×
19.06.2019
219.017.85d8

Результат интеллектуальной деятельности: МНОГОКАНАЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ СОПРОТИВЛЕНИЯ РЕЗИСТИВНЫХ ДАТЧИКОВ В НАПРЯЖЕНИЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к техническим средствам измерения неэлектрических величин электрическим способом. Многоканальный преобразователь сопротивления резистивных датчиков в напряжение содержит источник опорного напряжения, четыре источника взвешенного напряжения, два источника постоянного тока, модулятор двунаправленного импульсного тока, токовый коммутатор, через который подается питание резистивного датчика и его резистивного эквивалента, потенциальные выходы которых через коммутатор напряжения подключены к дифференциальному входу инструментального операционного усилителя. Выход инструментального усилителя подключен к входу аналого-цифрового преобразователя, связанного с микроконтроллером, где вырабатываются сигналы управления преобразователем, производится обработка измеренных сигналов и формируется цифровой эквивалент результата измерения. Изобретение обеспечивает снижение погрешности за счет уменьшения шума активных элементов и стабилизации их параметров в результате гальванической развязки источников питания и увеличение помехоустойчивости, благодаря применению двунаправленного токового питания резистивного датчика и его резистивного эквивалента, а также использованию алгоритма обработки сигналов измерения, при выполнении которого практически исключаются аддитивные составляющие в измеренном сигнале. 2 ил.

Изобретение относится к измерительной технике, в частности к средствам измерения неэлектрических величин электрическим способом. Оно может быть использовано в устройствах для измерения физических параметров, в котором используются тензорезисторные и терморезисторные датчики, изменяющие свое сопротивление при вариации значения физического параметра. Устройство позволяет работать с различными схемами включения резистивных датчиков, как одиночных, полумостовых, мостовых, «розеточных» и т.д.

Известны устройства для преобразования сопротивлений в напряжения, включающие датчики сопротивления, генератор (источник) тока, подключаемый к тому датчику, сигнал которого обрабатывается в данный момент времени, например,:

А.С. СССР №865011 «Многоканальное измерительное устройство»

МПК G01С 15/00. 1981 г.

А.С. СССР №1394162

«Многоканальный преобразователь для резистивных датчиков»,

МПК Н02J 9/06. 1986 г.

Патент РФ №2031447 « Многоканальное измерительное устройство»,

МПК G08С 15/00. 1981 г.

Патент РФ №2205413

«Преобразователь активного сопротивления в постоянное напряжение»

МПК G01R 27/00. 2003 г.

Патент РФ №2028630

«Преобразователь изменения сопротивления в напряжение»,

МПК G01R 27/00. 2003 г.

Недостатками этих устройств является недостаточная точность и помехоустойчивость устройств.

Наиболее близким к заявляемому решению является устройство, описанное в патенте РФ №2219555 «Многоканальный преобразователь сопротивлений в напряжения», МПК G01R 27/00. 2003 г. Преобразователь содержит генератор тока, состоящий: из источника питания, источника опорного напряжения (ИОН), операционного усилителя ОУ с ограничительным и эталонным резисторами (источник постоянного тока), эталонный резистор (резистивное эквивалентное устройство Rн), датчики сопротивления (резистивный датчик R), соединительные цепи [цепи протекания тока (токовые шины) и измерительные цепи (потенциальные шины)], входные защитные диоды (токовый коммутатор), выходные защитные диоды, фильтры нижних частот, конденсатор, дифференциальный выход i-го канала (потенциальные шины), мультиплексный аналого-цифровой преобразователь МАЦП, состоящий: из дифференциальных каналов мультиплексора (коммутатор напряжения), нормирующего усилителя (инструментальный операционный усилитель ИУ) и аналого-цифрового преобразователя), конденсатор и фильтры нижних частот.

В преобразователе осуществляется поочередное преобразование сигналов большого числа датчиков сопротивления в напряжение. Датчики сопротивления включены по традиционной четырехпроводной схеме.

