×
19.06.2019
219.017.85d8

Результат интеллектуальной деятельности: МНОГОКАНАЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ СОПРОТИВЛЕНИЯ РЕЗИСТИВНЫХ ДАТЧИКОВ В НАПРЯЖЕНИЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к техническим средствам измерения неэлектрических величин электрическим способом. Многоканальный преобразователь сопротивления резистивных датчиков в напряжение содержит источник опорного напряжения, четыре источника взвешенного напряжения, два источника постоянного тока, модулятор двунаправленного импульсного тока, токовый коммутатор, через который подается питание резистивного датчика и его резистивного эквивалента, потенциальные выходы которых через коммутатор напряжения подключены к дифференциальному входу инструментального операционного усилителя. Выход инструментального усилителя подключен к входу аналого-цифрового преобразователя, связанного с микроконтроллером, где вырабатываются сигналы управления преобразователем, производится обработка измеренных сигналов и формируется цифровой эквивалент результата измерения. Изобретение обеспечивает снижение погрешности за счет уменьшения шума активных элементов и стабилизации их параметров в результате гальванической развязки источников питания и увеличение помехоустойчивости, благодаря применению двунаправленного токового питания резистивного датчика и его резистивного эквивалента, а также использованию алгоритма обработки сигналов измерения, при выполнении которого практически исключаются аддитивные составляющие в измеренном сигнале. 2 ил.

Изобретение относится к измерительной технике, в частности к средствам измерения неэлектрических величин электрическим способом. Оно может быть использовано в устройствах для измерения физических параметров, в котором используются тензорезисторные и терморезисторные датчики, изменяющие свое сопротивление при вариации значения физического параметра. Устройство позволяет работать с различными схемами включения резистивных датчиков, как одиночных, полумостовых, мостовых, «розеточных» и т.д.

Известны устройства для преобразования сопротивлений в напряжения, включающие датчики сопротивления, генератор (источник) тока, подключаемый к тому датчику, сигнал которого обрабатывается в данный момент времени, например,:

А.С. СССР №865011 «Многоканальное измерительное устройство»

МПК G01С 15/00. 1981 г.

А.С. СССР №1394162

«Многоканальный преобразователь для резистивных датчиков»,

МПК Н02J 9/06. 1986 г.

Патент РФ №2031447 « Многоканальное измерительное устройство»,

МПК G08С 15/00. 1981 г.

Патент РФ №2205413

«Преобразователь активного сопротивления в постоянное напряжение»

МПК G01R 27/00. 2003 г.

Патент РФ №2028630

«Преобразователь изменения сопротивления в напряжение»,

МПК G01R 27/00. 2003 г.

Недостатками этих устройств является недостаточная точность и помехоустойчивость устройств.

Наиболее близким к заявляемому решению является устройство, описанное в патенте РФ №2219555 «Многоканальный преобразователь сопротивлений в напряжения», МПК G01R 27/00. 2003 г. Преобразователь содержит генератор тока, состоящий: из источника питания, источника опорного напряжения (ИОН), операционного усилителя ОУ с ограничительным и эталонным резисторами (источник постоянного тока), эталонный резистор (резистивное эквивалентное устройство Rн), датчики сопротивления (резистивный датчик R), соединительные цепи [цепи протекания тока (токовые шины) и измерительные цепи (потенциальные шины)], входные защитные диоды (токовый коммутатор), выходные защитные диоды, фильтры нижних частот, конденсатор, дифференциальный выход i-го канала (потенциальные шины), мультиплексный аналого-цифровой преобразователь МАЦП, состоящий: из дифференциальных каналов мультиплексора (коммутатор напряжения), нормирующего усилителя (инструментальный операционный усилитель ИУ) и аналого-цифрового преобразователя), конденсатор и фильтры нижних частот.

В преобразователе осуществляется поочередное преобразование сигналов большого числа датчиков сопротивления в напряжение. Датчики сопротивления включены по традиционной четырехпроводной схеме.

