×
19.06.2019
219.017.8960

Результат интеллектуальной деятельности: СПОСОБ ЭКРАНИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ ТРЕБУЕМЫХ ДИАПАЗОНОВ ДЛИН ВОЛН ОБЪЕКТА

Вид РИД

Изобретение

№ охранного документа
0002425018
Дата охранного документа
27.07.2011
Аннотация: Изобретение относится к способам защиты летательных аппаратов и наземных транспортных средств от обнаружения, сопровождения, определения точного местонахождения и наведения оружия по исходящим от них электромагнитным излучениям. При реализации способа осуществляют диспергирование в воздух между объектом и приемником излучений аэрозолеобразующего наносостава из микро- и наночастиц проводящих материалов, формирующих пространство экрана. Аэрозолеобразующий наносостав формируют из нескольких наноподсоставов, каждый из которых образуют из совокупности наночастиц, обеспечивающих ослабление излучения в конкретном, требуемом диапазоне длин волн. Изобретение обеспечивает эффективное экранирование электромагнитных излучений объекта для требуемых диапазонов длин волн и с приемлемыми для бортового использования массогабаритными характеристиками, что позволяет увеличить на борту количество АНС и, следовательно, повысить время непрерывного экранирования объекта. 1 з.п. ф-лы, 1 табл.

Изобретение относится к способам защиты летательных аппаратов и наземных транспортных средств от обнаружения, сопровождения, определения точного местонахождения и наведения оружия по исходящим от них электромагнитным излучениям.

С появлением комбинированных головок самонаведения, реагирующих одновременно на несколько видов электромагнитных излучений, возникла необходимость создания на борту объекта системы, обеспечивающей эффективное экранирование излучений требуемых диапазонов длин волн. Известные способы в основном экранируют инфракрасное и/или радиолокационное излучения объекта.

Известен способ экранировки инфракрасного излучения объекта путем формирования объема V, заполненного при взрыве пиротехнических средств аэрозолем из микро- и/или наночастиц, причем для повышения эффективности рассеяния инфракрасного излучения в состав аэрозоля добавляют частицы латунной или бронзовой фольги с размерами K1Δx≈Δy≈Δz≈λИК/2, K1=5…200 (см. патент США №4704966, МПК C06D 3/00, опубл.10.11.1987). Указанные частицы предварительно компактируют и обеспечивают их диспергирование при взрыве пиротехнических средств. Сечение рассеяния частицы фольги больше, чем у соответствующей диэлектрической квазисферической частицы, т.к. проводящие частицы более эффективны как излучающие диполи. Объем же частицы фольги ΔV в K1 раз меньше, чем у соответствующей квазисферической частицы. В результате эффективность ослабления инфракрасного излучения оказывается существенно выше.

Кроме того, этот способ маскировки излучения объекта обеспечивает также экранировку от излучения миллиметрового диапазона длин волн при включении в состав взрывного устройства нитей электропроводного углеволокна (с металлическим покрытием или без него), причем Δx≈Δy≈7 мкм, Δz≈λРЛ/2, т.е. K2=Δz/Δx=120…1200. Метод реализован в принятой на вооружение в США и НАТО 66-мм гранате М81.

При импульсном характере формирования аэрозольного объема трудно обеспечить непрерывную экранировку объекта. Кроме того, при взрыве выделяется тепловая энергия, и само облако аэрозоля оказывается источником инфракрасного излучения. Эти недостатки ограничивают применение данного способа для ослабления инфракрасного излучения на летательных аппаратах.

Разработаны устройства и способы образования в инфракрасном диапазоне аэрозольных облаков из порошкообразного аэрозолеобразующего состава (АОС), который включает транспортирующую жидкость и суспендированный в этой жидкости порошок (см. патент США H1124 "Particle smoke generator and method», МПК F02C 6/04, НПК 106-504, опубл. 1993). Частицы порошка состоят из непрозрачного в ИК диапазоне зерна, покрытого оболочкой. Для зерен порошка могут использоваться металлы, сплавы и окиси этих металлов, углерод или второпласт. Для покрытия зерна применяются материалы, химически инертные относительно зерна и устойчивые при воздействовании температуры 400-500°С. В качестве таких материалов могут служить тонкодисперсные окислы кремния или алюминия.

