×
20.06.2019
219.017.8da9

Результат интеллектуальной деятельности: Способ регазификации жидкости и установка для регазификации жидкости

Вид РИД

Изобретение

Аннотация: Изобретение относится к области теплотехники и может быть использовано для испарения жидкостей и газификации сжиженного природного газа (СПГ) и сжиженных углеводородных газов (СУГ). Способ и установка регазификации жидкости включает нагрев жидкости из емкости (1) в теплообменнике-подогревателе (8) до температуры не более температуры насыщения, перед нагревом повышают давление жидкости насосом (3). После направляют жидкость в дроссельный канал (11), в котором реализуют критическое истечение с образованием двухфазного парожидкостного потока, который нагревают в теплообменнике-испарителе (14), а на выходе из него получают газовый поток. Техническим результатом является повышение надежности и экономичности процесса газификации и обеспечение устойчивой работы теплообменника без кавитации в его гидравлическом тракте. 2 н. и 4 з.п. ф-лы, 1 ил.

Изобретение относится к области теплотехники и может быть использовано для испарения жидкостей, преимущественно криогенных, в том числе для газификации сжиженного природного газа (СПГ) и сжиженных углеводородных газов (СУГ), а также в ракетно-космической технике и в системах заправки природным газом транспортных средств.

Известен испаритель сжиженного углеводородного газа (патент РФ №2594833, МПК F17C 9/02, опубл. 20.08.2016), содержащий корпус, состоящий из наружной и внутренней стенок. В выходной части корпус выполнен глухим, дополнительный теплообменник, расположенный на оси корпуса и состоящий из трех жестко соединенных между собой цилиндрических оболочек, образующих кольцевые полости для прохода сжиженного углеводородного газа, смесительную головку, расположенную во входной части корпуса и включающую в себя втулки, равномерно расположенные по окружности, огневое и наружное днище, топливный коллектор с форсунками, расположенными равномерно по окружности, запальное устройство, расположенное на боковой поверхности корпуса. В выходной части дополнительного теплообменника установлена дымовая труба. Данный испаритель сжиженного углеводородного газа не обеспечивает устойчивую работу в режиме переменой производительности вследствие возникновения кризисных явлений в щелевых каналах теплообменников и возникновения кризиса теплоотдачи.

Известен испаритель криогенной жидкости (патент РФ №2347972, МПК F17C 9/02, опубл. 27.02.2009), содержащий корпус, выполненный в виде двухслойных цилиндрических оболочек, образующих кольцевую полость для прохода греющего теплоносителя, каждая из оболочек состоит из двух жестко соединенных между собой цилиндров, между которыми образованы каналы, объединенные в коллекторы для подвода и коллекторы для отвода криогенного продукта, при этом на входе в кольцевую полость закреплена крышка, в которой установлены смесительные элементы и воспламенительное устройство, а на выходе закреплен газовод. Данный испаритель криогенной жидкости содержит теплообменники, каналы которых образованы двухслойными цилиндрическими оболочками и при нагреве жидкости и ее испарение в потоке будут возникать кризисные явления, сопровождающиеся кавитацией и неустойчивыми режимами течения парожидкостной среды при изменении нагрузки.

Известен способ подогрева криогенной жидкости (патент №2511805, МПК F17C 9/02, опубликовано: 10.04.2014), принятый за прототип предлагаемого способа, заключающийся в пропускании жидкости через теплообменные элементы с подведением к ним тепла. Корпус испарителя криогенной жидкости выполняют в виде, как минимум, двух двухслойных оболочек, наружной и внутренней, с образованием кольцевой полости для прохода греющего теплоносителя. Каждую из оболочек выполняют состоящей из двух жестко соединенных между собой обечаек, между которыми образуют каналы для прохода криогенного компонента, которые объединяют в коллекторы. Криогенную жидкость подают во внутреннюю полость внутренней оболочки из коллектора, а отводят через патрубок, установленный в центральной части внутренней оболочки. Во внутреннюю полость наружной оболочки криогенную жидкость подают из коллектора, расположенного на сужающейся части наружной оболочки, причем подают таким образом, что заполненные каналы равномерно чередуются с незаполненными, при этом пропускают криогенную жидкость через всю оболочку, затем разворачивают в начальной части цилиндрической оболочки и возвращают к выходному коллектору, расположенному в сужающейся части, через оставшуюся часть каналов. Данный способ подогрева криогенной жидкости предполагает нагрев и испарение жидкости в едином теплообменов контуре, что будет сопровождаться неустойчивыми режимами течения, пульсациями давления и кавитацией, особенно в режимах переменных нагрузок.