Недостатком указанного устройства является его низкое быстродействие из-за установки в измерительных цепях помехоподавляющих фильтров нижних частот с узкой полосой пропускания низкочастотных сигналов. Большой недостаток в том, что все датчики сопротивления соединены последовательно по цепи протекания тока. Выход источника тока соединен с входной цепью протекания тока резистивного датчика первого канала, а выходная цепь протекания тока резистивного датчика последнего канала соединена с входом отрицательной обратной связи генератора тока (наиболее подверженная аварийной ситуации цепь). Такое схемотехническое решение требует построение мощного источника тока и его высокого напряжения питания, а также дополнительного количества диодов для исключения аварийных ситуаций во внешних цепях датчиков. Непонятны шумовые характеристики источника тока при значительном количестве подключенных резистивных датчиков. Питание измерительных цепей постоянным током снижает точность преобразования. Также питание датчиков постоянным током не вполне отвечает вопросам борьбы с аддитивными сигналами, возникающими во входных цепях измерительной схемы, например термо ЭДС.

Любая аварийная ситуация (обрыв цепей во внешней схеме соединений датчиков) приводит к потере работоспособности группы датчиков и требует дополнительного количества встроенных диодов (эквивалентно построению коммутатора тока), что допустимо для малой группы датчиков, например для одиночной 4-х компонентной тензорезисторной розетки.

Задачей изобретения является улучшение надежности и работоспособности устройства. Техническим результатом является снижение погрешности устройства за счет увеличения его помехоустойчивости, быстродействия, малого собственного шума и стабильности, полная гальваническая развязка от общих источников питания и «земляных» цепей объекта измерения, а также использование двунаправленного токового питания резистивных датчиков и алгоритма обработки результатов измерения.

Технический результат достигается тем, что в многоканальный преобразователь сопротивления резистивных датчиков в напряжение, содержащий источник общего питания, источник опорного напряжения, источник постоянного тока, резистивные датчики и резистивное эквивалентное устройство, токовый коммутатор, коммутатор напряжения, инструментальный операционный усилитель и аналого-цифровой преобразователь, введены второй источник постоянного тока, четыре источника взвешенного напряжения, входы двух из которых подключены к источнику общего питания, а выходы связаны с шинами питания операционных усилителей двух источников постоянного тока, а входы двух других источников взвешенного напряжения подключены к выходу источника опорного напряжения и их выходы соединены с входами двух источников постоянного тока, выходы последних связаны с входами модулятора импульсного двунаправленного тока, а его выходы подключены к входам токового коммутатора питания резистивных датчиков и резистивного эквивалентного устройства, причем потенциальные шины резистивных датчиков и резистивного эквивалентного устройства подключены к коммутатору напряжения, выход которого связан с дифференциальным входом инструментального операционного усилителя, выход которого соединен с входом аналого-цифрового преобразователя подключенного к микроконтроллеру формирования диаграммы работы устройства, приема и выполнения алгоритма обработки измеренных сигналов, а его цифровые выходы связаны с управляющими входами источников взвешенного напряжения, модулятора импульсного двунаправленного тока, токового коммутатора, коммутатора напряжения и аналого-цифрового преобразователя.

Сущность изобретения поясняется структурной схемой и временной диаграммой на чертежах.

На фиг.1 показана структурная схема, в которой:

1 - источник опорного напряжения (ИОН);

2, 3, 4, 5 - источники взвешенного напряжения (ИВН1, ИВН2, ИВН3, ИВН4);

6, 7 - источники постоянного тока (ИТ1, ИТ2);

8 - модулятор импульсного двунаправленного тока (М);

9 - токовый коммутатор питания резистивных датчиков и резистивных эквивалентных устройств (К1);

10, 11 - резистивный датчик и его резистивное эквивалентное устройство (R и Rн);

12 - коммутатор напряжения (К2);

13 - инструментальный операционный усилитель (ИУ);

14 - аналого-цифровой преобразователь (АЦП);

15 - микроконтроллер формирования диаграммы работы устройства, приема и выполнения алгоритма обработки измеренных сигналов (МС);

16 - источник общего питания (Епит.).

