×
14.06.2019
219.017.8302

Результат интеллектуальной деятельности: Способ получения термостойких ароматических полиэфирэфир- и сополиэфирэфиркетонов с улучшенными физико-механическими характеристиками

Вид РИД

Изобретение

№ охранного документа
0002691409
Дата охранного документа
13.06.2019
Аннотация: Настоящее изобретение относится к способу капсулирования термостойких ароматических полиэфирэфир- и сополиэфирэфиркетонов: где I - полиэфирэфиркетон на основе дифенилолпропана и 4,4'-дифторбензофенона, число мономерных звеньев «а» соответствует 295-320, II - сополиэфирэфиркетон на основе дифенилолпропана, 4,4'-диоксидифенила и 4,4'-дифторбензофенона, число мономерных звеньев «а» соответствует 80-90, число мономерных звеньев «b» соответствует 190-195, III - полиэфирэфиркетон на основе фенолфталеина и 4,4'-дифторбензофенона, число мономерных звеньев «а» соответствует 190-200, IV - сополиэфирэфиркетон на основе фенолфталеина, 4,4'-диоксидифенила и 4,4'-дифторбензофенона, число мономерных звеньев «а» соответствует 45-53, число мономерных звеньев «b» соответствует 150-158, V - сополиэфирэфиркетон на основе дифенилолпропана, фенолфталеина и 4,4'-дифторбензофенона, причем мольное соотношение диолов в сополиэфирэфиркетонах составляет от 0,1 до 0,4 и от 0,9 до 0,6, число мономерных звеньев «а» соответствует 135-142, число мономерных звеньев «b» соответствует 92-98, характеризующийся тем, что процесс капсулирования проводят в среде желатина, пектина яблочного или смеси желатина, пектина яблочного и хлорированных органических растворителях, предпочтительно в хлороформе, причем при ступенчатом подъеме температуры от 20°С до 65°С, проводится отгонка и регенерация хлорированного органического растворителя, при температурах 55±5°С проводят разбавление реакционной смеси теплой водой, при этом полученные капсулы имеют сферическую форму с диаметрами частиц 22-160 мкм. Технический результат – получение капсулированных термостойких ароматических полиэфирэфир- и сополиэфирэфиркетонов, являющихся не слипаемыми и обладающими более высокой насыпной плотностью, по сравнению с исходными полимерами. 1 табл., 15 пр.

Изобретение относится к капсулированным ароматическим полиэфирэфир- и сополиэфирэфиркетонам, используемым в качестве термо-, и теплостойких конструкционных полимерных материалов и для 3D печати. Предлагаемые капсулированные ароматические полиэфирэфир- и сополиэфирэфиркетоны представляют собой соединения формул:

I - полиэфирэфиркетон на основе дифенилолпропана и 4,4'-дифторбензофенона, число мономерных звеньев «а» соответствует 295-320;

II - сополиэфирэфиркетон на основе дифенилолпропана, 4,4'-диоксидифенила и 4,4'-дифторбензофенона, число мономерных звеньев «а» соответствует 80-90, значение «b» соответствует 190-195;

III - полиэфирэфиркетон на основе фенолфталеина и 4,4'-дифторбензофенона, число мономерных звеньев «а» соответствует 190-200;

IV - сополиэфирэфиркетон на основе фенолфталеина, 4,4'-диоксидифенила и 4,4'-дифторбензофенона, число мономерных звеньев «а» соответствует 45-53, значение «b» соответствует 150-158;

V - сополиэфирэфиркетон на основе дифенилолпропана, фенолфталеина и 4,4'-дифторбензофенона, причем мольное соотношение диолов в сополиэфирэфиркетонах составляет от 0,1 до 0,4 и от 0,9 до 0,6, число мономерных звеньев «а» соответствует 135-142, значение «b» соответствует 92-98;

Из-за специфических особенностей работы 3D-принтеров при выращивании полимерных изделий, требуются сферические порошки (гранулы) определенных размеров различных полимеров органической природы.

Наиболее часто применяются порошки полиэфиров с размерами частиц 10-100 мкм. Как правило, компании-производители 3D-принтеров рекомендуют работать с определенным набором полимеров, которые поставляются самой компанией.

В соответствии с патентами ФРГ №3700808, Японии №61-176627, РФ №2427591, ФРГ №3901072 и РФ №2470956 ароматические полиэфиркетоны на основе дифенилолпропана, фенолфталеина, других диолов и способы их получения. Недостатками этих полиэфиров являются сложность, многостадийность процессов синтеза. Кроме этого, полиэфирэфиркетоны имеют форму хлопьев, волокон, или частиц неопределенной формы с большими размерами (от 200 мкм до 1-2 мм). Это делает их непригодными к использованию в 3D печати.

Наиболее близким аналогом к заявленному изобретению является патент на изобретение РФ RU2414483, описывающий способ получения мелкозернистого порошка полиариленэфиркетона. Частицы полиариленэфиркетона с удельной поверхностью 50 м2/г и средним диаметром зерен 500 мкм размалывают с помощью криогенно штифтовой мельницы. Недостатком способа является сложность аппаратурного оформления и низкая воспроизводимость результатов, широкий разброс размеров частиц.