Техническая проблема, на решение которой направлено предлагаемое изобретение, заключается в создании эффективного способа и устройства для регазификации жидкостей, в том числе криогенных, расширения функциональных возможностей способа и установки регазификации жидкостей, возможности работы в нестационарных условиях и повышения надежности работы установки за счет исключения явлений кавитации и кризиса теплообмена в гидравлических трактах теплообменников.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в повышении надежности и экономичности процесса газификации жидкостей, преимущественно криогенных и обеспечения устойчивой работы теплообменника без кавитации в его гидравлическом тракте.

Технический результат достигается тем, что в способе регазификации жидкости, включающем пропускание жидкости через теплообменники с подведением к ним тепла и испарение жидкости, новым является то, что перед нагревом повышают давление жидкости и осуществляют ее предварительный нагрев в теплообменнике - подогревателе до температуры не более температуры насыщения, затем направляют жидкость в дроссельный канал, в котором реализуют критическое истечение с образованием двухфазного парожидкостного потока, который нагревают в теплообменнике-испарителе, а на выходе получают газовый поток.

Жидкость перед подачей в теплообменник-подогреватель и в дроссельный канал подвергают закрутке.

Двухфазный поток перед подачей в теплообменник-испаритель подвергают закрутке.

Технический результат достигается тем, что в установке для регазификации жидкости, включающей теплообменник-испаритель с подведением к нему тепла для получения газового потока, новым является то что, установка дополнительно снабжена последовательно установленными перед теплообменником-испарителем: насосом для подачи испаряемой жидкости, теплообменником-подогревателем с датчиками давления и температуры, дроссельным устройством с датчиками давления.

Перед теплообменником-подогревателем и дроссельным устройством установлены завихрители, а перед теплообменником-испарителем установлено закручивающее устройство.

Сущность способа регазификации жидкости заключается в следующем: забор жидкости из емкости и подача ее с повышением давления в теплообменник-подогреватель; закрутка потока жидкости, поступающей в теплообменник-подогреватель с помощью завихрителя; подвод энергии к потоку жидкости в теплообменнике-подогревателе и нагрев ее до температуры не превышающей температуру насыщения, которая соответствует давлению жидкости на выходе из теплообменника подогревателя, закрутка потока и подача его в дроссельное устройство; адиабатное расширение, жидкости в дроссельном устройстве с образованием двухфазного потока; закрутка двухфазного потока и подача его в теплообменник-испаритель; подвод энергии к двухфазному потоку до испарения жидкой фазы и нагрев газового потока до заданной температуры, что приводит к повышению надежности и экономичности процесса газификации криогенных жидкостей и устойчивой работы теплообменников без кавитации в его гидравлическом тракте.

На фигуре представлена технологическая схема установки для регазификации жидкости.

Установка для регазификации жидкости содержит емкость 1, магистраль заправки 2, насос 3, датчик расхода 4, датчик давления (Р1) 5, датчик температуры (Т1) 6, завихритель 7; теплообменник-подогреватель 8, датчик температуры (Т2) 9, датчик давления (Р2) 10, дроссельное устройство 11, датчик давления (Р3) 12, закручивающее устройство 13, теплообменник-испаритель 14, датчик давления (PB) 15, датчик температуры (TB) 16, клапан предохранительный 17, датчик давления (Р0) 18, датчик температуры (Т0) 19, магистраль выхода 20, запорные вентили (В1, В2, В3, В4, В5).

