×
19.06.2019
219.017.85b1

СПОСОБ СЖИЖЕНИЯ ГАЗА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Способ реализуется на установке, состоящей из двух контуров: контура очистки газа от примесей, выделения из него тяжелых углеводородов, азота и сжижения природного газа и контура циркуляции хладагента, в котором поток хладагента после сжатия и охлаждения разделяют в узле деления на два потока в соотношениях от 1:19 до 1:33. Больший поток хладагента направляют на охлаждение в теплообменник, а меньший - через дроссельный вентиль в куб отпарной колонны, затем оба потока хладагента, после выравнивания давлений в них, смешивают. Установка для сжижения природного газа включает контур очистки газа от примесей, выделения из него тяжелых углеводородов и азота и сжижения природного газа, а также контур циркуляции хладагента. Узел деления сжижаемого газа выполнен с двумя выходами, к которым подключены первая и вторая линии сжижаемого газа, которые объединяются в узле смешения потоков сжижаемого газа. Первая линия сжижаемого газа проходит через первый теплообменник, а вторая линия сжижаемого газа - через второй теплообменник. Обе линии содержат вентили и измерители давления, обеспечивающие выравнивание давлений сжижаемого газа в первой и второй линиях перед их объединением в узле смешения потоков сжижаемого газа, выход которого соединен с первым сепаратором, верхняя часть которого соединена с отпарной колонной третьей линией сжижаемого газа, проходящей через первый теплообменник. Верхняя часть отпарной колонны соединена трубопроводом со вторым теплообменником, а нижняя часть отпарной колонны соединена четвертой линией сжижаемого газа, проходящей через теплообменник-переохладитель. Контур циркуляции хладагента включает узел деления сжатого хладагента с двумя выходами, к которым подключены первая и вторая линии хладагента, объединяющиеся в первом узле смешения потоков хладагента, первая линия хладагента проходит через третий теплообменник, а вторая линия - через третий дроссельный вентиль и куб отпарной колонны, обе линии содержат вентили и измерители давления, обеспечивающие выравнивание давлений хладагента в первой и второй линиях перед их объединением в первом узле смешения потоков хладагента. При реализации изобретения снижаются энергозатраты на сжижение природного газа. 2 н. и 2 з.п. ф-лы, 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области сжижения газов и их смесей и может быть использовано при сжижении природного газа, содержащего значительное количество не углеводородных примесей (азот, углекислый газ, сероводород, ртуть и/или ее соединения, и т.п.).

Наиболее близким по технической сущности и достигаемому результату к предложенному изобретению в части способа является способ сжижения газа с использованием холода циркулирующего хладагента, включающий сжатие, охлаждение, очистку от углекислоты и сероводорода и осушку сжижаемого газа, разделение его на два потока в соотношении от 1:1,1 до 1:20, раздельное их охлаждение до 190÷220 К азотной фракцией и обратным потоком циркулирующего хладагента, смешение потоков, выделение из них тяжелых углеводородов, конденсацию, отпарку азотной фракции при давлении 2÷3 МПа после охлаждения до температуры 160÷170 К циркулирующим хладагентом, переохлаждение и вывод сжиженного газа потребителю. Способ включает также сжатие циркулирующего хладагента, его охлаждение и разделение на два потока, первый из которых направляют в куб отпарной колонны, в котором производят его охлаждение, а второй направляют на охлаждение в теплообменнике обратным потоком циркулирующего хладагента, после чего оба потока смешивают и направляют в холодильную установку, а затем в сепаратор, в котором производят разделение фаз циркулирующего хладагента, паровую фазу пропускают через более чем один теплообменник, сжижают путем охлаждения до температуры 108 К, затем нагревают и смешивают с жидкой фазой, смешанный поток циркулирующего хладагента нагревают и подают на сжатие (см. а.с. СССР №690255, приоритет 15.02.1977).

Известному способу присущи следующие недостатки.

Разделенные потоки сжижаемого газа и циркулирующего хладагента встречают различные сопротивления на своих путях до момента смешения, в связи с чем первый поток может «поддавливать» второй поток, что приводит к нестабильной работе сепаратора, теплообменников и всей установки, на которой осуществляется способ.

Кроме этого, из аналога неизвестно в каких соотношениях делится поток циркулирующего хладагента, а неправильный выбор соотношения приведет к нестабильной работе отпарной колонны и всей установки, на которой осуществляется способ.

Вследствие снижения стабильности работы отдельных элементов и всей установки в целом повышаются энергозатраты на сжижение природного газа.

Известный способ не предусматривает очистку сжижаемого газа от ртути и/или ее соединений, которые представляют опасность в виде амальгамной коррозии алюминиевых частей теплообменников.

При создании изобретения в части способа решались технические задачи снижения энергозатрат на сжижение природного газа, оптимизации распределения потоков хладагента и снижения количества используемого оборудования.

Кроме этого решалась задача очистки поступающего на сжижение природного газа от ртути и ее соединений.