Недостатком указанного устройства является его низкое быстродействие из-за установки в измерительных цепях помехоподавляющих фильтров нижних частот с узкой полосой пропускания низкочастотных сигналов. Большой недостаток в том, что все датчики сопротивления соединены последовательно по цепи протекания тока. Выход источника тока соединен с входной цепью протекания тока резистивного датчика первого канала, а выходная цепь протекания тока резистивного датчика последнего канала соединена с входом отрицательной обратной связи генератора тока (наиболее подверженная аварийной ситуации цепь). Такое схемотехническое решение требует построение мощного источника тока и его высокого напряжения питания, а также дополнительного количества диодов для исключения аварийных ситуаций во внешних цепях датчиков. Непонятны шумовые характеристики источника тока при значительном количестве подключенных резистивных датчиков. Питание измерительных цепей постоянным током снижает точность преобразования. Также питание датчиков постоянным током не вполне отвечает вопросам борьбы с аддитивными сигналами, возникающими во входных цепях измерительной схемы, например термо ЭДС.

Любая аварийная ситуация (обрыв цепей во внешней схеме соединений датчиков) приводит к потере работоспособности группы датчиков и требует дополнительного количества встроенных диодов (эквивалентно построению коммутатора тока), что допустимо для малой группы датчиков, например для одиночной 4-х компонентной тензорезисторной розетки.

Задачей изобретения является улучшение надежности и работоспособности устройства. Техническим результатом является снижение погрешности устройства за счет увеличения его помехоустойчивости, быстродействия, малого собственного шума и стабильности, полная гальваническая развязка от общих источников питания и «земляных» цепей объекта измерения, а также использование двунаправленного токового питания резистивных датчиков и алгоритма обработки результатов измерения.

Технический результат достигается тем, что в многоканальный преобразователь сопротивления резистивных датчиков в напряжение, содержащий источник общего питания, источник опорного напряжения, источник постоянного тока, резистивные датчики и резистивное эквивалентное устройство, токовый коммутатор, коммутатор напряжения, инструментальный операционный усилитель и аналого-цифровой преобразователь, введены второй источник постоянного тока, четыре источника взвешенного напряжения, входы двух из которых подключены к источнику общего питания, а выходы связаны с шинами питания операционных усилителей двух источников постоянного тока, а входы двух других источников взвешенного напряжения подключены к выходу источника опорного напряжения и их выходы соединены с входами двух источников постоянного тока, выходы последних связаны с входами модулятора импульсного двунаправленного тока, а его выходы подключены к входам токового коммутатора питания резистивных датчиков и резистивного эквивалентного устройства, причем потенциальные шины резистивных датчиков и резистивного эквивалентного устройства подключены к коммутатору напряжения, выход которого связан с дифференциальным входом инструментального операционного усилителя, выход которого соединен с входом аналого-цифрового преобразователя подключенного к микроконтроллеру формирования диаграммы работы устройства, приема и выполнения алгоритма обработки измеренных сигналов, а его цифровые выходы связаны с управляющими входами источников взвешенного напряжения, модулятора импульсного двунаправленного тока, токового коммутатора, коммутатора напряжения и аналого-цифрового преобразователя.

Сущность изобретения поясняется структурной схемой и временной диаграммой на чертежах.

На фиг.1 показана структурная схема, в которой:

1 - источник опорного напряжения (ИОН);

2, 3, 4, 5 - источники взвешенного напряжения (ИВН1, ИВН2, ИВН3, ИВН4);

6, 7 - источники постоянного тока (ИТ1, ИТ2);

8 - модулятор импульсного двунаправленного тока (М);

9 - токовый коммутатор питания резистивных датчиков и резистивных эквивалентных устройств (К1);

10, 11 - резистивный датчик и его резистивное эквивалентное устройство (R и Rн);

12 - коммутатор напряжения (К2);

13 - инструментальный операционный усилитель (ИУ);

14 - аналого-цифровой преобразователь (АЦП);

15 - микроконтроллер формирования диаграммы работы устройства, приема и выполнения алгоритма обработки измеренных сигналов (МС);

16 - источник общего питания (Епит.).