Установка, реализующая способ, (фиг. 1), включает емкость 1 для жидкости, подлежащей регазификации. Емкость 1 оснащена магистралью заправки 2 с запорным вентилем В2, клапаном предохранительным 17. В гидравлическом контуре установки, соединяющей емкость 1 с магистралью выхода 20, последовательно установлены запорные вентили B1 и В3, насос 3, датчик расхода 4, завихритель 7, теплообменник-подогреватель 8, дроссельное устройство 11, закручивающее устройство 13, теплообменник-испаритель 14.

Для измерения и регистрации параметров рабочего тела процесса регазификации жидкости гидравлический контур установки оснащен датчиками давления и температуры: датчиком давления (Р0) 18 и датчиком температуры (Т0) 19 для измерения параметров жидкости в емкости 1; датчиком давления (Р1) 5 и датчиком температуры (Т1) 6 для измерения параметров потока жидкости на входе в теплообменник-подогреватель 8; датчиком давления (Р2) 10 и датчиком температуры (Т2) 9 для измерения параметров жидкости на выходе из теплообменника-подогревателя 8; датчиком давления (Р3) 12 для измерения давления на выходе из дроссельного устройства 11; датчиком давления (PB) 15 и датчик температуры (TB) 16 для измерения параметров газового потока после теплообменника-испарителя в магистрали выхода 20.

В качестве завихрителя 7 и закручивающего устройства 13 могут быть использованы лопаточные или шнековые завихрители. В качестве дроссельного устройства 11 могут использоваться каналы переменного сечения, например, сопла Лаваля или иные устройства, в которых реализуется течение жидкости с отрицательным градиентом давления. В качестве теплообменников 8 и 14 могут быть использованы рекуперативные теплообменники и прочие теплообменники, в которых подвод энергии к потоку осуществляется в форме тепла или иными способами: электрическим, механическим и другими способами.

Согласно технологической схеме, представленной на фигуре, реализация способа регазификации жидкости осуществляется следующим образом.

В исходном состоянии в емкости 1 находится жидкость с температурой Т0 и давлением Р0. Вентиль В2 и В4 находятся в положении «закрыто», остальные вентили (В1, В3, В5) находятся в положении «открыто». Вентиль В4 предназначен для дренажа рабочего тела из гидравлического тракта установки при ее обслуживании (консервация, ремонт и т.п.).

Жидкость, подлежащая регазификации, забирается из емкости 1 с помощью насоса 3 и под давлением Р1, большем Р0, и температурой Т1 поступает в первый завихритель 7, в котором поток жидкости закручивается и далее поступает в теплообменник-подогреватель 8. Закрутка потока осуществляется с целью интенсификации процесса теплоотдачи в гидравлическом тракте теплообменника-подогревателя 8. В теплообменнике-подогревателе 8 жидкость нагревается до температуры Т2, не превышающей температуру насыщения жидкости TS, соответствующую давлению Р2 на выходе из теплообменника подогревателя 8, Т2≤TS(P2). Величина теплового потока QТП, обеспечивающая нагрев жидкости в теплообменнике подогревателе до температуры Т2, определяется выражением QТП=G⋅cж⋅(T2-T1), где G - массовый расход жидкости измеряемый датчиком расхода 4, сж - средняя массовая теплоемкость жидкости в интервале температур T1…T2. Из теплообменника-подогревателя 8 поток жидкости направляется во второй завихритель 7 и далее в дроссельное устройство 11, где реализуется критический режим течения жидкости с отрицательным градиентом давления и образованием в гидравлическом тракте двухфазного потока. Условием образования двухфазного потока является понижение давления от Р2 - на входе в дроссельное устройство 11, до Р3 - на его выходе, величина которого не должна превышать давление насыщения PS, соответствующее температуре жидкости. Величина давления Р3 определяется условием: Р3<PS(T2), где PS(T2) - давление насыщенных паров жидкости при температуре Т2. Реализация критического режима течения определяется условием (Р32)≤βкр, где βкр - критический перепад давлений равный βкр=0,5…0,55 (Накорчевский А.И., Гулый С.И. Уточнение наступления критических режимов при истечении вскипающих жидкостей. // Пром. теплотехника, 1992, N 4, с. 73-76). При критическом перепаде давлений и выполнении условия Р3<PS(T2) в тракте дроссельного устройства 11 происходит зарождение и развитие паровой фазы и капельный поток жидкости превращается в двухфазный парожидкостный поток (Дейч М.Е., Филиппов Г.А. Газодинамика двухфазных сред. - М.: Энергоиздат, 1981. стр. 391-393;). После дроссельного устройства 11 двухфазный поток поступает в закручивающее устройство 13, установленное непосредственно на входе в теплообменник-испаритель 14. В теплообменнике-испарителе 14 происходит испарение жидкой фазы двухфазного потока и нагрев газового потока до температуры TB, которая контролируется датчиком температуры 16, установленным в магистрали выхода 20. Для испарения жидкой фазы и нагрева потока до температуры TB в теплообменнике-испарителе 14 к двухфазной среде подводится тепловой поток QТИ, величина которого определяется выражением QТИ=G(1-x)r+G⋅cп[TB-TS(P3)], где r - скрытая теплота парообразования жидкости, х - массовое паросодержание двухфазного потока на входе в теплообменник-испаритель 14, сп - теплоемкость пара, TS(P3) - температура насыщенных паров жидкости, соответствующая давлению Р3. Массовое паросодержание двухфазного потока х, для случая адиабатного процесса в дроссельном устройстве 11, может быть рассчитано на основании свойств адитивности из условия изоэнтропного процесса течения вскипающей жидкости в дроссельном устройстве (см. Кириллин В.А., Сычев В.В., Шейдлин А.Е. Техническая термодинамика. М.: Энергоатомиздат 1983, стр. 170-171).