Поставленные технические задачи решались в способе сжижения природного газа, характеризующемся тем, что производят сжатие сжижаемого газа до давления 4,0÷7,0 МПа, затем очищают сжижаемый газ от примесей и осушают его в блоке очистки и дегидратации, после чего охлаждают сжижаемый газ в испарителе холодильной установки. В блоке очистки и дегидратации газа сжижаемый газ сначала очищают от углекислого газа и сероводорода, затем осушают, после чего очищают от ртути и/или ее соединений. Далее сжижаемый газ разделяют на два потока в соотношениях от 1:1,1 до 1:20, раздельно охлаждают потоки обратным потоком циркулирующего хладагента в первом теплообменнике и азотной фракцией во втором теплообменнике, выравнивают давления газа в обоих потоках и смешивают их. Смешанный поток сжижаемого газа направляют в первый сепаратор, где в жидком виде отделяют тяжелые фракции углеводородов С2-C7, которые удаляют из первого сепаратора. Паровую фазу из первого сепаратора направляют в первый теплообменник, где ее конденсируют и переохлаждают и, после расширения в первом дроссельном вентиле при давлении 2÷3 МПа, направляют в отпарную колонну. Отпарку азотной фракции производят после охлаждения до температуры 160÷170 К, азотную фракцию отбирают из верхней части отпарной колонны, направляют во второй теплообменник и после рекуперации холода в нем азотную фракцию подают в магистральный газопровод или в систему топливного газа. Сжижаемый газ с содержанием азота до 4% мольных отбирают из нижней части отпарной колонны и направляют в теплообменник - переохладитель, где его переохлаждают, и после снижения давления во втором дроссельном вентиле до давления, близкого к атмосферному, сливают в хранилище.

Циркулирующий хладагент сжимают до 4,0÷5,0 МПа в компрессоре и охлаждают в холодильнике, после чего поток хладагента разделяют в узле деления на два потока в соотношениях от 1:19 до 1:33. Больший поток хладагента направляют на охлаждение в третий теплообменник, а меньший - через третий дроссельный вентиль в куб отпарной колонны, затем оба потока хладагента, после выравнивания давлений в них, смешивают в первом узле смешения потоков хладагента, после чего смешанный поток хладагента направляют на охлаждение в испаритель холодильной установки, а затем во второй сепаратор, в котором производят разделение фаз хладагента. Паровую фазу отбирают из верхней части второго сепаратора и направляют последовательно в первый теплообменник и в теплообменник-переохладитель, где ее переохлаждают, затем расширяют в четвертом дроссельном вентиле и возвращают в теплообменник-переохладитель, в котором испаряют путем теплообмена с потоком сжиженного газа и потоком паровой фазы хладагента высокого давления. Жидкую фазу хладагента отбирают из нижней части второго сепаратора и направляют в первый теплообменник, после которого расширяют в пятом дроссельном вентиле, затем оба потока, разделенных во втором сепараторе фаз хладагента, после выравнивания давлений в них, смешивают во втором узле смешения хладагента, смешанный поток направляют обратным потоком для испарения в первый теплообменник, далее подогревают в третьем теплообменнике и отводят в компрессор на сжатие.

Наиболее близкой по технической сущности и достигаемому результату к предложенному изобретению в части установки является установка сжижения газа, включающая контур сжижения газа и выделения из него азота и тяжелых углеводородов и контур циркуляции хладагента. Контур сжижения газа и выделения из него азота и тяжелых углеводородов включает последовательно установленные источник поступления природного газа, устройство сжатия газа, холодильник, узел очистки газа от углекислого газа (CO2) и сероводорода (H2S), первый теплообменник, блок осушки газа и узел деления сжижаемого газа на два потока - линии и узел их смешения. Первая линия включает второй и третий теплообменники, а вторая линия - четвертый теплообменник. После узла смешения потоков сжижаемого газа установлен первый сепаратор, верхняя часть которого соединена через третий теплообменник и первый дроссельный вентиль с отпарной колонной, а нижняя часть первого сепаратора оборудована патрубком удаления тяжелых фракций углеводородов. Верхняя часть отпарной колонны соединена с четвертым теплообменником, оборудованным патрубком вывода азотной фракции из установки, а нижняя - с теплообменником-переохладителем, на выходе которого установлен второй дроссельный вентиль слива сжиженного газа в хранилище. Контур циркуляции хладагента включает устройство сжатия хладагента, холодильник, пятый теплообменник и узел деления сжатого хладагента на два потока - линии (трубопроводы). Линия первого потока хладагента соединяет узлы деления и смешения потоков хладагента и содержит вентиль. Линия второго потока хладагента соединяет узлы деления и смешения потоков хладагента, проходит через куб отпарной колонны и содержит вентиль. Узел смешения потоков хладагента соединен со вторым сепаратором, где хладагент разделяют на паровую и жидкую фазы, линией (трубопроводом), проходящей через испаритель холодильной установки. Верхняя часть второго сепаратора, из которой выводится паровая фаза хладагента, соединена с узлом смешения потоков хладагента линией (трубопроводом), проходящей через третий теплообменник, теплообменник-переохладитель и третий дроссельный вентиль. Нижняя часть второго сепаратора, из которой выводится жидкая фаза хладагента, соединена с узлом смешения потоков хладагента линией (трубопроводом), проходящей через третий теплообменник и четвертый дроссельный вентиль. Узел смешения потоков хладагента соединен с устройством сжатия хладагента линией, проходящей через третий, второй, первый и пятый теплообменники последовательно (см. а.с. СССР №690255, приоритет 15.02.1977).

Известной установке присущи следующие недостатки.

Разделенные потоки сжижаемого газа и циркулирующего хладагента встречают различные сопротивления на своих путях до момента смешения, в связи с чем первый поток может «поддавливать» второй поток, что приводит к нестабильной работе сепаратора, теплообменников и всей установки сжижения газа.

Кроме этого, в аналоге используются пять теплообменников, на обеспечение работы которых затрачиваются значительные энергоресурсы.