На фиг.2 показана временная диаграмма работы устройства.

Устройство выполнено следующим образом. Источник общего питания 16 (Епит) подает напряжение на источник опорного напряжения (ИОН) 1, четыре источника взвешенного напряжения 2, 3, 4 и 5 (ИВН1) 2, (ИВН2) 3, (ИВН3) 4 и (ИВН4) 5, модулятор импульсного двунаправленного тока (М) 8, токовый коммутатор (К1) 9, коммутатор напряжения (К2) 12, инструментальный операционный усилитель ИУ 13, аналого-цифровой преобразователь (АЦП) 14, микроконтроллер (МС) 15. Причем выход источника опорного напряжения (ИОН)1 подключен к двум входам источников взвешенного напряжения (ИВН2) 3 и (ИВН4) 5, а их выходы связаны с входами двух источников постоянного тока (ИТ1) 6 и (ИТ2) 7 соответственно. Два других источника взвешенного напряжения (ИВН1) 2 и (ИВН3) 4 подключены к положительной шине общего питания, а их выходы соответственно соединены с положительными шинами питания операционных усилителей источников постоянного тока (ИТ1 и ИТ2) 6 и 7. Выходы источников постоянного тока (ИТ1 и ИТ2) 6 и 7 связаны с входами модулятора импульсного двунаправленного тока (М) 8, а его выход подключен к входу токового коммутатора (К1) 9, к выходам которого подключены резистивный датчик R 10 (датчик сопротивления) и его резистивное эквивалентое устройство (Rн) 11. Потенциальные (измерительные) шины резистивного датчика (R) 10 и его резистивного эквивалентного устройства (Rн) 11 связаны потенциальными шинами с входами коммутатора напряжения (К2) 12, выходы которого соединены с дифференциальным входом инструментального операционного усилителя (ИУ) 13. Вход аналого-цифрового преобразователя (АЦП) 14 подключен к выходу инструментального операционного усилителя (ИУ) 13 с усиленным сигналом Uпр., а кодовый эквивалент преобразованного сигнала в АЦП 14 поступает на один из входов микроконтроллера (МС) 15, а один из выходов (регистр) микроконтроллера (МС) 15 связан с управляющими шинами F устройства.

Устройство функционирует следующим образом. От микроконтроллера (МС) 15 на источники взвешенного напряжения (ИВН1...ИВН4) 2, 3, 4 и 5 поступает управляющий сигнал F1 (фиг.2), где с помощью переключаемых конденсаторов достаточно большой емкости (≈100 μF) формируется напряжение питания операционных усилителей источников постоянного тока (ИТ1 и ИТ2) 6 и 7, а также их опорный сигнал от источника опорного напряжения (ИОН) 1. При этом исключаются:

а) составляющая шума, связанная с шумом активных элементов питания;

б) составляющая шума, связанная с необходимостью выделения сигнала резистивных датчиков (независимого от сопротивления подключающих проводов и цепей коммутации).

Для повышения стабильности сигнала преобразования используется один (ИОН) 1 для задания значений токов в (ИТ1 и ИТ2) 6 и 7, а на выходах (ИТ1 и ИТ2) 6 и 7 установлен модулятор импульсного двунаправленного тока (М) 8 для переключения токов так, что в 1-й такт коммутации (управляющий сигнал F3) (ИТ1) 6 питает резистивный датчик (с сопротивлением R), (ИТ2) 7 - резистивное эквивалентное устройство (с сопротивлением Rн), а во 2-й такт (управляющий сигнал F4) преобразования (Такт 2) наоборот: (ИТ1) 6 питает резистивное эквивалентное устройство (ИТ2) 7 - резистивный датчик. При этом, с целью одновременного уменьшения помех от наводок промышленных частоты и от величин напряжений, возникающих от температурного дрейфа активных элементов (путем вычисления в кодовом эквиваленте разности сигналов преобразования в Такте 2 и Такте 1), выходы модулятора (М) 8 соединены таким образом, что фаза сигналов питания в Такте 2 противоположна фазе сигнала питания в Такте 1 (фиг.2).