Закрутка потока жидкости, поступающего в теплообменник-подогреватель 14 способствует интенсификации процесса теплоотдачи за счет перемешивания потока. Закрутка потока жидкости, поступающего в дроссельное устройство 11, способствует выравниванию полей концентрации фаз в двухфазном потоке и интенсификации процесса парообразования, за счет дробления капель и увеличения их поверхности. Закрутка двухфазного потока, поступающего в теплообменник-испаритель 14, способствует дрейфу жидкой фазы к его стенкам и приводит к интенсификации теплоотдачи от стенок теплообменника 14 к потоку.

Предлагаемый способ регазификации сжиженного природного газа или иной жидкости позволяет регулировать производительность G и температуру газа поступающего в магистраль выхода 20. Регулирование производительности обеспечивается насосом 3 и изменением площади проходного сечения дроссельного устройства 11, в качестве которого может быть использован канал переменного сечения. Температура Т2 на выходе из теплообменника-подогревателя 8 обеспечивается заданием величины теплового потока QТП, подводимого к жидкости в тракте теплообменника 8. Температура газа TB в магистрали выхода 20 обеспечивается заданием величины теплового потока QТИ, подводимого к двухфазной среде в теплообменнике-испарителе 14.

Таким образом, образование паровой фазы из капельной жидкости осуществляется поэтапно следующим образом: повышение давления жидкости и ее нагрев без образования паровой фазы; дросселирование (адиабатное расширение) жидкости с образованием двухфазного потока; подвод тепла к двухфазному потоку до испарения жидкой фазы, дополнительная закрутка как потока жидкости, так и двухфазного потока, что приводит к интенсификации тепло и массообменных процессов, предотвращению кавитации в гидравлических трактах теплообменных аппаратах.


Способ регазификации жидкости и установка для регазификации жидкости
Источник поступления информации: Роспатент

Showing 1-10 of 127 items.
20.08.2016
№216.015.4d30

Резцовая головка для удаления внутреннего грата в электросварных трубах

Изобретение относится к области производства труб и может быть использовано для снятия внутреннего грата при изготовлении электросварных труб. Резцовая головка содержит корпус 1 с жестко закрепленными в нем передним и задним опорными роликами 4 и 5, резцедержатель 2 с резцом 3, рычаг 6 с...
Тип: Изобретение
Номер охранного документа: 0002595163
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.4e1f