В Германии для снижения ИК излучения предлагаются новые пиротехнические АОС на основе фосфорсодержащих композиций (см. патент США №5340395 «Material for efficient masking in the infrared region», МПК C09C 1/00, НПК 106-504, опубл. 23.08.1994).

В Англии разработан пиротехнический АОС для поглощения ИК излучения, содержащий красный аморфный фосфор (95%), введенный в стирол-бутадиеновый каучук с углеродным наполнителем.

Во Франции создан пиротехнический АОС, содержащий в качестве углеродовыделяющих соединений ароматические (нафталин, антрацен и др.) и хлорированные (гексахлорэтан, гексахлорбензол и др.) углеводороды. Термическое разложение этого состава происходит при Т=1000°С, при котором углеродосодержащий компонент проходит через паровую фазу, формируя наноразмерные частицы углерода, обеспечивающие ослабление ИК излучение объекта.

Таким образом, анализ зарубежных разработок позволяет сделать вывод, что в основном экранирование излучения защищаемого объекта обеспечивается в инфракрасном и/или радиолокационном диапазонах длин волн при взрыве пиротехнических средств.

Известны технологии образования объемно распределенных поглощающих образований (ОРПО), состоящих из паутинообразных микро- и наноструктур из проводящих материалов (см. Издательский дом «Алмаз Медиа», Журнал «Воздушно-космическая оборона», статья «Волосы ангела», с.55).

ОРПО обладают слабыми рассеивающими свойствами, а эффективно поглощают электромагнитное излучение в сверхширокополосном диапазоне длин волн (от 109 до 1015 Гц). Характеристики ослабления практически не зависят от длины волны и угла наблюдения (В.А.Алексашенко и др. «Радиоэлектронная защита вооружения и военной техники сухопутных войск от высокоточного оружия». Обмен опытом в области создания сверхширокополосных радиоэлектронных систем. Сборник докладов научно-технической конференции. Омск, 2008).

Для создания ОРПО необходимо на борту объекта иметь спецвещество или несколько типов спецвеществ, представляющих собой легколетучие металлоорганические вещества с примесью мелкодисперсных порошков различных металлов (Al или Cu или Ti или C). Формирование ОРПО происходит при высокотемпературном (2000…3000°С) воздействии на спецвещество при его взрыве или горении в смеси с порохом.

Например, ОРПО объемом 104 м3, полученное при сжигании шашки с массой пороха 1.5 кг и массой спецвещества 0.3 кг в течение 120 с, обеспечивает ослабление электромагнитного излучения с длиной волны λ~3 см на 10 дБ.

У такого ОРПО удельное сечение поглощения изменяется на порядок в зависимости от длины волны:

σуд=8·103 м2/кг при λ=3 см;

σуд=1.3·104 м2/кг при λ=0.63 мкм;

σуд=5·104…7·104 м2/кг при λ=(3…5) мкм; (8…14) мкм.

Существует оптимальная плотность ОРПО для конкретных диапазонов длин волн, поэтому в наземных условиях можно искусственно создать порошок или суспензию из токопроводящих наночастиц по структуре подобных ОРПО с эффективными характеристиками ослабления излучений для заданных диапазонов длин волн. Такой состав назовем аэрозолеобразующим наносоставом (АНС). При диспергировании АНС в воздушный поток будет создаваться аэрозольный экран вокруг объекта, эффективно ослабляющий его излучения в заданных диапазонах длин волн.

Важным параметром, определяющим использование аэрозольной системы, являются ее массогабаритные характеристики.

При полете в воздушном пространстве у летательного аппарата (ЛА) относительная скорость спутного воздушного потока высокая, и поэтому необходимый объем аэрозольного экрана V велик. При защите объекта в течение интервала времени Δt>10 мин для заполнения объема V с использованием квазисферических аэрозольных частиц потребуется большая масса АОС, а следовательно, и большая емкость на борту ЛА. Учитывая высокие требования к массогабаритным характеристикам систем ЛА, применение такой аэрозольной системы становится проблематичным.

Для формирования аэрозольного экрана по технологии ОРПО необходимо иметь на борту спецвещество и пиротехнические средства, поэтому массогабаритные характеристики такой системы также высокие. Основные параметры пяти типов спецвеществ приведены в таблице.