Выходной сигнал преобразования:

Такт 1:

Такт 2:

где Iн - номинальное значение токов питания от (ИТ1 и ИТ2) 6 и 7;

ΔI1, ΔI2 - погрешности токов питания соответственно в (ИТ1 и ИТ2) 6 и 7;

RН - номинальное значение сопротивления резистивного датчика (R) 10 и компенсирующего его резистивного эквивалента (Rн) 11;

ΔR - отклонение сопротивления резистивного датчика (R) 10 от номинального значения (Rн) 11 (информативный параметр).

Окончательный результат преобразования в микроконтроллере (МС) 15 в кодовом эквиваленте N:

где N1 и N2 - кодовые эквиваленты, пропорциональные Uпр1 и Uпр2;

[Iн·(±ΔR)] информативный (измеряемый) параметр датчика;

[(±ΔI1±ΔI2)·(±ΔR)] - погрешность 2-го порядка малости, которой можно пренебречь.

Подавление помех аддитивного характера обеспечивается созданием взвешенных источников питания 2, 3, 4 и 5 (ИВН2÷ИВН4), гальванической развязкой источника опорного напряжения 1 (ИОН) от источников тока 6, 7 (ИТ1 и ИТ2), подавлением синфазной помехи при подаче измерительного сигнала на дифференциальный вход инструментального операционного усилителя 13(ИУ) и выбранным алгоритмом обработки сигнала в микроконтроллере 15 (МС) при использовании двунаправленного импульсного питания резистивных датчиков и их резистивных эквивалентов, что обеспечивает построение малошумящего высокостабильного преобразователя сопротивления резистивных датчиков в напряжение.

Следует отметить, что предлагаемая схема построения преобразователя сопротивления резистивного датчика в напряжение позволяет подключать по любой схеме соединения тензорезисторные датчики (одиночные, полумостовые, мостовые, розеточные и т.д.).

Многоканальныйпреобразовательсопротивлениярезистивныхдатчиковвнапряжение,содержащийисточникобщегопитания,источникопорногонапряжения,источникпостоянноготока,резистивныедатчикиирезистивноеэквивалентноеустройство,токовыйкоммутатор,коммутаторнапряжения,инструментальныйоперационныйусилительианалого-цифровойпреобразователь,отличающийсятем,чтовнеговведенывторойисточникпостоянноготока,четыреисточникавзвешенногонапряжения,входыдвухизкоторыхподключеныкисточникуобщегопитания,авыходысвязанысшинамипитанияоперационныхусилителейдвухисточниковпостоянноготока,авходыдвухдругихисточниковвзвешенногонапряженияподключеныквыходуисточникаопорногонапряженияиихвыходысоединенысвходамидвухисточниковпостоянноготока,выходыпоследнихсвязанысвходамимодулятораимпульсногодвунаправленногосигнала,аеговыходыподключеныквходамтоковогокоммутаторапитаниярезистивныхдатчиковирезистивногоэквивалентногоустройства,причемпотенциальныешинырезистивныхдатчиковирезистивногоэквивалентногоустройстваподключеныккоммутаторунапряжения,выходкоторогосвязансдифференциальнымвходоминструментальногооперационногоусилителя,выходкоторогосоединенсвходоманалого-цифровогопреобразователя,подключенногокмикроконтроллеруформированиядиаграммыработыустройства,приемаивыполненияалгоритмаобработкиизмеренныхсигналов,аегоцифровыевыходысвязанысуправляющимивходамиисточниковвзвешенногонапряжения,модулятораимпульсногодвунаправленноготока,токовогокоммутатора,коммутаторанапряженияианалого-цифровогопреобразователя.
Источник поступления информации: Роспатент