Вследствие снижения стабильности работы отдельных элементов и всей установки в целом повышаются энергозатраты на сжижение природного газа.

Известная установка не предусматривает очистку сжижаемого газа от ртути и/или ее соединений, которые представляют опасность в виде амальгамной коррозии алюминиевых частей теплообменников.

При создании изобретения в части установки решались технические задачи снижения энергозатрат на сжижение природного газа и снижения количества используемого оборудования. Кроме этого решалась задача очистки поступающего на сжижение природного газа от ртути и ее соединений.

Поставленные технические задачи решались тем, что установка сжижения природного газа с использованием холода циркулирующего хладагента включает контур очистки газа от примесей, выделения из него тяжелых углеводородов и азота и сжижения природного газа и контур циркуляции хладагента.

Контур очистки газа от примесей, выделения из него тяжелых углеводородов и азота и сжижения природного газа включает источник поступления природного газа (например, газопровод), последовательно установленные и соединенные друг с другом трубопроводами устройство сжатия газа, холодильник, блок очистки газа и его дегидратации, испаритель холодильной установки и узел деления сжижаемого газа с двумя выходами.

Блок очистки газа от примесей и дегидратации содержит узел очистки газа от углекислого газа и сероводорода, узел осушки сжижаемого газа и узел очистки газа от ртути и/или ее соединений.

К выходам узла деления сжижаемого газа подключены первая и вторая линии сжижаемого газа, объединяющиеся в узле смешения потоков сжижаемого газа. Первая линия сжижаемого газа проходит через первый теплообменник, а вторая линия сжижаемого газа - через второй теплообменник, обе линии содержат вентили и измерители давления, обеспечивающие выравнивание давлений сжижаемого газа в первой и второй линиях перед их объединением в узле смешения потоков сжижаемого газа, выход которого соединен с первым сепаратором.

Нижняя часть первого сепаратора оборудована патрубком вывода тяжелых фракций углеводородов, а верхняя часть соединена с отпарной колонной третьей линией сжижаемого газа, проходящей через первый теплообменник и содержащей первый дроссельный вентиль. Верхняя часть отпарной колонны соединена трубопроводом со вторым теплообменником, снабженным патрубком вывода азотной фракции из установки, а нижняя часть отпарной колонны соединена четвертой линией сжижаемого газа, проходящей через теплообменник-переохладитель, со вторым дроссельным вентилем, снабженным трубопроводом слива сжиженного газа в хранилище сжиженного газа.

Контур циркуляции хладагента включает последовательно установленные и соединенные трубопроводами устройство сжатия хладагента, холодильник и узел деления сжатого хладагента с двумя выходами, к которым подключены первая и вторая линии хладагента, объединяющиеся в первом узле смешения потоков хладагента.

Первая линия хладагента проходит через третий теплообменник, а вторая линия - через третий дроссельный вентиль и куб отпарной колонны, обе линии содержат вентили и измерители давления, обеспечивающие выравнивание давлений хладагента в первой и второй линиях перед их объединением в первом узле смешения потоков хладагента. Выход первого узла смешения потоков хладагента соединен со вторым сепаратором третьей линией смешанного потока хладагента, проходящей через испаритель холодильной установки. Верхняя часть второго сепаратора соединена со вторым узлом смешения потоков хладагента, разделенных во втором сепараторе, четвертой линией исходящей паровой фазы хладагента и проходящей через первый теплообменник, теплообменник-переохладитель и повторно через теплообменник-переохладитель, при этом между выходом из теплообменника-переохладителя и повторным входом в него на четвертой линии исходящей паровой фазы хладагента установлен четвертый дроссельный вентиль, а перед вторым узлом смешения потоков хладагента на четвертой линии исходящей паровой фазы установлены измеритель давления и вентиль. Нижняя часть второго сепаратора соединена со вторым узлом смешения потоков хладагента пятой линией исходящей жидкой фазы, которая проходит через первый теплообменник и содержит пятый дроссельный вентиль, а перед вторым узлом смешения потоков хладагента на пятой линии исходящей жидкой фазы установлен измеритель давления. Выход второго узла смешения потоков хладагента соединен с устройством сжатия хладагента шестой линией смешанного хладагента, проходящей через первый и третий теплообменники.

Изобретение поясняется чертежом, на котором представлена принципиальная схема установки сжижения природного газа, на которой реализуется заявленный способ.

Установка сжижения природного газа, на которой реализуется способ сжижения природного газа, состоит из двух контуров, а именно:

- контура очистки газа от примесей, выделения из него тяжелых углеводородов и азота и сжижения природного газа;

- контура циркуляции хладагента.

Контур очистки газа от примесей, выделения из него тяжелых углеводородов и азота и сжижения природного газа включает источник поступления природного газа 1 (например, газопровод), последовательно установленные и соединенные друг с другом трубопроводами устройство сжатия газа 2, холодильник 3, блок очистки газа от примесей и дегидратации, который содержит узел 4 очистки газа от углекислого газа и сероводорода, узел 5 осушки сжижаемого газа и узел 6 очистки газа от ртути и/или ее соединений. Далее установлен испаритель холодильной установки 7 и узел деления сжижаемого газа 8 с двумя выходами. К первому выходу узла деления подключена первая линия 9 сжижаемого газа, а ко второму выходу - вторая линия 10 сжижаемого газа.