Тип состава 1 2 3 4 5
Степень ослабления на единицу длины, дБ/м 20 20 20 20 20
Приведенная ослабляющая способность, м2/кг 1.1·107 8.5·105 3·105 4.8·106 4.6·105
Эффективная проводимость среды, с-1 2·109 4·108 5·108 2.5·108 4.5·108
Расход вещества, кг/с 5·10-3 6.6·10-2 1.5·10-1 1.2·10-2 1.2·10-1
Масса вещества, кг 9 118 270 21.6 216

При реализации нанотехнологий, например при использовании в качестве АОС углеродных нанотрубок, масса экранирующего аэрозоля будет очень небольшой. Прикидочные расчеты показали, что при длине волны λ=10 мкм, среднем сечении рассеяния одиночной нанотрубки σ=0,1·(λ/2)2, надежная экранировка с оптической плотностью τ при длине экрана L=10 см достигается при концентрации нанотрубок n=4·1013 м-3, что при погонной массе нанотрубки 0,3·10-14 кг/м соответствует плотности аэрозоля ρ=6·10-7 кг/м3. При экранировке сопла реактивного двигателя диаметром 1 м и при полете самолета со скоростью v=300 м/с в течение часа (t - 3,6·103 с) расход массы аэрозоля составит:

m=ρ·π·d·L·v·t=6·10-7·3,14·1·0,1·300·3,6·103=0,2 кг.

Наиболее близким техническим решением к предлагаемому нами является способ экранирования электромагнитных излучений требуемых диапазонов длин волн объекта, включающий диспергирование в воздух между объектом и приемниками излучений аэрозолеобразующего наносостава из микро- и наночастиц проводящих материалов, формирующих пространство (см. патент РФ №2342353, МПК C06D 3/00, опубл. 27.12.2008). Аэрозоль содержит более 5 массовых процентов рассеивающих излучение частиц, каждая из которых содержит, по меньшей мере, одну протяженную электропроводную часть с характерными размерами во взаимно перпендикулярных направлениях Δx, Δy, Δz, удовлетворяющими условиям K0 Δx≅K0 Δy=Δz, где K0=100…3000, Δz=0.25λmin…λmax,

где λmin…λmax - диапазон длин волн работы приемника инфракрасного излучения.

В качестве рассеивающих излучение частиц могут быть использованы углеродные нанотрубки, пучки углеродных нанотрубок или протяженные монокристаллы металла. Изобретение направлено на повышение эффективности рассеяния инфракрасного излучения, исходящего от объекта, позволяет снизить массогабаритные характеристики системы и увеличить время маскировки.

Однако указанный способ, как видно уже из названия, экранирует только инфракрасное излучение.

Задача изобретения - создание аэрозолеобразующих наносоставов, обеспечивающих эффективное экранирование электромагнитных излучений объекта в течение не менее 10 минут для требуемых диапазонов длин волн и с приемлемыми для бортового использования массогабаритными характеристиками. При этом в качестве объектов защиты подразумеваются летательные аппараты воздушного и космического базирования.

Указанную задачу достигают тем, что в способе экранирования электромагнитных излучений требуемых диапазонов длин волн объекта в воздух между объектом и приемником диспергируют аэрозолеобразующий наносостав, состоящий из нескольких наноподсоставов, каждый из которых формируют из совокупности наночастиц, обеспечивающих максимальное значение сечения поглощения и/или рассеяния излучения требуемого диапазона длин волн. Аэрозолеобразующий наносостав может быть в виде порошка или суспензии и представляет собой искусственно созданную совокупность микро- и наночастиц из проводящих материалов.

Аэрозолеобразующий наноподсостав для конкретного диапазона длин волн синтезируют из различных компонентов (химических веществ) с целью получения наночастиц, имеющих химический состав, форму и размеры, обеспечивающие максимальное сечение поглощения и/или рассеяния для требуемого диапазона длин волн.

Аэрозольные наночастицы формируют с размерами ΔХ, ΔY, ΔZ во взаимно перпендикулярных плоскостях, где ΔZ - длина, а ΔХ≈ΔY=30…100 нм - поперечный размер частиц, при этом K0Δx≅K0Δy=Δz,

где K0=100…3000. На наземном оборудовании управляемый синтез наночастиц обеспечивают варьированием состава и соотношений химических веществ, изменением параметров рабочих режимов, позволяющих создавать наночастицы для i-го наноподсостава длиной

ΔZTiTi/2, где λTi - требуемый диапазон длин волн.