Showing 121-130 of 255 items.
25.08.2017
№217.015.b78f

Мотогондола двигателя на крыле летательного аппарата

Предлагаемое изобретение относится к авиационной технике. Мотогондола (1) на крыле (3) летательного аппарата установлена так, что координата по оси X составляет 0.7÷0.8 средней аэродинамической хорды крыла, отложенной от передней кромки крыла (6) до среза сопла мотогондолы (5), по оси Y...
Тип: Изобретение
Номер охранного документа: 0002614870
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b84a

Способ ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем

Изобретение относится к области летательных аппаратов околозвуковых скоростей. Способ ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем на обтекаемой поверхности включает выполнение выдува струй округлой поперечной формы из обтекаемой поверхности перед скачком...
Тип: Изобретение
Номер охранного документа: 0002615251
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.cc1d

Осесимметричная носовая часть фюзеляжа летательного аппарата

Изобретение относится к области авиационной техники. Осесимметричная носовая часть фюзеляжа затуплена по торцу и ее боковая поверхность имеет образующую, которая составлена из двух дуг окружностей и элемента, задаваемого степенной зависимостью радиуса от продольной координаты. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002620455
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.cffe

Имитатор сигналов мостовых тензорезисторных датчиков

Изобретение относится к измерительной технике и предназначено для имитации сигналов мостовых тензорезисторных датчиков при проведении метрологических исследований и калибровке быстродействующих измерительных систем в автоматическом режиме. Имитатор сигналов мостовых тензорезисторных датчиков...
Тип: Изобретение
Номер охранного документа: 0002620895
Дата охранного документа: 30.05.2017
26.08.2017
№217.015.e18f

Способ теплопрочностных испытаний обтекателей гиперзвуковых летательных аппаратов и установка для его реализации

Изобретение относится к методике теплопрочностных испытаний носовых обтекателей и передних кромок воздухозаборника гиперзвуковых летательных аппаратов (далее ГЛА) с помощью инфракрасных нагревателей по программе гиперзвукового полета и касается способа создания большой величины плотности...
Тип: Изобретение
Номер охранного документа: 0002625637
Дата охранного документа: 17.07.2017
29.12.2017
№217.015.f2fc

Законцовка крыла летательного аппарата

Изобретение относится к авиационной технике. Законцовка крыла самолета серповидной формы имеет переднюю и заднюю кромки, выполненные нелинейной формы, выпуклой по всей длине, состоит из профилей с увеличенной относительно концевого сечения крыла кривизной (f=0.005-0.02), меньшей относительной...
Тип: Изобретение
Номер охранного документа: 0002637233
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f3ac

Импульсный плазменный тепловой актуатор эжекторного типа

Изобретение относится к системам управления обтеканием летательного аппарата при дозвуковых и околозвуковых скоростях полета. Импульсный плазменный тепловой актуатор эжекторного типа содержит подводной канал с обратным клапаном, разрядную камеру со встроенными игольчатыми электродами, сопло...
Тип: Изобретение
Номер охранного документа: 0002637235
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f409

Гибридная композитная панель для авиаконструкций

Изобретение относится к области разработки многослойных композитных авиационных конструкций с повышенной ударной прочностью и высокими деформационно-прочностными характеристиками. В гибридной композитной панели для авиаконструкции, например панели фюзеляжа летательного аппарата, слои, состоящие...
Тип: Изобретение
Номер охранного документа: 0002637001
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f45a

Спироидный винглет

Группа изобретений относится к области летательных аппаратов. Спироидный винглет представляет продолжение конца крыла в виде расположенной над ним несущей поверхности замкнутой формы. Несущая поверхность винглета выполнена постоянно сужающейся, с хордой на конце ее горизонтального участка,...
Тип: Изобретение
Номер охранного документа: 0002637149
Дата охранного документа: 30.11.2017
29.12.2017
№217.015.f633