Первая линия 9 сжижаемого газа проходит через первый теплообменник 11 и содержит вентиль 12 и измеритель давления 13. Вторая линия 10 сжижаемого газа проходит через второй теплообменник 14 и содержит вентиль 15 и измеритель давления 16. Линии 9 и 10 объединяются в узле 17 смешения потоков сжижаемого газа, выход которого соединен с первым сепаратором 18, из нижней части которого выводятся тяжелые фракции углеводородов через патрубок 19.

К верхней части первого сепаратора 18 подключена третья линия 20 сжижаемого газа, проходящая через первый теплообменник 11 и первый дроссельный вентиль 21. Третья линия 20 сжижаемого газа соединена с отпарной колонной 22.

Верхняя часть отпарной колонны 22 соединена трубопроводом 23 со вторым теплообменником 14, снабженным патрубком вывода азотной фракции из установки (на чертеже условно не обозначен).

К нижней части отпарной колонны 22 подключена четвертая линия 24 сжижаемого газа, проходящая через теплообменник-переохладитель 25, и второй дроссельный вентиль 26, снабженный трубопроводом 27 слива сжиженного природного газа в хранилище (на чертеже условно не показано).

Контур циркуляции хладагента включает последовательно установленные и соединенные трубопроводами устройство сжатия 28 хладагента, холодильник 29, узел деления 30 сжатого хладагента с двумя выходами, к которым подключены первая 31 и вторая 32 линии хладагента. Первая линия 30 хладагента проходит через третий теплообменник 33 и содержит вентиль 34 и измеритель давления 35. Вторая линия 32 хладагента проходит через третий дроссельный вентиль 36, куб отпарной колонны 22 и содержит вентиль 37 и измеритель давления 38. Первая 31 и вторая 32 линии хладагента объединяются в первом узле 39 смешения потоков хладагента, выход которого соединен третьей линией 40 хладагента, проходящей через испаритель холодильной установки 7, со вторым сепаратором 41, в котором хладагент разделяют на паровую и жидкую фазы.

Верхняя часть второго сепаратора 41 соединена четвертой линией 42 исходящей паровой фазы хладагента, проходящей через первый теплообменник 11, теплообменник-переохладитель 25, установленный на линии четвертый дроссельный вентиль 43 и повторно через теплообменник-переохладитель 25, со вторым узлом смешения 44 потоков хладагента. Перед вторым узлом смешения 44 потоков хладагента на четвертой линии 42 исходящей паровой фазы хладагента установлены измеритель давления 45 и вентиль 46.

Нижняя часть второго сепаратора 41, из которой отводят жидкую фазу хладагента, соединена со вторым узлом смешения 44 потоков хладагента линией 47 исходящей жидкой фазы хладагента, которая проходит через первый теплообменник 11 и содержит пятый дроссельный вентиль 48. Перед вторым узлом смешения 44 потоков хладагента на пятой линии 47 исходящей жидкой фазы хладагента установлен измеритель давления 49. Второй узел смешения 44 потоков хладагента соединен с устройством сжатия 28 хладагента шестой линией 50 смешанного хладагента, проходящей через первый теплообменник 11 и третий теплообменник 33.

Способ реализуют на предложенном устройстве следующим образом.

Природный газ с давлением, например, 2,0÷3,0 МПа, из источника поступления природного газа 1 направляют в устройство сжатия газа 2, в котором его сжимают до давления 4,0÷7,0 МПа, затем охлаждают в водяном или воздушном холодильнике 3, очищают от углекислого газа (CO2) и сероводорода (H2S) в узле очистки 4, затем направляют в узел 5 осушки сжижаемого газа, после чего в узел 7 очистки газа от ртути и/или ее соединений. Затем сжижаемый газ охлаждают в испарителе холодильной установки 7 до температуры 235÷245 К, после чего поток сжижаемого газа разделяют в узле деления сжижаемого газа 8 с двумя выходами. К первому выходу узла деления подключена первая линия 9 сжижаемого газа, а ко второму выходу - вторая линия 10 сжижаемого газа.

Объемные соотношения двух потоков сжижаемого газа находятся в пределах от 1:1,1 до 1:20 и зависят от содержания азота в природном газе - чем выше содержание азота в природном газе, тем меньше соотношение. Так, например, при содержании азота в природном газе 20% по объему оптимальное соотношение потоков составляет 1:1,15, а при содержании азота в природном газе 4% по объему оптимальное соотношение потоков составляет 1:20.

Большую часть потока сжижаемого газа направляют по первой линии 9 сжижаемого газа, охлаждают и конденсируют в первом теплообменнике 11 за счет теплообмена с циркулирующим хладагентом. Меньшую часть потока сжижаемого газа направляют по второй линии 10 сжижаемого газа, охлаждают и конденсируют во втором теплообменнике 14 за счет теплообмена с азотной фракцией, выходящей из отпарной колонны 22. При этом оба потока охлаждаются до температуры 210÷220 К. После прохождения через первый и второй теплообменники и выравнивания давлений в линиях 9 и 10 с помощью вентилей 12 и 15 соответственно оба потока смешивают в узле смешения 17. Контроль за давлениями в линиях 8 и 9 перед смешением потоков осуществляют с помощью измерителей давления 13 и 16 соответственно.

