×
26.06.2019
219.017.9286

СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОИЗНОСНОЙ ПРИСАДКИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002692262
Дата охранного документа
24.06.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к производству органических веществ, а именно к способам получения беззольных органических модификаторов трения на основе эфиров дитиокарбаминовой кислоты, которые могут быть использованы в нефтепереработке и нефтехимии при создании современных и высококачественных смазочных материалов (масел и пластичных смазок). Предложен способ получения противоизносной присадки - беззольного дитиокарбамата, включающий некаталитическое взаимодействие стехиометрических количеств соответствующего диамина, сероуглерода и гаплоидного алкила, и его внесение в состав смазочных композиций, согласно которому взаимодействие исходных компонентов осуществляют в одну стадию при воздействии ультразвукового излучения частотой 25 кГц в течение 3-6 часов при температуре 25-50°С и непосредственно в отсутствии стадий выделения и очистки вводят в состав смазочного масла или пластичной смазки в количестве 0,5-2 мас.% по отношению к конечному смазочному продукту. Технический результат: увеличение выхода противоизносных присадок на основе беззольных дитиокарбаматов до близкого к теоретическому (98-100%) и упрощение способа, как за счет исключения дополнительных стадий выделения и очистки целевого продукта и работы с растворителем, так и за счет исключения аппаратурного оформления с ними связанного. 1 з.п. ф-лы, 1 табл., 5 пр.
Реферат Свернуть Развернуть

Изобретение относится к производству органических веществ, а именно к способам получения беззольных органических модификаторов трения на основе эфиров дитиокарбаминовой кислоты, которые могут быть использованы в нефтепереработке и нефтехимии при создании современных и высококачественных смазочных материалов (масел и пластичных смазок).

Современные моторные масла представляют собой сложные композиции базовых масел различной химической природы и веществ (присадок), которые способны улучшать те или иные эксплуатационные характеристики смазочного материала. В состав пластичных смазок также вводят различные типы присадок для улучшения их технических характеристик. Создание современных смазочных материалов без использования функциональных присадок не представляется возможным. Наиболее важными и значимыми присадками для смазочных материалов являются вещества, которые способны оказывать действие на процессы трения и износа с целью их минимизации. Введение противоизносных присадок в смазочные материалы способствует продлению времени эксплуатации узла трения, а также снижению расхода смазочного материала.

В течение длительного времени в мире применяли так называемые зольные присадки, то есть органические соединения, содержащие в своем составе различные металлы. Например, наибольшее распространение в Российской Федерации и за рубежом, получили присадки на основе цинковых солей диалкилдитиофосфорных кислот.

Несмотря на их высокую противоизносную активность, а также простоту получения и относительно небольшую стоимость, содержащиеся в составе этих присадок атомы фосфора и серы, а также образующаяся сульфатная зола (содержащая цинк) оказывают отрицательное действие как на детали двигателя в условиях длительной эксплуатации, так и на окружающую среду. Также показано отравляющее действие фосфора на катализаторы нейтрализации отработавших газов, что представляет серьезную проблему. По этим причинам при разработке состава моторных масел за рубежом возникло и развивается направление присадок нового поколения, которое получило название Low and Zero SAPS (Low Sulphated Ash, Phosphorus and Sulfur).

To есть современные присадки должны характеризироваться полным отсутствием сульфанатной зольности, а также пониженным содержанием фосфора и серы. Отсутствие зольности присадки можно обеспечить лишь только за счет отсутствия атомов металлов в составе органической молекулы.

В настоящее время в качестве модификаторов трения используют большое количество органических соединений, содержащие различные гетероатомы [Рудник Л.Р. Присадки к смазочным материалам. Свойства и применение. Перевод с англ. яз. 2-го издания под ред. А.М. Данилова. С-Петербург: Профессия. 2013. 928 с.]. Было показано, что присадки, содержащие в своем составе атомы серы и азота, защищают рабочие поверхности от нагрузок с амплитудами от умеренной до высокой, и от износа в режимах граничного и эластогидродинамического смазывания.