На фиг.2 показана временная диаграмма работы устройства.

Устройство выполнено следующим образом. Источник общего питания 16 (Епит) подает напряжение на источник опорного напряжения (ИОН) 1, четыре источника взвешенного напряжения 2, 3, 4 и 5 (ИВН1) 2, (ИВН2) 3, (ИВН3) 4 и (ИВН4) 5, модулятор импульсного двунаправленного тока (М) 8, токовый коммутатор (К1) 9, коммутатор напряжения (К2) 12, инструментальный операционный усилитель ИУ 13, аналого-цифровой преобразователь (АЦП) 14, микроконтроллер (МС) 15. Причем выход источника опорного напряжения (ИОН)1 подключен к двум входам источников взвешенного напряжения (ИВН2) 3 и (ИВН4) 5, а их выходы связаны с входами двух источников постоянного тока (ИТ1) 6 и (ИТ2) 7 соответственно. Два других источника взвешенного напряжения (ИВН1) 2 и (ИВН3) 4 подключены к положительной шине общего питания, а их выходы соответственно соединены с положительными шинами питания операционных усилителей источников постоянного тока (ИТ1 и ИТ2) 6 и 7. Выходы источников постоянного тока (ИТ1 и ИТ2) 6 и 7 связаны с входами модулятора импульсного двунаправленного тока (М) 8, а его выход подключен к входу токового коммутатора (К1) 9, к выходам которого подключены резистивный датчик R 10 (датчик сопротивления) и его резистивное эквивалентое устройство (Rн) 11. Потенциальные (измерительные) шины резистивного датчика (R) 10 и его резистивного эквивалентного устройства (Rн) 11 связаны потенциальными шинами с входами коммутатора напряжения (К2) 12, выходы которого соединены с дифференциальным входом инструментального операционного усилителя (ИУ) 13. Вход аналого-цифрового преобразователя (АЦП) 14 подключен к выходу инструментального операционного усилителя (ИУ) 13 с усиленным сигналом Uпр., а кодовый эквивалент преобразованного сигнала в АЦП 14 поступает на один из входов микроконтроллера (МС) 15, а один из выходов (регистр) микроконтроллера (МС) 15 связан с управляющими шинами F устройства.

Устройство функционирует следующим образом. От микроконтроллера (МС) 15 на источники взвешенного напряжения (ИВН1...ИВН4) 2, 3, 4 и 5 поступает управляющий сигнал F1 (фиг.2), где с помощью переключаемых конденсаторов достаточно большой емкости (≈100 μF) формируется напряжение питания операционных усилителей источников постоянного тока (ИТ1 и ИТ2) 6 и 7, а также их опорный сигнал от источника опорного напряжения (ИОН) 1. При этом исключаются:

а) составляющая шума, связанная с шумом активных элементов питания;

б) составляющая шума, связанная с необходимостью выделения сигнала резистивных датчиков (независимого от сопротивления подключающих проводов и цепей коммутации).

Для повышения стабильности сигнала преобразования используется один (ИОН) 1 для задания значений токов в (ИТ1 и ИТ2) 6 и 7, а на выходах (ИТ1 и ИТ2) 6 и 7 установлен модулятор импульсного двунаправленного тока (М) 8 для переключения токов так, что в 1-й такт коммутации (управляющий сигнал F3) (ИТ1) 6 питает резистивный датчик (с сопротивлением R), (ИТ2) 7 - резистивное эквивалентное устройство (с сопротивлением Rн), а во 2-й такт (управляющий сигнал F4) преобразования (Такт 2) наоборот: (ИТ1) 6 питает резистивное эквивалентное устройство (ИТ2) 7 - резистивный датчик. При этом, с целью одновременного уменьшения помех от наводок промышленных частоты и от величин напряжений, возникающих от температурного дрейфа активных элементов (путем вычисления в кодовом эквиваленте разности сигналов преобразования в Такте 2 и Такте 1), выходы модулятора (М) 8 соединены таким образом, что фаза сигналов питания в Такте 2 противоположна фазе сигнала питания в Такте 1 (фиг.2).