После узла смешения 17 поток сжижаемого газа подают в первый сепаратор 18, где в жидком виде отделяют углеводороды С2-C7 при температуре 190÷220 К. Паровую фазу из первого сепаратора 18 направляют по линии 20 паровой фазы сжижаемого газа в первый теплообменник 11, где ее конденсируют и переохлаждают до температуры 160÷170 К и, после расширения в первом дроссельном вентиле 21 до давления, например, равного давлению в газопроводе, т.е. 2÷3 МПа, направляют в отпарную колонну 22. Куб отпарной колонны 22 обогревают хладагентом высокого давления при температуре 283÷288 К, который подводят по линии 32 из узла деления 30 сжатого хладагента.

Отпарку азотной фракции производят после охлаждения сжижаемого газа до температуры 160÷170 К. Азотную фракцию отбирают из верхней части отпарной колонны 22 и по трубопроводу 23 подают азотную фракцию во второй теплообменник 14. После рекуперации холода во втором теплообменнике 14 азот направляют в газопровод или систему топливного газа.

Азотная фракция, отводимая из отпарной колонны, содержит 60-80% метана и направляется в газопровод для дальнейшего использования. При этом теплотворная способность газа остается достаточно высокой. Азотная фракция может быть использована для получения чистого азота для подпитки смешанного холодильного агента и для других целей (продувки, создание инертной среды в изоляции хранилищ и др.).

Сжижаемый газ с малым содержанием азота (до 4% мольных) и температурой 180÷200 К отбирают из нижней части отпарной колонны 22 и по линии 24 сжижаемый газ направляют в теплообменник-переохладитель 25, где его переохлаждают до температуры 118÷120 К и после снижения давления во втором дроссельном вентиле 26 до давления, близкого к атмосферному, и по трубопроводу 27 сливают в хранилище при температуре 110÷115 К.

Хладагент с давлением около 0,15 МПа сжимают до 4,0-5,0 МПа в компрессоре 28 и охлаждают в холодильнике 29 до температуры 283-288 К, после чего поток хладагента разделяют в узле деления 30 на два потока, направляемые по линиям 31 и 32. Объемные соотношения двух потоков хладагента находятся в пределах от 1:19 до 1:33 и зависят от содержания азота в природном газе - чем выше содержание азота в природном газе, тем меньше соотношение. Так, например, при содержании азота в природном газе 20% по объему оптимальное соотношение потоков составляет 1:20, а при содержании азота в природном газе 4% по объему оптимальное соотношение потоков составляет 1:33. Хладагент по линии 31 направляют на охлаждение в третий теплообменник 33, где он охлаждается до температуры 253÷260 К, а по линии 32 - через третий дроссельный вентиль 36 в куб отпарной колонны 22. С помощью третьего дроссельного вентиля 36 обеспечивается обогрев куба отпарной колонны хладоагентом высокого давления при температуре 283÷288 К. Затем оба потока хладагента, после выравнивания давлений в линиях 31 и 32 с помощью вентилей 34 и 37 соответственно, смешивают в первом узле 39 смешения потоков хладагента. Контроль за давлениями в линиях 31 и 32 перед смешением потоков осуществляют с помощью измерителей давления 35 и 38 соответственно. После узла смешения 39 поток хладагента направляют в испаритель холодильной установки 7, где он охлаждается до температуры 238÷240 К, а затем во второй сепаратор 41.

Во втором сепараторе 41 производят разделение фаз хладагента. Паровую фазу по линии 42 направляют в первый теплообменник 11 и далее в теплообменник-переохладитель 25, где его переохлаждают до температуры 106÷110 К, затем расширяют в четвертом дроссельном вентиле 43 и возвращают в теплообменник-переохладитель 25, где испаряют путем теплообмена с потоком сжиженного газа и потоком паровой фазы хладагента высокого давления.

Жидкую фазу хладагента после второго сепаратора 41 направляют по линии 47 в первый теплообменник 11, где переохлаждают до температуры 165÷175 К, расширяют в четвертом дроссельном вентиле 48, соединяют с потоком циркулирующего хладагента из теплообменника-переохладителя 25 во втором узле 44 смешения потоков хладагента, предварительно выровняв давления смешиваемых потоков, и направляют обратным потоком для испарения в первый теплообменник 11, далее подогревают в третьем теплообменнике 33 и отводят в компрессор 28.

Граничные значения интервала технологических параметров, при которых реализуется предлагаемый способ, определяются главным образом содержанием азота в исходном газе.

Выделение тяжелых углеводородов при 190÷220К позволяет снизить затраты холода на их охлаждение. Выбор конкретной температуры в указанном интервале определяется составом сжиженного газа и потребностями в тяжелых углеводородах для восполнения потерь холодильного агента установки сжижения и получения тяжелых углеводородов в качестве продукта.

Сжижение газа с более высоким содержанием тяжелых углеводородов осуществляют с их выделением при максимальной из указанных температур. Снижение температуры ниже минимальной из указанных в рамках предлагаемого способа нецелесообразно, так как не приводит к какому-либо положительному эффекту.