В последнее время беззольные дитиокарбаматы получили широкое распространение в качестве противоизносных присадок [Fan K,, Li J., Ma K,, Wu K, Ren Т., Kasrai М., Bancroft G.M. // Tribology International. 2008. V. 41. P. 1226-1231], также была показана их эффективность в качестве противоокислительных агентов в маслах [Gwidon W. Stachowiak, Andrew W. Batchelor. Lubricants and Their Composition // Engineering Tribology (Third Edition). 2006. Р. 51-101].

Органические дитиокарбаматы в основном получают взаимодействием аммониевых или металлических дитиокарбаматных солей и гаплоид органических соединений [Farng L.O. et ai, Dithiocarbamate-derived Ethers as Multifunctional Additived, US Patent No. 5,514,189, 1995]:

RNHC(=S)S-Na+R'Hal→RNHC(=S)S-R'+NaHal

Соли дитиокарбаминовой кислоты в свою очередь получают реакций аминов с сероуглеродом в присутствии щелочей:

RNH2+CS2+NaOH→RNHC(=S)S-Na+H2O

Данный процесс получения беззольных дитиокарбаматов протекает с хорошими выходами, но является двухстадийным, требует стадии выделения полупродукта, а все реакции протекают в растворителях, которые необходимо подбирать в зависимости от радикалов, которые должны присутствовать в молекуле дитиокарбамата.

Органические дитиокарбаматы можно также получить одноступенчатой реакцией диалкиламина, дисульфида углерода и органического субстрата. В качестве последнего предпочтительны олефины, диены, эпоксиды или другие ненасыщенные соединения [Lam W.Y. No. US Patent No. 4,836,942, 1989; Cordis A.B. et al Borated Dihydrocarbyl Dithiocarbamate Lubricant and Composition thereof, US Patent N. 5,370,806, 1994].

Данный способ получения присадки также требует организации трудоемкой стадии выделения целевого продукта.

Наиболее близким к предлагаемому изобретению является некаталитический способ получения беззольных дитиокарбаматов без применения растворителей путем смещения всех компонентов (соответствующего диамина, сероуглерода и галлоидного алкила) в одном реакторе при комнатной температуре [Azizi К, Aryanasab F., Saidi M.R. // Organic Letters. 2006. V. 8. N. 23. P. 5275-5277]. Было показано, что данный способ применим для получения широкой номенклатуры беззольных дитиокарбаматов.

Недостатком этого способа является то, что в ряде случаев, особенно при синтезе дитиокарбаматов с алифатическими радикалами выход целевого продукта не превышает 85% масс, а сам синтез протекает в условиях недостатка галлоидорганического соединения, что приводит к накоплению в продуктах реакции непрореагировавших исходного амина и сероуглерода. Таким образом, для выделения целевого продукта реакции также требуется стадия выделения с применением большого количества растворителей и трудоемких процедур.

Задача предлагаемого изобретения заключается в создании способа получения противоизносной присадки на основе различных дитиокарбаматов из соответствующих аминов, сероуглерода и галлоидорганического соединения с выходами целевого продукта близкими к теоретическим более простым способом.

Поставленная задача решается тем, что предложен способ получения противоизносной присадки - беззольного дитиокарбамата, включающий некаталитическое взаимодействие стехиометрических количеств соответствующего диамина, сероуглерода и гаплоидного алкила, в котором взаимодействие исходных компонентов осуществляют в одну стадию при воздействии ультразвукового излучения частотой 25 кГц в течение 3-6 часов при температуре 25-50°С и непосредственно в отсутствии стадий выделения и очистки. Образующийся таким образом беззольный дитиокарбамат вводят в состав смазочного масла или пластичной смазки в количестве 0,5-2% масс, по отношению к конечному смазочному материалу.

Взаимодействие исходных компонентов протекает по следующей схеме:

Воздействие ультразвуком способствует эффективному перемешиванию реагентов и удалению образующихся низкомолекулярных неорганических соединений. Получаемый согласно изобретению дитиокарбамат состоит из целевого продукта, который может быть использован без дальнейшей переработки в качестве противоизносной присадки в составе композиций смазочных масел и пластичных смазок.

Технический результат, который может быть получен от использования предлагаемого изобретения, заключается в

- увеличении выхода противоизносных присадок на основе беззольных дитиокарбаматов до близкого к теоретическому (98-100%);

- упрощении способа как за счет исключения дополнительных стадий выделения и очистки целевого продукта и работы с растворителем, так и за счет исключения аппаратурного оформления с ними связанного.