Для требуемого диапазона длин волн формируют несколько вариантов одного подсостава, имеющих совокупность наночастиц с различными параметрами удельного сечения поглощения и/или рассеяния.

Для обеспечения минимальных массогабаритных характеристик системы из полученной совокупности вариантов наноподсостава для конкретного диапазона длин волн выбирается такой, у которого наночастицы будут с минимальной массой ma и объемом Va, но с максимальным сечением поглощения и рассеяния, т.е. максимизируется следующий критерий

ϑ=(σ)/ma+Va.

Технический результат - ослабление одной системой нескольких требуемых диапазонов излучения объекта - достигают благодаря тому, что аэрозолеобразующий наносостав формируют из нескольких наноподсоставов, каждый из которых представляет совокупность наночастиц с такими характеристиками, которые обеспечивают ослабление излучения в конкретном, требуемом диапазоне длин волн. Например, могут быть сформированы наноподсоставы для ослабления в радиолокационном, инфракрасном, лазерном диапазонах для конкретных участков длин волн.

Важным техническим результатом является снижение на несколько порядков массогабаритных характеристик аэрозольной системы за счет использования нанотехнологий, обеспечивших создание аэрозолеобразующих наносоставов.

Небольшие массогабаритные характеристики аэрозолеобразующего наносостава позволяют увеличить количество АНС на борту объекта, а следовательно, и время непрерывной экранировки аэрозольной системой.

Осуществление изобретения не вызывает особых проблем, так как создание аэрозольных наночастиц требуемой структуры освоено на наземных специализированных установках в Институте Общей Физики РАН, Государственном научно-исследовательском институте химии и технологии элементов органических соединений (г.Москва), ООО «НаноТехЦентр» (г.Тамбов) и других организациях. Измерения характеристик наночастиц, в том числе и параметров ослабления различных электромагнитных излучений, могут быть выполнены на стенде в Московском авиационном институте и на других предприятиях. Оценка эффективности аэрозолеобразующего наносостава будет произведена на специализированном наземном стенде в процессе измерения характеристик аэрозольной системы.

Источник поступления информации: Роспатент

Showing 31-40 of 102 items.
20.08.2013
№216.012.5fdf

Устройство для регулирования положения заслонки воздушного канала

Изобретение относится к области авиационной техники и может быть использовано для регулирования поступления воздуха для обогрева и исключения обледенения агрегатов и механизмов. Устройство для регулирования положения заслонки воздушного канала содержит подвижный элемент привода поворота...
Тип: Изобретение
Номер охранного документа: 0002490175
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.610e

Статор турбомашины

Статор турбомашины содержит корпус и внутреннюю втулку. Между ними размещен кольцевой уплотнительный элемент, одна поверхность которого контактирует с ответной цилиндрической поверхностью втулки, а другая размещена в пазу. Между внутренней втулкой и корпусом установлена крышка, контактирующая с...
Тип: Изобретение
Номер охранного документа: 0002490478
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.611a

Двухконтурный газотурбинный двигатель

Двухконтурный газотурбинный двигатель содержит компрессор высокого давления, камеру сгорания, турбину высокого давления с охлаждаемыми рабочими лопатками, турбину низкого давления. Думисная полость компрессора отделена от проточной части компрессора лабиринтным уплотнением. Магистраль...
Тип: Изобретение
Номер охранного документа: 0002490490
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.611c

Способ управления газотурбинным двигателем и система для его осуществления

Группа изобретений относится к области управления работой ГТД, преимущественно авиационных, и может быть использована для управления подачей топлива в ГТД и НАК. Способ управления газотурбинным двигателем заключается в том, что расход топлива в камеру сгорания газотурбинного двигателя...
Тип: Изобретение
Номер охранного документа: 0002490492
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.6120

Выходное устройство двухконтурного газотурбинного двигателя

Выходное устройство содержит наружный корпус двигателя, внутренний корпус турбины, хвостовой обтекатель, элементы их крепления, расположенные за рабочим колесом последней ступени турбины, и смеситель. Элементы крепления выполнены в виде полых стоек. Смеситель выполнен в виде кольцевого элемента...
Тип: Изобретение
Номер охранного документа: 0002490496
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.61a2