1.Способсжиженияприродногогаза,характеризующийсятем,чтопроизводятсжатиесжижаемогогазадодавления4,0-7,0МПа,затемохлаждаютвхолодильнике,очищаютотпримесейидегидратируют,послечегоохлаждаютсжижаемыйгазвиспарителехолодильнойустановки,разделяютегонадвапотокавсоотношенияхот1:1,1до1:20,раздельноохлаждаютпотокиобратнымпотокомциркулирующегохладагентавпервомтеплообменникеиазотнойфракциейвовторомтеплообменнике,выравниваютдавлениягазавобоихпотокахисмешиваютих,смешанныйпотоксжижаемогогазанаправляютвпервыйсепаратор,гдевжидкомвидеотделяютуглеводородыC-Cивыводятихизпервогосепаратора,апаровуюфазуизпервогосепараторанаправляютвпервыйтеплообменник,гдеееконденсируютипереохлаждаюти,послерасширениявпервомдроссельномвентиледодавления2-3МПа,направляютвотпарнуюколонну,вкоторойпроизводятотпаркуазотнойфракциипослеохлаждениясжижаемогогазадотемпературы160÷170К,азотнуюфракциюотбираютизверхнейчастиотпарнойколонны,направляютвовторойтеплообменники,послерекуперациихолодавнём,азотподаютвгазопроводилисистемутопливногогаза,асжижаемыйгазссодержаниемазотадо4мол.%отбираютизнижнейчастиотпарнойколонныинаправляютвтеплообменник-переохладитель,гдеегопереохлаждают,ипослеснижениядавлениявовторомдроссельномвентиледодавления,близкогокатмосферному,сливаютвхранилище,циркулирующийхладагентсжимаютдодавления4,0÷5,0МПавкомпрессореиохлаждаютвхолодильнике,послечегопотокхладагентаразделяютнадвапотокавсоотношенияхот1:19до1:33,большийпотокхладагентанаправляютнаохлаждениевтретийтеплообменник,аменьший-черезтретийдросельныйвентильвкуботпарнойколонны,затемобапотокахладагента,послевыравниваниядавленийвних,смешиваютвпервомузлесмешенияпотоковхладагента,послечегосмешанныйпотокхладагентанаправляютнаохлаждениевиспарительхолодильнойустановки,азатемвовторойсепаратор,вкоторомпроизводятразделениефазхладагента,паровуюфазунаправляютпоследовательновпервыйтеплообменникивтеплообменник-переохладитель,гдееепереохлаждают,затемрасширяютвчетвертомдроссельномвентилеивозвращаютвтеплообменник-переохладитель,гдеиспаряютпутемтеплообменаспотокомсжиженногогазаипотокомпаровойфазыхладагентавысокогодавления,жидкуюфазухладагентаизвторогосепараторанаправляютвпервыйтеплообменникирасширяютвпятомдроссельномвентиле,затемобапотокахладагента,разделенныхвовторомсепараторе,послевыравниваниядавленийвних,смешиваютвовторомузлесмешенияпотоковхладагента,смешанныйпотокнаправляютобратнымпотокомдляиспарениявпервыйтеплообменник,далееподогреваютвтретьемтеплообменникеиотводятвкомпрессорнасжатие.12.Способсжиженияприродногогазапоп.1,характеризующийсятем,чтоприочисткесжижаемогогазаотпримесейидегидратациисначалаочищаютсжижаемыйгазотуглекислогогазаисероводорода,затемегоосушаютвузледегидратации,послечегоочищаютгазотртутии/илиеесоединений.23.Установкадлясжиженияприродногогаза,характеризующаясятем,чтовключаетконтурочисткигазаотпримесей,выделенияизнеготяжелыхуглеводородовиазотаисжиженияприродногогаза,атакжеконтурциркуляциихладагента,контурочисткигазаотпримесей,выделенияизнеготяжелыхуглеводородовиазотаисжиженияприродногогаза,содержитисточникпоступленияприродногогаза,последовательноустановленныеисоединенныедругсдругомтрубопроводамиустройствосжатиясжижаемогогаза,холодильник,блокочисткигазаиегодегидратации,испарительхолодильнойустановкииузелделениясжижаемогогазасдвумявыходами,ккоторымподключеныперваяивтораялиниисжижаемогогаза,которыеобъединяютсявузлесмешенияпотоковсжижаемогогаза,перваялиниясжижаемогогазапроходитчерезпервыйтеплообменник,автораялиниясжижаемогогаза-черезвторойтеплообменник,обелиниисодержатвентилииизмерителидавления,обеспечивающиевыравниваниедавленийсжижаемогогазавпервойивторойлинияхпередихобъединениемвузлесмешенияпотоковсжижаемогогаза,выходкоторогосоединенспервымсепаратором,нижняячастьпервогосепаратораоборудованапатрубкомвыводатяжелыхфракцийуглеводородов,аеговерхняячастьсоединенасотпарнойколоннойтретьейлиниейсжижаемогогаза,проходящейчерезпервыйтеплообменникисодержащейпервыйдроссельныйвентиль,верхняячастьотпарнойколоннысоединенатрубопроводомсовторымтеплообменником,снабженнымпатрубкомвыводаазотнойфракцииизустановки,анижняячастьотпарнойколоннысоединеначетвертойлиниейсжижаемогогаза,проходящейчерезтеплообменник-переохладитель,совторымдроссельнымвентилем,снабженнымтрубопроводомсливасжиженногогазавхранилищесжиженногогаза,контурциркуляциихладагентавключаетпоследовательноустановленныеисоединенныетрубопроводамиустройствосжатияхладагента,холодильникиузелделениясжатогохладагентасдвумявыходами,ккоторымподключеныперваяивтораялиниихладагента,объединяющиесявпервомузлесмешенияпотоковхладагента,перваялинияхладагентапроходитчерезтретийтеплообменник,автораялиния-черезтретийдроссельныйвентильикуботпарнойколонны,обелиниисодержатвентилииизмерителидавления,обеспечивающиевыравниваниедавленийхладагентавпервойивторойлинияхпередихобъединениемвпервомузлесмешенияпотоковхладагента,выходкоторогосоединенсовторымсепараторомтретьейлиниейсмешанногопотокахладагента,проходящейчерезиспарительхолодильнойустановки,верхняячастьвторогосепараторасоединенасовторымузломсмешенияпотоковхладагента,разделенныхвовторомсепараторе,четвертойлиниейисходящейпаровойфазыхладагента,ипроходящейчерезпервыйтеплообменник,теплообменник-переохладительиповторночерезтеплообменник-переохладитель,приэтоммеждувыходомизтеплообменника-переохладителяиповторнымвходомвнегоначетвертойлинииисходящейпаровойфазыхладагентаустановленчетвертыйдроссельныйвентиль,апередвторымузломсмешенияпотоковхладагентаначетвертойлинииисходящейпаровойфазыустановленыизмерительдавленияивентиль,нижняячастьвторогосепараторасоединенасовторымузломсмешенияпотоковхладагентапятойлиниейисходящейжидкойфазыхладагента,котораяпроходитчерезпервыйтеплообменникисодержитпятыйдроссельныйвентиль,апередвторымузломсмешенияпотоковхладагентанапятойлинииисходящейжидкойфазыустановленизмерительдавления,выходвторогоузласмешенияпотоковхладагентасоединенсустройствомсжатияхладагенташестойлиниейсмешанногохладагента,проходящейчерезпервыйитретийтеплообменники.34.Установкадлясжиженияприродногогазапоп.3,характеризующаясятем,чтоблокочисткигазаотпримесейидегидратациисодержитузелочисткигазаотуглекислогогазаисероводорода,узелосушкисжижаемогогазаиузелочисткигазаотртутии/илиеесоединений.4
Источник поступления информации: Роспатент