Нижеследующие примеры иллюстрируют изобретение, но никоим образом не ограничивают область его применения.

Пример 1

0,1 моль диэтиламина, 0,1 моль сероуглерода и 0,1 моль метилиойдида смешивали в течении 3 часов при ультразвуковой обработке частотой 25 кГц в лабораторной ультразвуковой ванне при 25°С.

Выход беззольного дитиокарбамата (N,N-диэтил-S-метилдитиокарбамат) составил 99% масс.

Синтезированный беззольный дитиокарбамат вводили с состав масла и пластичной смазки без какой-либо дополнительной обработки в массовой концентрации 0,5, 1,0 и 2,0%. В качестве масла использовали н-гексадекан, а в качестве пластичной смазки - смазку марки Политерм-Многоцелевая.

Противоизносные свойства смазочных композиций оценивали по величине диаметра пятна износа, который определяли на четырехшариковой машине трения в соответствии с ОСТ- 9490-75 «Материалы смазочные жидкие и пластичные. Метод определения трибологических характеристик на четырехшариковой машине» при нагрузке 196 Н и времени эксперимента 1 час.

Результаты эксперимента приведены в таблице.

Пример 2

0,1 моль дибутиламина, 0,1 моль сероуглерода и 0,1 моль метилиойдида смешивали в течении 3 часов при ультразвуковой обработке частотой 25 кГц в лабораторной ультразвуковой ванне при 25°С.

Выход беззольного дитиокарбамата (N,N-дибутил-S-метилдитиокарбамат) составил 100% масс.

Испытание противоизносных свойств полученного беззольного дитиокарбамата в составе смазочных масле и пластичных смазок проводили способом описанном в примере 1.

Пример 3

0,1 моль дибутиламина, 0,1 моль сероуглерода и 0,1 моль бутилбромида смешивали в течении 5 часов при ультразвуковой обработке частотой 25 кГц в лабораторной ультразвуковой ванне.

Выход беззольного дитиокарбамата (N,N-дибутил-S-бутилдитиокарбамат) составил 98% масс.

Испытание противоизносных свойств полученного беззольного дитиокарбамата в составе смазочных масле и пластичных смазок проводили способом описанном в примере 1.

Пример 4

0,1 моль диамиламина, 0,1 моль сероуглерода и 0,1 моль метилйодида смешивали в течении 6 часов при ультразвуковой обработке частотой 25 кГц в лабораторной ультразвуковой ванне.

Выход беззольного дитиокарбамата (N,N-диамил-S-метилдитиокарбамат) составил 99% масс.

Испытание противоизносных свойств полученного беззольного дитиокарбамата в составе смазочных масле и пластичных смазок проводили способом описанном в примере 1.

Пример 5

0,1 моль диамиламина, 0,1 моль сероуглерода и 0,1 моль бутилбромида смешивали в течении 6 часов при ультразвуковой обработке частотой 25 кГц в лабораторной ультразвуковой ванне.

Выход беззольного дитиокарбамата (N,N-дибутил-S-бутилдитиокарбамат) составил 98% масс.

Испытание противоизносных свойств полученного беззольного дитиокарбамата в составе смазочных масле и пластичных смазок проводили способом описанном в примере 1.

Таким образом, реализация данного способа получения противоизносной присадки позволит получать беззольные дитиокарбаматы в одну стадию, без использования растворителей и без осуществления последующей процедуры очистки, а полученные беззольные дитиокарбаматы могут быть использованы в качестве высокоэффективных противоизносных присадок в составе композиций смазочных масел и пластичных смазок без какой-либо дополнительной обработки.