Крыло летательного аппарата с убирающимся воздушным винтом

Группа изобретений относится к авиационной технике. Крыло летательного аппарата с убирающимся воздушным винтом включает передний и задний лонжерон, предкрылок, двигатель, воздушный винт, лопасти воздушного винта. В первом варианте двигатель воздушного винта установлен на переднем лонжероне...
Тип: Изобретение
Номер охранного документа: 0002637277
Дата охранного документа: 01.12.2017
Showing 1-9 of 9 items.
20.03.2013
№216.012.302a

Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков с инструментальными усилителями, запитанных постоянным током. Техническим результатом изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002477865
Дата охранного документа: 20.03.2013
27.07.2013
№216.012.5a84

Способ измерения негерметичности изделий

Изобретение относится к области испытательной техники и может быть использовано для изменения негерметичности изделий, работающих под избыточным давлением. Изобретение направлено на повышение точности измерения негерметичности изделия путем создания последовательности операций, позволяющих...
Тип: Изобретение
Номер охранного документа: 0002488793
Дата охранного документа: 27.07.2013
13.01.2017
№217.015.7530

Устройство пневматического нагружения фюзеляжа самолета при прочностных испытаниях на ресурс

Изобретение относится к испытательной технике и может быть использовано для создания циклических нагрузок внутренним избыточным давлением воздуха при испытаниях на ресурс фюзеляжей и других авиационных гермоотсеков. Устройство содержит источник сжатого воздуха со стабилизатором давления,...
Тип: Изобретение
Номер охранного документа: 0002598778
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.7538

Способ пневматического нагружения фюзеляжа самолета при прочностных испытаниях на ресурс

Изобретение относится к области испытательной техники и предназначено для создания циклических трапециевидных программ нагружения избыточным давлением воздуха при прочностных испытаниях на ресурс фюзеляжей и других авиационных гермоотсеков. В ходе реализации способа устанавливают границы...
Тип: Изобретение
Номер охранного документа: 0002598700
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.7579

Способ регистрации параметров условий нагружения при эксплуатации или ресурсных испытаниях механических конструкций

Изобретение относится к области измерительной техники и может быть использовано для мониторинга напряженности механических конструкций при их эксплуатации или проведении сертификационных ресурсных испытаний. Предлагаемый способ заключается в том, что при любом методе схематизации характерного...
Тип: Изобретение
Номер охранного документа: 0002598702
Дата охранного документа: 27.09.2016
04.10.2018
№218.016.8ecc

Способ определения усталостного разрушения элементов конструкций из полимерного композиционного материала

Изобретение относится к области мониторинга состояния конструкции по условиям прочности, направленное на определение момента разрушения элементов конструкций из полимерного композиционного материала (ПКМ) при циклическом нагружении. Способ заключается в том, что осуществляют контроль утолщения...
Тип: Изобретение
Номер охранного документа: 0002668644
Дата охранного документа: 02.10.2018
29.05.2019
№219.017.69c3

Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков, подключенных к инструментальному усилителю и запитанных постоянным током. Техническим результатом является исключение аддитивных...
Тип: Изобретение
Номер охранного документа: 0002469338
Дата охранного документа: 10.12.2012
19.06.2019
№219.017.85cf

Способ калибровки и коррекции результатов измерения многоканального измерительно-вычислительного комплекса

Указанный способ применим к измерительно-вычислительному комплексу (ИВК), включающему в себя узел коммутации (УК), программируемый нормирующий преобразователь (ПНП), микропроцессор (МП) и встроенный радиоканал связи (PC), с целью обеспечения работы комплекса в широком диапазоне температур...
Тип: Изобретение
Номер охранного документа: 0002345328
Дата охранного документа: 27.01.2009
10.07.2019
№219.017.ac3b

Автоматический калибратор мер измерительно-вычислительного комплекса

Изобретение относится к измерительной технике, в частности для метрологической аттестации многоканальных многофункциональных средств измерения электрических величин. Технический результат - расширение функциональных возможностей. Для достижения данного результата введены быстродействующие...
Тип: Изобретение
Номер охранного документа: 0002345377
Дата охранного документа: 27.01.2009
+ добавить свой РИД