Showing 1-9 of 9 items.
01.03.2019
№219.016.ca98

Способ эксплуатации скважины

Изобретение относится к газодобывающей промышленности и может быть использовано на скважинах, которые эксплуатируются только по фонтанной колонне, или на скважинах, которые эксплуатируются одновременно по фонтанной колонне и межтрубному пространству. Техническим результатом является повышение...
Тип: Изобретение
Номер охранного документа: 0002232880
Дата охранного документа: 20.07.2004
11.03.2019
№219.016.d78d

Способ определения пластового давления

Изобретение относится к газовой промышленности и может быть использовано для определения пластового давления в газовых и газоконденсатных скважинах. Способ включает остановку скважины, работающей на стационарном режиме с известными характеристиками, регистрацию в ней давления и обработку...
Тип: Изобретение
Номер охранного документа: 02239700
Дата охранного документа: 10.11.2004
11.03.2019
№219.016.d7e6

Механизм управления клапанами пробоотборника

Изобретение относится к устройствам для отбора проб пластовых флюидов из газовых и нефтяных скважин на заданной глубине. Техническим результатом является повышение надежности и качества отбора пробы при любых пластовых условиях, включая агрессивность пласта, а также создание возможности работы...
Тип: Изобретение
Номер охранного документа: 0002340773
Дата охранного документа: 10.12.2008
10.04.2019
№219.017.01fe

Способ эксплуатации нефтяных или нефтегазовых скважин

Изобретение относится к нефтегазодобывающей промышленности. Обеспечивает упрощение технологической схемы эксплуатации нефтяных и нефтегазовых скважин, эксплуатацию малодебитных скважин, снижение температуры, до которой необходимо подогревать газлифтный газ, что снижает риск растепления...
Тип: Изобретение
Номер охранного документа: 0002212523
Дата охранного документа: 20.09.2003
19.04.2019
№219.017.2db6

Способ предотвращения развития трещиноподобных и коррозионных дефектов стенок трубопроводов

Изобретение относится к строительству трубопроводного транспорта и направлено на безаварийную эксплуатацию действующих трубопроводов без вывода их из эксплуатации и без замены дефектного участка. Монтируют на трубопроводе муфту, снабженную патрубком для подачи и отвода рабочего тела, подают...
Тип: Изобретение
Номер охранного документа: 0002340823
Дата охранного документа: 10.12.2008
19.04.2019
№219.017.2faf

Устройство для предотвращения развития трещиноподобных и коррозионных дефектов стенок трубопроводов

Изобретение относится к трубопроводному транспорту и может найти применение при эксплуатации и ремонте трубопроводов для локального снижения кольцевых напряжений от внутреннего давления в местах дефектов трубопроводов (коррозия, трещины, вмятины и т.п.). На дефектном участке трубопровода...
Тип: Изобретение
Номер охранного документа: 0002338116
Дата охранного документа: 10.11.2008
09.06.2019
№219.017.76f6

Опора надземного трубопровода

Изобретение относится к строительству трубопроводного транспорта и используется при сооружении надземных магистральных трубопроводов. Опорная накладка для надземного трубопровода размещена на расположенном на основании компенсаторе нагрузки и перемещения трубопровода. Компенсатор нагрузки и...
Тип: Изобретение
Номер охранного документа: 0002267686
Дата охранного документа: 10.01.2006
09.06.2019
№219.017.7886

Способ добычи нефти из газовых скважин с нефтесодержащими пластами

Изобретение относится к нефтяной и газовой промышленности. Обеспечивает добычу нефти и газа из одной скважины, что позволяет исключить необходимость применения отдельной сети газораспределения, дополнительных устройств в скважине, необходимость их обслуживания и, в конечном итоге, приводит к...
Тип: Изобретение
Номер охранного документа: 02232877
Дата охранного документа: 20.07.2004
09.06.2019
№219.017.7905

