селитру, растворимое в воде...
Тип: Изобретение
Номер охранного документа: 0002574626
Дата охранного документа: 10.02.2016
13.01.2017
№217.015.6940

Способ изготовления гелеобразного водосодержащего взрывчатого состава

Изобретение относится к области водосодержащих промышленных взрывчатых составов на основе гелеобразной матрицы, сенсибилизированной пироксилиновым порохом или мощным взрывчатым веществом (ВВ). Способ изготовления взрывчатого состава включает приготовление водного раствора окислителей, введение...
Тип: Изобретение
Номер охранного документа: 0002591946
Дата охранного документа: 20.07.2016
Showing 1-10 of 11 items.
27.04.2013
№216.012.3b3c

Способ динамической градуировки датчиков давления

Изобретение относится к области приборостроения, в частности к способам градуировки и испытаний датчиков давления путем воздействия на них столба жидкости. Сущность: градуировку низкочувствительного датчика осуществляют поэтапно с использованием эталонного высокочувствительного датчика. При...
Тип: Изобретение
Номер охранного документа: 0002480725
Дата охранного документа: 27.04.2013
20.02.2014
№216.012.a27e

Электролизер для получения водорода и озон-кислородной смеси

Изобретение относится к технологии электрохимических производств, в частности к конструкции электролизеров для получения водорода и озон-кислородной смеси, и может найти применение для нужд энергетики (охлаждение водородных генераторов на ТЭЦ, ГРЭС и АЭС), электроники (очистка поверхности...
Тип: Изобретение
Номер охранного документа: 0002507313
Дата охранного документа: 20.02.2014
10.07.2014
№216.012.da33

Водосодержащий пороховой взрывчатый состав

Изобретение относится к области водосодержащих промышленных взрывчатых веществ (ПВВ) на основе гелеобразной матрицы, сенсибилизированной пироксилиновым порохом. Водосодержащий пороховой взрывчатый состав включает порох пироксилиновый или его смесь с баллиститным порохом 40,0-65,0 мас.%,...
Тип: Изобретение
Номер охранного документа: 0002521637
Дата охранного документа: 10.07.2014
10.01.2015
№216.013.17a9

Водосодержащий взрывчатый состав

Изобретение относится к области производства водосодержащих промышленных взрывчатых веществ на основе загущенного водного раствора горючего и окислителей, сенсибилизированного взрывчатыми материалами. Водосодержащий взрывчатый состав содержит сбалансированный водный раствор горючего и...
Тип: Изобретение
Номер охранного документа: 0002537485
Дата охранного документа: 10.01.2015
10.02.2016
№216.014.c480

Гелеобразный водосодержащий пороховой взрывчатый состав

Изобретение относится к водосодержащим промышленным взрывчатым составам на основе гелеобразной матрицы, сенсибилизированной пироксилиновым порохом. Взрывчатый состав включает порох пироксилиновый или его смесь с баллиститным порохом, натриевую селитру, аммиачную селитру, растворимое в воде...
Тип: Изобретение
Номер охранного документа: 0002574626
Дата охранного документа: 10.02.2016
13.01.2017
№217.015.6940

Способ изготовления гелеобразного водосодержащего взрывчатого состава

Изобретение относится к области водосодержащих промышленных взрывчатых составов на основе гелеобразной матрицы, сенсибилизированной пироксилиновым порохом или мощным взрывчатым веществом (ВВ). Способ изготовления взрывчатого состава включает приготовление водного раствора окислителей, введение...
Тип: Изобретение
Номер охранного документа: 0002591946
Дата охранного документа: 20.07.2016
29.03.2019
№219.016.f156

Способ определения профиля концентрации легирующей примеси в полупроводниках

Изобретение относится к полупроводниковой технике и может быть использовано для контроля профиля легирования в полупроводниках. Технический результат - повышение достоверности измерений и расширение диапазона глубин приповерхностного слоя образца, в которых определяется концентрация легирующей...
Тип: Изобретение
Номер охранного документа: 0002393584
Дата охранного документа: 27.06.2010
27.12.2019
№219.017.f327

Способ идентификации и оценки термоядерности скрытно проведенного камуфлетного ядерного взрыва

Изобретение относится к способу идентификации и оценки термоядерности скрытно проведенного камуфлетного ядерного взрыва. Предусмотрено измерение параметров поствзрывных полей и формирование суждения о факте проведения взрыва, причем в центральной зоне сомнительного явления проводят бурение...
Тип: Изобретение
Номер охранного документа: 0002710206
Дата охранного документа: 25.12.2019
04.02.2020
№220.017.fd82

Способ идентификации скрытно проведенного камуфлетного ядерного взрыва

Изобретение относится к области ядерной физики и может использоваться в системах для идентификации ядерных взрывов на основе измеренных и согласованных параметров геофизических и тепловых полей. Заявлен аспособ идентификации скрытно проведенного камуфлетного ядерного взрыва, который заключается...
Тип: Изобретение
Номер охранного документа: 0002712800
Дата охранного документа: 31.01.2020
31.05.2020
№220.018.2304

Способ измерения параметров движения поверхности грунта при подземном взрыве и устройство для его осуществления

Группа изобретений относится к области измерений параметров движения грунта и различных объектов и может быть использовано при исследовании сейсмического действия подземного взрыва. В способе измерения параметров движения поверхности грунта при подземном взрыве, которое реализует устройство для...
Тип: Изобретение
Номер охранного документа: 0002722411
Дата охранного документа: 29.05.2020
+ добавить свой РИД