Выходной сигнал преобразования:

Такт 1:

Такт 2:

где Iн - номинальное значение токов питания от (ИТ1 и ИТ2) 6 и 7;

ΔI1, ΔI2 - погрешности токов питания соответственно в (ИТ1 и ИТ2) 6 и 7;

RН - номинальное значение сопротивления резистивного датчика (R) 10 и компенсирующего его резистивного эквивалента (Rн) 11;

ΔR - отклонение сопротивления резистивного датчика (R) 10 от номинального значения (Rн) 11 (информативный параметр).

Окончательный результат преобразования в микроконтроллере (МС) 15 в кодовом эквиваленте N:

где N1 и N2 - кодовые эквиваленты, пропорциональные Uпр1 и Uпр2;

[Iн·(±ΔR)] информативный (измеряемый) параметр датчика;

[(±ΔI1±ΔI2)·(±ΔR)] - погрешность 2-го порядка малости, которой можно пренебречь.

Подавление помех аддитивного характера обеспечивается созданием взвешенных источников питания 2, 3, 4 и 5 (ИВН2÷ИВН4), гальванической развязкой источника опорного напряжения 1 (ИОН) от источников тока 6, 7 (ИТ1 и ИТ2), подавлением синфазной помехи при подаче измерительного сигнала на дифференциальный вход инструментального операционного усилителя 13(ИУ) и выбранным алгоритмом обработки сигнала в микроконтроллере 15 (МС) при использовании двунаправленного импульсного питания резистивных датчиков и их резистивных эквивалентов, что обеспечивает построение малошумящего высокостабильного преобразователя сопротивления резистивных датчиков в напряжение.

Следует отметить, что предлагаемая схема построения преобразователя сопротивления резистивного датчика в напряжение позволяет подключать по любой схеме соединения тензорезисторные датчики (одиночные, полумостовые, мостовые, розеточные и т.д.).

Многоканальныйпреобразовательсопротивлениярезистивныхдатчиковвнапряжение,содержащийисточникобщегопитания,источникопорногонапряжения,источникпостоянноготока,резистивныедатчикиирезистивноеэквивалентноеустройство,токовыйкоммутатор,коммутаторнапряжения,инструментальныйоперационныйусилительианалого-цифровойпреобразователь,отличающийсятем,чтовнеговведенывторойисточникпостоянноготока,четыреисточникавзвешенногонапряжения,входыдвухизкоторыхподключеныкисточникуобщегопитания,авыходысвязанысшинамипитанияоперационныхусилителейдвухисточниковпостоянноготока,авходыдвухдругихисточниковвзвешенногонапряженияподключеныквыходуисточникаопорногонапряженияиихвыходысоединенысвходамидвухисточниковпостоянноготока,выходыпоследнихсвязанысвходамимодулятораимпульсногодвунаправленногосигнала,аеговыходыподключеныквходамтоковогокоммутаторапитаниярезистивныхдатчиковирезистивногоэквивалентногоустройства,причемпотенциальныешинырезистивныхдатчиковирезистивногоэквивалентногоустройстваподключеныккоммутаторунапряжения,выходкоторогосвязансдифференциальнымвходоминструментальногооперационногоусилителя,выходкоторогосоединенсвходоманалого-цифровогопреобразователя,подключенногокмикроконтроллеруформированиядиаграммыработыустройства,приемаивыполненияалгоритмаобработкиизмеренныхсигналов,аегоцифровыевыходысвязанысуправляющимивходамиисточниковвзвешенногонапряжения,модулятораимпульсногодвунаправленноготока,токовогокоммутатора,коммутаторанапряженияианалого-цифровогопреобразователя.
Источник поступления информации: Роспатент