Задачей настоящего изобретения является разработка упрощенного и экономически выгодного за счет меньшего числа используемых компонентов способа получения капсулированных ароматических полиэфирэфир- и сополиэфирэфиркетонов сферической формы.

Поставленная задача достигается капсулированием ароматических полиэфирэфир- и сополиэфирэфиркетонов строений:

I - полиэфирэфиркетон на основе дифенилолпропана и 4,4'-дифторбензофенона, число мономерных звеньев «а» соответствует 295-320;

II - сополиэфирэфиркетон на основе дифенилолпропана, 4,4'-диоксидифенила и 4,4'-дифторбензофенона, число мономерных звеньев «а» соответствует 80-90, значение «b» соответствует 190-195;

III - полиэфирэфиркетон на основе фенолфталеина и 4,4'-дифторбензофенона, число мономерных звеньев «а» соответствует 190-200;

IV - сополиэфирэфиркетон на основе фенолфталеина, 4,4'-диоксидифенила и 4,4'-дифторбензофенона, число мономерных звеньев «а» соответствует 45-53, значение «b» соответствует 150-158;

V - сополиэфирэфиркетон на основе дифенилолпропана, фенолфталеина и 4,4'-дифторбензофенона, путем обработки растворов полиэфиров в хлорированных органических растворителях, предпочтительно в хлороформе водными растворами желатина, пектина, или смеси желатина и пектина, разбавлении реакционной смеси водой при 55±5°С, причем число мономерных звеньев «а» соответствует 135-142, значение «b» соответствует 92-98;

Изобретение иллюстрируется следующими примерами.

Пример 1. Капсулирование ароматического полиэфирэфиркетона I на основе дифенилолпропана и 4,4'-дифторбензофенона.

В трехгорловую колбу, снабженную мешалкой, прямым холодильником для отгонки летучих веществ, загружают 50 мл 0,5%-го раствора желатина, приливают раствор 0,5 г полиэфирэфиркетона I, находящегося в форме белых хлопьев в 10 мл хлороформа. Включают мешалку и выдерживают при 20°С в течение 0,5 часа. Поднимают температуру до 33°С и выдерживают 0,5 часа. Далее повышают температуру до 52°С и выдерживают 0,5 часа. Затем, нагревают до 65°С и выдерживают при этой температуре в течение 1,5 часов. Добавленный хлороформ отгоняется, и его можно использовать неоднократно для последующих процессов микрокапсулирования. Затем отключают нагревание, содержимое колбы охлаждают до 55±5°С, разбавляют 25 мл дистиллированной воды. Осадок с колбы отфильтровывают на воронке Бюхнера с колбой Бунзена, промывают на фильтре 100 мл воды и сушат. Получают 0,47 г (94%) порошка капсулированного полиэфирэфиркетона I. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы со средним диаметром 50-85 мкм.

Пример 2. Капсулирование и выделение продукта проводят по примеру 1, только вместо желатина берут 0,5%-й раствор яблочного пектина. Получают 0,45 г (90%) порошка капсулированного полиэфирэфиркетона I. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 36-98 мкм.

Пример 3. Капсулирование и выделение продукта проводят по примеру 1, только вместо чистого желатина берут смесь 25 мл 0,5%-го раствора яблочного пектина и 25 мл 0,5%-го раствора желатина. Получают 0,46 г (92%) порошка капсулированного полиэфирэфиркетона I. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 40-95 мкм.

Пример 4. Капсулирование ароматического сополиэфирэфиркетона II из дифенилолпропана, 4,4'-диоксидифенила и 4,4'-дифторбензофенона.

Капсулирование и выделение продукта проводят по примеру 1, только вместо полиэфирэфиркетона I на основе дифенилолпропана берут сополиэфирэфиркетон II из дифенилолпропана, 4,4'-диоксидифенила, синтезированный при мольном соотношении диолов соответственно 0,7:0,3. Получают 0,43 г (86%) порошка капсулированного полиэфирэфиркетона II.

По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 51-97 мкм.

Пример 5. Капсулирование и выделение продукта проводят по примеру 1, только, только вместо полиэфирэфиркетона I на основе дифенилолпропана берут сополиэфирэфиркетон II из дифенилолпропана, 4,4'-диоксидифенила, синтезированный при мольном соотношении диолов соответственно 0,7:0,3, а вместо желатина берут 0,5%-й раствор яблочного пектина. Получают 0,41 г (82%) порошка капсулированного полиэфирэфиркетона II. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 25-122 мкм.

Пример 6. Капсулирование и выделение продукта проводят по примеру 4, только вместо полиэфирэфиркетона I на основе дифенилолпропана берут сополиэфирэфиркетон II из дифенилолпропана, 4,4'-диоксидифенила, синтезированный при мольном соотношении диолов соответственно 0,7:0,3, а вместо чистого желатина берут смесь 25 мл 0,5%-го раствора яблочного пектина и 25 мл 0,5%-го раствора желатина. Получают 0,435 г (87%) порошка капсулированного полиэфирэфиркетона II. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 27-115 мкм.