Источник поступления информации: Роспатент

Showing 1-10 of 10 items.
27.02.2013
№216.012.2b35

Пластичная смазка для высокоскоростных радиально-упорных подшипников для гироскопов и синхронных гиромоторов

Настоящее изобретение относится к пластичной смазке для высокоскоростных радиально-упорных подшипников гироскопов и синхронных гиромоторов, содержащая дисперсионную среду, дисперсную фазу и присадки функционального назначения, при этом дисперсионная среда содержит смесь маловязких...
Тип: Изобретение
Номер охранного документа: 0002476588
Дата охранного документа: 27.02.2013
10.08.2013
№216.012.5c22

Катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии

Изобретение относится к катализаторам получения алифатических углеводородов. Описан катализатор для получения алифатических углеводородов из оксида углерода и водорода, содержащий наноразмерные частицы железа и сформированный in situ непосредственно в зоне реакции в процессе термообработки...
Тип: Изобретение
Номер охранного документа: 0002489207
Дата охранного документа: 10.08.2013
20.09.2013
№216.012.6a88

Катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии

Изобретение относится к катализаторам получения алифатических углеводородов из оксида углерода и водорода и их использованию. Описан катализатор для получения алифатических углеводородов из оксида углерода и водорода, содержащий наноразмерные каталитически активные частицы металлического...
Тип: Изобретение
Номер охранного документа: 0002492923
Дата охранного документа: 20.09.2013
10.02.2014
№216.012.9ddb

Пористый керамический каталитический модуль и способ переработки отходящих продуктов процесса фишера-тропша с его использованием

Настоящее изобретение относится к получению водородсодержащего газа и может быть использовано в промышленности при переработке отходящих продуктов процесса Фишера-Тропша в присутствии пористой мембранно-каталитической системы. Пористая каталитическая мембрана представляет собой продукт...
Тип: Изобретение
Номер охранного документа: 0002506119
Дата охранного документа: 10.02.2014
10.08.2014
№216.012.e612

Пластичная смазка с повышенной работоспособностью и способ ее получения

Настоящее изобретение относится к пластичной смазке на основе углеводородной дисперсионной среды и полимочевины, при этом она содержит в качестве углеводородной дисперсионной среды полиалкилбензол или его смесь с нефтяным маслом при следующем соотношении компонентов, мас.%: полимочевина - 6-15;...
Тип: Изобретение
Номер охранного документа: 0002524691
Дата охранного документа: 10.08.2014
10.06.2016
№216.015.49dd

Пластичная смазка с улучшенными противоизносными и противозадирными свойствами и способ ее получения

Настоящее изобретение относится к пластичной смазке, содержащей минеральное или синтетическое масло, загуститель - полимочевину и противоизносный наполнитель - отход производства минеральных удобрений - обезвоженный фосфогипс при следующем соотношении компонентов, % мас.: полимочевина 1-15,...
Тип: Изобретение
Номер охранного документа: 0002586686
Дата охранного документа: 10.06.2016
29.05.2019
№219.017.6a10

Катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии

Использование: нефтехимия, газохимия, углехимия, производство синтетических моторных топлив и смазочных масел. Описан катализатор для получения алифатических углеводородов из оксида углерода СО и водорода, содержащий наноразмерные частицы железа, промотированные оксидами калия и алюминия,...
Тип: Изобретение
Номер охранного документа: 0002466790
Дата охранного документа: 20.11.2012
10.07.2019
№219.017.af9d

Цифровой рулевой привод

Изобретение относится к области машиностроения, и в частности к цифровым рулевым приводам, предназначенным для отклонения камер жидкостных ракетных двигателей. Привод включает гидроцилиндр с выходным штоком, цифроаналоговый привод, имеющий корпус, внутри которого последовательно расположены...
Тип: Изобретение
Номер охранного документа: 0002454574
Дата охранного документа: 27.06.2012
12.08.2019
№219.017.be37

Низкотемпературная консистентная смазка

Изобретение относится к нефтехимической области, а конкретнее к смазкам, применяемым в узлах трения машин и механизмов, эксплуатируемых в условиях Крайнего Севера и Арктики. Предложена низкотемпературная консистентная смазка, включающая базовое масло и загуститель, которая в качестве...
Тип: Изобретение
Номер охранного документа: 0002697057
Дата охранного документа: 09.08.2019
15.05.2023
№223.018.5821

Способ получения кокса с пониженным содержанием серы (варианты)

Изобретение относится к области нефтепереработки и коксохимии, в частности, к области получения нефтяного кокса с пониженным содержанием серы путем предварительного окисления сернистых соединений, содержащихся в сырье для коксования, до соответствующих сульфонов и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002768163
Дата охранного документа: 23.03.2022
+ добавить свой РИД