Showing 81-90 of 255 items.
10.09.2015
№216.013.77e0

Блок-имитатор температурных полей

Изобретение относится к экспериментальной технике и может быть использовано для теплопрочностных статических испытаний конструкций летательных аппаратов, в частности к средствам, обеспечивающим воспроизведение нестационарных температурных полей в испытываемых конструкциях воздушно-космических...
Тип: Изобретение
Номер охранного документа: 0002562277
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.78b8

Способ хранения атомарного водорода

Изобретение относится к химии и водородной энергетике и может быть использовано в транспортном машиностроении. Водород получают в генераторе 1, направляют в приёмник 2, разделяют на два потока 3 и воздействуют на них импульсным магнитным полем с амплитудой магнитной индукции В более 100 гаусс....
Тип: Изобретение
Номер охранного документа: 0002562493
Дата охранного документа: 10.09.2015
20.11.2015
№216.013.91e2

Устройство для измерения параметров потока

Изобретение относится к измерительной технике для измерения параметров потока, в частности полного давления, давления скоростного напора, статического давления, пульсации и/или звукового давления, измерения величины и направления скорости в пространственных потоках. Устройство содержит датчики...
Тип: Изобретение
Номер охранного документа: 0002568962
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92f1

Способ снижения вертикальных и угловых перегрузок транспортного средства при движении по поверхности и транспортное средство, реализующее этот способ

Группа изобретений относится к способу снижения динамической нагруженности транспортного средства. Транспортное средство содержит корпус, амортизационное устройство, систему управления жесткостью и демпфированием амортизационного устройства, систему управления, логико-вычислительную подсистему,...
Тип: Изобретение
Номер охранного документа: 0002569235
Дата охранного документа: 20.11.2015
27.12.2016
№216.013.9df7

Устройство и способ для измерения быстропеременного давления

Изобретения относятся к измерительной технике, в частности к средствам и методам для измерения давления. В устройстве используются пленочные емкостные датчики, позволяющие измерять пульсации давления, возникающие от нагрузки вибрации, также устройство содержит державку, демпфер, снижающий...
Тип: Изобретение
Номер охранного документа: 0002572069
Дата охранного документа: 27.12.2015
10.02.2016
№216.014.c3d2

Способ определения остаточных напряжений в композиционных материалах

Изобретение относится к области экспериментальной механики и предназначено для определения остаточных напряжений, возникающих при изготовлении тонкостенных конструкций летательных аппаратов из композиционных материалов. Технический результат от реализации данного изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002574231
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c513

Способ управления упругими изгибными и крутильными деформациями несущей поверхности и устройство для его реализации

Изобретение относится к области авиации, в частности к конструкциям и способам изменения аэродинамических характеристик несущих поверхностей летательных аппаратов. Способ управления упругими изгибными и крутильными деформациями несущей поверхности включает операцию деформирования кессона...
Тип: Изобретение
Номер охранного документа: 0002574491
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c5d2

Устройство для улучшения вывода самолета из штопора

Изобретение относится к авиации. Устройство для улучшения вывода самолета из штопора представляет наплыв горизонтального оперения, выполненный в форме двух несущих поверхностей, установленных симметрично относительно продольной плоскости симметрии самолета в хвостовой части фюзеляжа и...
Тип: Изобретение
Номер охранного документа: 0002578838
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c8c0

Динамически подобная аэродинамическая модель несущей поверхности летательного аппарата

Изобретение относится к области экспериментальных исследований динамических явлений аэроупругости летательных аппаратов в аэродинамических трубах. Динамически подобная аэродинамическая модель несущей поверхности содержит силовую упругую балку-лонжерон, дренированные блоки, установленные по...
Тип: Изобретение
Номер охранного документа: 0002578915
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.0363

Регулятор давления воздуха в форкамере аэродинамической трубы с форсированным выходом на заданный режим