Устройство для испытания лопаток турбомашины

Изобретение относится к измерительной технике и предназначено для испытаний аэродинамических конструкций, в частности для определения характеристик лопаток турбины с помощью измерения деформаций, путем использования активного сопротивления электрических тензометров. Устройство содержит рабочее...
Тип: Изобретение
Номер охранного документа: 0002490626
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.64bd

Выходное устройство турбины

Выходное устройство турбины содержит полые аэродинамические профилированные стойки. Стойки размещены в проточной части турбины за рабочим колесом последней ступени турбины и закреплены в положении, при котором средние линии выходных участков профилей направлены вдоль продольной оси турбины....
Тип: Изобретение
Номер охранного документа: 0002491426
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.64d5

Узел соединения роторов компрессора и турбины газотурбинного двигателя

Узел соединения роторов компрессора и турбины газотурбинного двигателя содержит цапфу компрессора, вал турбины и контровочную трубу, зафиксированную в осевом и окружном направлениях. Цапфа компрессора и вал турбины соединены в осевом направлении посредством промежуточного вала, стяжной втулки и...
Тип: Изобретение
Номер охранного документа: 0002491450
Дата охранного документа: 27.08.2013
20.02.2019
№219.016.bcef

Способ диагностики колебаний рабочего колеса турбомашины

Способ диагностики колебаний рабочего колеса турбомашины относится к диагностике колебаний, возникающих в турбомашинах, и может найти широкое применение при создании и прочностной доводке осевых турбин и компрессоров, применяемых как в авиации, так и в энергомашиностроении. Способ дает...
Тип: Изобретение
Номер охранного документа: 0002287141
Дата охранного документа: 10.11.2006
20.02.2019
№219.016.bda7

Регулируемое сопло турбореактивного двигателя

Регулируемое сопло турбореактивного двигателя содержит корпус с шарнирно закрепленными на нем створками и расположенными между ними уплотнительными проставками. Проставки подвешены на створках посредством коромысел с лапками, торцы которых установлены с возможностью контактирования со...
Тип: Изобретение
Номер охранного документа: 0002258829
Дата охранного документа: 20.08.2005
Showing 31-40 of 285 items.
27.09.2014
№216.012.f7ce

Магнитожидкостное уплотнение вала

Изобретение относится к уплотнительной технике и может быть использовано для герметизации подвижных друг относительно друга деталей. Магнитожидкостное уплотнение вала обеспечивает повышение надежности уплотнения за счет уменьшения трения между вращающимся валом и щетками. Уплотнение содержит...
Тип: Изобретение
Номер охранного документа: 0002529275
Дата охранного документа: 27.09.2014
20.12.2014
№216.013.111b

Установка для испытаний маслонасосов системы смазки авиационного газотурбинного двигателя

Изобретение относится к испытательной технике, в частности к установке для испытаний маслонасосов системы смазки авиационного газотурбинного двигателя. Установка дополнительно содержит изолированную сменную камеру с магистралью суфлирования, генератор воздушно-масляной сети, магистраль...
Тип: Изобретение
Номер охранного документа: 0002535802
Дата охранного документа: 20.12.2014
20.03.2015
№216.013.3284

Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства турбореактивного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не...
Тип: Изобретение
Номер охранного документа: 0002544407
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3285

Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства турбореактивного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не...
Тип: Изобретение
Номер охранного документа: 0002544408
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3286

Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства турбореактивного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не...
Тип: Изобретение
Номер охранного документа: 0002544409
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3287

Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства ТРД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от...
Тип: Изобретение
Номер охранного документа: 0002544410
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3288

Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства ТРД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от...
Тип: Изобретение
Номер охранного документа: 0002544411
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3289

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного...
Тип: Изобретение
Номер охранного документа: 0002544412
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.328b

Газотурбинный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Газотурбинный двигатель выполнен двухконтурным, двухвальным. Двигатель содержит не менее восьми модулей, смонтированных, предпочтительно, по модульно-узловой системе, включая компрессор...
Тип: Изобретение
Номер охранного документа: 0002544414
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.328c

Способ эксплуатации турбореактивного двигателя и турбореактивный двигатель, эксплуатируемый этим способом

Изобретение относится к области авиадвигателестроения. В способе эксплуатации турбореактивного двигателя (ТРД) перед каждым запуском двигателя, выполненного двухконтурным, двухвальным, осуществляют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на рабочие...
Тип: Изобретение
Номер охранного документа: 0002544415
Дата охранного документа: 20.03.2015
+ добавить свой РИД