Камера сгорания газотурбинного двигателя с регулируемым распределением воздуха

Камера сгорания газотурбинного двигателя с регулируемым распределением воздуха содержит корпус, размещенную в ней жаровую трубу с форсунками и завихрителем с входным коническим участком, состоящую из двух телескопически соединенных между собой передней и задней частей. Каждая из частей жаровой...
Тип: Изобретение
Номер охранного документа: 0002595287
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.4e73

Способ переноса изображений с трансферной пленки на металлоизделия объемной конструкции электротермовакуумной обработкой

Изобретение относится к области технологии нанесения полимерных порошковых красок и композиций на их основе в электростатическом поле и предназначено для получения высокопрочных изображений на металлических изделиях при изготовлении цветных надписей, информационно-указательных знаков, рисунков...
Тип: Изобретение
Номер охранного документа: 0002595537
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.512f

Шаговый электродвигатель

Изобретение относится к электрическим машинам, а конкретно к шаговым электродвигателям с дискретным вращением, и может быть использовано в качестве исполнительного двигателя, например, в системах без датчика угла. Технический результат заключается в обеспечении конструкции электродвигателя,...
Тип: Изобретение
Номер охранного документа: 0002596145
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.5286

Магнитный редуктор

Изобретение относится к электромагнитным механизмам, а именно к бесконтактным магнитным редукторам, и может быть использовано в качестве передаточного устройства в механических системах с большим ресурсом работы при ударных нагрузках. Технический результат заключается в улучшении...
Тип: Изобретение
Номер охранного документа: 0002594018
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55c9

Разборная оправка для формообразования полых изделий

Разборная оправка для формообразования полых изделий относится к области авиа- и машиностроения и может быть использована для изготовления тонкостенных полых деталей из современных технологичных материалов. Разборная оправка содержит монтажный стержень 1 и формообразующие сегменты 2. Оправка с...
Тип: Изобретение
Номер охранного документа: 0002593447
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5c49

Способ монтажа оконных и дверных блоков в домах из бревен и бруса

Предложен способ монтажа оконных и дверных блоков в домах из бревен и бруса. Он включает изготовление и установку обсады, содержащей «гребни», «стояки», горизонтальные элементы. При этом «гребень» обсады изготавливают отдельно из пиломатериала, «стояки» изготавливают непосредственно по...
Тип: Изобретение
Номер охранного документа: 0002589536
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e87

Инструмент для соединения деталей из листового металла клинчеванием

Изобретение относится к обработке металлов давлением, а именно к способам и устройствам для соединения наложенных друг на друга металлических листов методом местной пластической деформации с образованием взаимозацепляющегося соединения. Соединение осуществляется с помощью смонтированных в...
Тип: Изобретение
Номер охранного документа: 0002590424
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6211

Способ проведения экзотермических и эндотермических каталитических процессов частичного превращения углеводородов и реакторная группа для его осуществления

Изобретение относится к химической, нефтехимической и энергетической промышленности и может быть использовано для проведения каталитических процессов со значительными тепловыми эффектами при частичном превращении углеводородов. Способ проведения экзотермических и эндотермических каталитических...
Тип: Изобретение
Номер охранного документа: 0002588617
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.77da

Устройство для определения механических свойств полимерных материалов

Изобретение относится к технике испытания материалов, в частности к испытаниям полимерных материалов на растяжение-сжатие. Устройство содержит термокриокамеру, размещенные в ней подвижный и неподвижный захваты для образца, механизм деформации образца, выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002598981
Дата охранного документа: 10.10.2016
Showing 1-10 of 19 items.
10.02.2015
№216.013.21e9

Одоризатор природного газа (варианты)

Изобретение относится к автоматическому регулированию расхода газообразной среды и может быть использовано в процессе одорирования природного газа, в том числе и при малых расходах газа. Технический результат, достигаемый от осуществления изобретения, заключается в расширении функциональных...
Тип: Изобретение
Номер охранного документа: 0002540134
Дата охранного документа: 10.02.2015
20.04.2015
№216.013.42c0