Способ сжижения газа на шельфе или побережье арктических морей

Способ реализуется на установке, состоящей из двух контуров: контура очистки газа от примесей, выделения из него тяжелых углеводородов, азота и сжижения природного газа и контура циркуляции хладагента, в котором поток хладагента после сжатия и охлаждения разделяют в узле деления на два потока в...
Тип: Изобретение
Номер охранного документа: 0002344359
Дата охранного документа: 20.01.2009
Showing 1-10 of 21 items.
10.05.2015
№216.013.47ec

Способ определения пеленга источника звука при размещении акустической антенны акустического локатора на наклонных площадках поверхности земли

Изобретение относится к акустическим пеленгаторам (АП), акустическим локаторам (АЛ) и может быть использовано для определения пеленга источника звука (ИЗ). Задачей изобретения является повышение точности пеленгования ИЗ при наклонных к плоскости горизонта поверхностях Земли, где размещается...
Тип: Изобретение
Номер охранного документа: 0002549919
Дата охранного документа: 10.05.2015
20.03.2016
№216.014.c852

Способ производства пищевых волокон из растительного сырья и установка для его осуществления

Изобретение относится к пищевой промышленности. Способ производства пищевых волокон из растительного сырья включает измельчение исходного сырья, химическую обработку, выделение, измельчение, сушку и фасование готового продукта. В качестве исходного сырья используют сухую свекловичную стружку...
Тип: Изобретение
Номер охранного документа: 0002578057
Дата охранного документа: 20.03.2016
29.12.2017
№217.015.f9aa

Способ подготовки проб для определения жирнокислотного состава жировой фазы молока методом газовой хроматографии

Изобретение относится к пищевой промышленности, в частности к способам определения жирнокислотного состава молочного жира. Для этого применяют способ подготовки проб молока методом газовой хроматографии, включающий в себя подготовку исследуемого образца. Для подготовки берут 15-45 г...
Тип: Изобретение
Номер охранного документа: 0002639817
Дата охранного документа: 22.12.2017
19.08.2018
№218.016.7df3

Композиция для слоёного теста

Изобретение относится к масложировой промышленности и может быть использовано для слоеного теста, предназначенного для выпечки дрожжевых и бездрожжевых слоеных изделий. Композиция для слоеного теста содержит растительное масло, эмульгаторы, структурообразователи Этилцеллюлозу 45 (Ethocel...
Тип: Изобретение
Номер охранного документа: 0002664306
Дата охранного документа: 16.08.2018
05.02.2019
№219.016.b6fb

Способ производства свекловичных пищевых волокон

Изобретение относится к пищевой промышленности. Способ производства пищевых волокон из растительного сырья, включающий измельчение исходного сырья, химическую обработку, отбеливание, измельчение, сушку и фасовку готового продукта, при этом в качестве исходного сырья используют сухую...
Тип: Изобретение
Номер охранного документа: 0002678873
Дата охранного документа: 04.02.2019
01.03.2019
№219.016.cbfb

Консорциум штаммов микроорганизмов для очистки окружающей среды от углеводородов

Изобретение относится к биотехнологии, в частности к консорциуму штаммов микроорганизмов дрожжей Candida sp.ВСБ-616 и бактерий Rhodococcus sp. ВКПМ AC-1258 (вар.16-а) для очистки объектов окружающей среды от углеводородов. Использование данного консорциума штаммов повышает эффективность очистки...
Тип: Изобретение
Номер охранного документа: 0002384616
Дата охранного документа: 20.03.2010
01.03.2019
№219.016.cd15

Способ обезвреживания отходов, содержащих менее 50% жидких и/или пастообразных углеводородов

Изобретение относится к нефтегазовой промышленности и может быть использовано в других отраслях промышленности, где имеет место образование, длительное хранение, складирование в шламонакопителях значительного количества нефтесодержащих отходов, содержащих жидкие и/или пастообразные...
Тип: Изобретение
Номер охранного документа: 0002305116
Дата охранного документа: 27.08.2007
01.03.2019
№219.016.cd1b

Устройство для подводного хранения газа (варианты)

Изобретение относится к газовой промышленности, а именно к хранению газа. Устройство для подводного хранения газа содержит размещенный в водоеме газонепроницаемый корпус из гибкого эластичного материала, узел подачи и отбора газа и средство обеспечения подводного положения газонепроницаемого...
Тип: Изобретение
Номер охранного документа: 0002301938
Дата охранного документа: 27.06.2007
01.03.2019
№219.016.cf45

Способ осушки трубопровода или оборудования, прошедшего гидравлические испытания, и устройство для его осуществления

Изобретение относится к газовой промышленности и предназначено для осушки трубопроводов или оборудования, например, компрессорных станций, прошедших гидравлические испытания. Изобретение обеспечивает повышение эффективности осушки, сокращение времени осушки, возможность проведения осушки при...
Тип: Изобретение
Номер охранного документа: 0002404865
Дата охранного документа: 27.11.2010
01.03.2019
№219.016.cfd7

Способ очистки окружающей среды от углеводородных загрязнений

Изобретение относится к биотехнологии, в частности к микробиологическим способам очистки окружающей среды, и может применяться для очистки окружающей среды от углеводородных загрязнений с использованием консорциума микроорганизмов. Способ включает внесение в очищаемую среду консорциума...
Тип: Изобретение
Номер охранного документа: 0002430021
Дата охранного документа: 27.09.2011
+ добавить свой РИД