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Устройство содержит задающее устройство, исполнительный механизм, датчики температуры, давления, положения, регулятор давления. Регулятор давления выполнен в виде последовательно включенных...
Тип: Изобретение
Номер охранного документа: 0002587518
Дата охранного документа: 20.06.2016
Showing 1-9 of 9 items.
20.03.2013
№216.012.302a

Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков с инструментальными усилителями, запитанных постоянным током. Техническим результатом изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002477865
Дата охранного документа: 20.03.2013
27.07.2013
№216.012.5a84

Способ измерения негерметичности изделий

Изобретение относится к области испытательной техники и может быть использовано для изменения негерметичности изделий, работающих под избыточным давлением. Изобретение направлено на повышение точности измерения негерметичности изделия путем создания последовательности операций, позволяющих...
Тип: Изобретение
Номер охранного документа: 0002488793
Дата охранного документа: 27.07.2013
13.01.2017
№217.015.7530

Устройство пневматического нагружения фюзеляжа самолета при прочностных испытаниях на ресурс

Изобретение относится к испытательной технике и может быть использовано для создания циклических нагрузок внутренним избыточным давлением воздуха при испытаниях на ресурс фюзеляжей и других авиационных гермоотсеков. Устройство содержит источник сжатого воздуха со стабилизатором давления,...
Тип: Изобретение
Номер охранного документа: 0002598778
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.7538

Способ пневматического нагружения фюзеляжа самолета при прочностных испытаниях на ресурс

Изобретение относится к области испытательной техники и предназначено для создания циклических трапециевидных программ нагружения избыточным давлением воздуха при прочностных испытаниях на ресурс фюзеляжей и других авиационных гермоотсеков. В ходе реализации способа устанавливают границы...
Тип: Изобретение
Номер охранного документа: 0002598700
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.7579

Способ регистрации параметров условий нагружения при эксплуатации или ресурсных испытаниях механических конструкций

Изобретение относится к области измерительной техники и может быть использовано для мониторинга напряженности механических конструкций при их эксплуатации или проведении сертификационных ресурсных испытаний. Предлагаемый способ заключается в том, что при любом методе схематизации характерного...
Тип: Изобретение
Номер охранного документа: 0002598702
Дата охранного документа: 27.09.2016
04.10.2018
№218.016.8ecc

Способ определения усталостного разрушения элементов конструкций из полимерного композиционного материала

Изобретение относится к области мониторинга состояния конструкции по условиям прочности, направленное на определение момента разрушения элементов конструкций из полимерного композиционного материала (ПКМ) при циклическом нагружении. Способ заключается в том, что осуществляют контроль утолщения...
Тип: Изобретение
Номер охранного документа: 0002668644
Дата охранного документа: 02.10.2018
29.05.2019
№219.017.69c3

Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков, подключенных к инструментальному усилителю и запитанных постоянным током. Техническим результатом является исключение аддитивных...
Тип: Изобретение
Номер охранного документа: 0002469338
Дата охранного документа: 10.12.2012
19.06.2019
№219.017.85cf

Способ калибровки и коррекции результатов измерения многоканального измерительно-вычислительного комплекса

Указанный способ применим к измерительно-вычислительному комплексу (ИВК), включающему в себя узел коммутации (УК), программируемый нормирующий преобразователь (ПНП), микропроцессор (МП) и встроенный радиоканал связи (PC), с целью обеспечения работы комплекса в широком диапазоне температур...
Тип: Изобретение
Номер охранного документа: 0002345328
Дата охранного документа: 27.01.2009
10.07.2019
№219.017.ac3b

Автоматический калибратор мер измерительно-вычислительного комплекса

Изобретение относится к измерительной технике, в частности для метрологической аттестации многоканальных многофункциональных средств измерения электрических величин. Технический результат - расширение функциональных возможностей. Для достижения данного результата введены быстродействующие...
Тип: Изобретение
Номер охранного документа: 0002345377
Дата охранного документа: 27.01.2009
+ добавить свой РИД