Модуль регуляторов давления

Изобретение относится к машиностроению и может быть использовано для снижения и регулирования давления газа. Техническим результатом изобретения является повышение надежности, точности поддержания выходного давления и повышение стабильности работы. Модуль регуляторов давления содержит канал...
Тип: Изобретение
Номер охранного документа: 0002548586
Дата охранного документа: 20.04.2015
25.08.2017
№217.015.9e47

Пилот-регулятор

Изобретение относится к регулирующей арматуре. Пилот-регулятор (вариант 1) содержит корпус (2), щтуцер подачи импульсного газа (1), канал подачи импульсного газа Р, крышку (20) с накидной гайкой (15), моноклапан (33) с двумя коническими поверхностями А и Д, седло неподвижное (32), опирающееся...
Тип: Изобретение
Номер охранного документа: 0002610768
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.bcf5

Регулятор давления газа

Изобретение относится к машиностроению, а именно к пневмоавтоматике, и может быть использовано для регулирования давления газа. Регулятор содержит каналы входа (5) и выхода (13) газа, корпус (1) с задней крышкой (22), внутри которого на штоке (25), установленном с возможностью осевого...
Тип: Изобретение
Номер охранного документа: 0002616220
Дата охранного документа: 13.04.2017
29.12.2017
№217.015.f208

Сильфонный насос-дозатор - регулятор расхода

Изобретение относится к области гидравлики, в частности к насосам и регуляторам расхода жидких сред, преимущественно токсичных, летучих, агрессивных. Сильфонный насос-дозатор - регулятор расхода содержит два корпуса 3 и 4, внутри которых помещены сильфоны 9 и 10. Корпуса 3 и 4 жестко соединены...
Тип: Изобретение
Номер охранного документа: 0002636949
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f273

Устройство подачи, измерения, регулирования количества и расхода жидкости

Изобретение относится к области гидравлики, в частности к насосам и регуляторам расхода жидких сред, преимущественно токсичных, летучих, агрессивных. Устройство содержит корпус 3, к которому с одной стороны герметично прикреплена через кольцо 23 верхняя крышка 4 и с другой стороны - нижняя...
Тип: Изобретение
Номер охранного документа: 0002636948
Дата охранного документа: 29.11.2017
05.12.2018
№218.016.a39c

Стенд для измерения энергетических показателей энергоустановок

Изобретение относится к измерительной технике и может быть использовано для определения осевого усилия, угловой скорости, крутящего момента при экспериментальных исследованиях турбин и прочих энергоустановок. Стенд включает корпус 1, в котором установлен вращающийся вал 2, опирающийся на...
Тип: Изобретение
Номер охранного документа: 0002673869
Дата охранного документа: 30.11.2018
23.02.2019
№219.016.c714

Одоризатор газа

Изобретение относится к автоматическому регулированию количества одоранта, поступающего в газовый поток, и может быть использовано в различных отраслях промышленности, например, в процессе одорирования природного газа. Одоризатор газа содержит расходную емкость (5) с патрубком для подачи...
Тип: Изобретение
Номер охранного документа: 0002680578
Дата охранного документа: 22.02.2019
11.03.2019
№219.016.d845

Глушитель шума газового потока (варианты)

Изобретение относится к области машиностроения, а именно к глушителям шума газовых струй активного типа, может быть использовано в магистралях для транспортировки газа. Глушитель шума (вариант 1) содержит цилиндрический корпус (1), внутри которого установлена проницаемая для газового потока...
Тип: Изобретение
Номер охранного документа: 0002391521
Дата охранного документа: 10.06.2010
17.04.2019
№219.017.15ac

Система подачи криогенного топлива в энергетическую установку

Изобретение относится к машиностроению, в частности к криогенным топливным системам энергетических установок. Теплообменник-газификатор (2) частично газифицирует топливо при постоянном давлении. Адиабатное парогенерирующее устройство - дроссель либо сопло Лаваля (3) - снижает давление и...
Тип: Изобретение
Номер охранного документа: 0002347934
Дата охранного документа: 27.02.2009
+ добавить свой РИД