Пример 7. Капсулирование ароматического полиэфирэфиркетона III на основе фенолфталеина и 4,4'-дифторбензофенона.

Капсулирование и выделение продукта проводят по примеру 1, только вместо полиэфирэфиркетона I берут полиэфирэфиркетон III на основе фенолфталеина и 4,4'-дифторбензофенона. Получают 0,486 г (97%) порошка капсулированного полиэфирэфиркетона III. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 38-91 мкм.

Пример 8. Капсулирование и выделение продукта проводят по примеру 1, только вместо полиэфирэфиркетона I берут полиэфирэфиркетон III на основе фенолфталеина и 4,4'-дифторбензофенона, а вместо желатина берут 0,5%-й раствор яблочного пектина. Получают 0,48 г (96%) порошка капсулированного полиэфирэфиркетона III. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 22-143 мкм.

Пример 9. Капсулирование и выделение продукта проводят по примеру 1, только вместо полиэфирэфиркетона I берут полиэфирэфиркетон III на основе фенолфталеина и 4,4'-дифторбензофенона, а вместо желатина используют смесь 25 мл 0,5%-го раствора яблочного пектина и 25 мл 0,5%-го раствора желатина. Получают 0,475 г (95%) порошка капсулированного полиэфирэфиркетона III. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 39-134 мкм.

Пример 10. Капсулирование ароматического сополиэфирэфиркетона IV на основе фенолфталеина, 4,4'-диоксидифенила и 4,4'-дифторбензофенона.

Капсулирование и выделение продукта проводят по примеру 1, только вместо полиэфирэфиркетона I берут сополиэфирэфиркетон IV на основе фенолфталеина, 4,4'-диоксидифенила и 4,4'-дифторбензофенона, синтезированный при мольном соотношении диолов соответственно 0,75:0,25. Получают 0,41 г (82%) порошка капсулированного полиэфирэфиркетона IV. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 46-82 мкм.

Пример 11. Капсулирование и выделение продукта проводят по примеру 1, только вместо полиэфирэфиркетона I берут сополиэфирэфиркетон IV на основе фенолфталеина, 4,4'-диоксидифенила и 4,4'-дифторбензофенона, синтезированный при мольном соотношении диолов соответственно 0,75:0,25, а вместо желатина берут 0,5%-й раствор яблочного пектина. Получают 0,4 г (80%) порошка капсулированного полиэфирэфиркетона IV. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 26-153 мкм.

Пример 12. Капсулирование и выделение продукта проводят по примеру 1, только вместо полиэфирэфиркетона I берут сополиэфирэфиркетон IV на основе фенолфталеина, 4,4'-диоксидифенила, и 4,4'-дифторбензофенона, синтезированный при мольном соотношении диолов соответственно 0,75:0,25, а вместо желатина используют смесь 25 мл 0,5%-го раствора яблочного пектина и 25 мл 0,5%-го раствора желатина.

Получают 0,39 г (78%) порошка капсулированного полиэфирэфиркетона IV. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 42-118 мкм.

Пример 13. Капсулирование ароматического сополиэфирэфиркетона V на основе дифенилолпропана, фенолфталеина и 4,4'-дифторбензофенона и 4,4'-дифторбензофенона.

Капсулирование и выделение продукта проводят по примеру 1, только вместо полиэфирэфиркетона I берут сополиэфирэфиркетон V на основе дифенилолпропана, фенолфталеина и 4,4'-дифторбензофенона, синтезированный при мольном соотношении диолов соответственно 0,6:0,4. Получают 0,47 г (94%) порошка капсулированного полиэфирэфиркетона V. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 46-82 мкм.

Пример 14. Капсулирование и выделение продукта проводят по примеру 1, только вместо полиэфирэфиркетона I берут сополиэфирэфиркетон V на основе дифенилолпропана, фенолфталеина и 4,4'-дифторбензофенона, синтезированный при мольном соотношении диолов соответственно 0,6:0,4, а вместо желатина берут 0,5%-й раствор яблочного пектина. Получают 0,46 г (92%) порошка капсулированного полиэфирэфиркетона V. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 33-160 мкм.

Пример 15. Капсулирование и выделение продукта проводят по примеру 1, только вместо полиэфирэфиркетона I берут сополиэфирэфиркетон V на основе дифенилолпропана, фенолфталеина и 4,4'-дифторбензофенона, синтезированный при мольном соотношении диолов соответственно 0,6:0,4, а вместо желатина используют смесь 25 мл 0,5%-го раствора яблочного пектина и 25 мл 0,5%-го раствора желатина. Получают 0,48 г (96%) порошка, капсулированного полиэфирэфиркетона V. По данным оптической микроскопии и ситового анализа, получаются частицы порошка сферической формы с диаметрами 49-121 мкм.

В таблице 1 представлены характеристики капсулированных полиэфирэфир- и сополиэфирэфиркетонов в соответствии с примерами 1-15.

Термогравиметрический анализ (ТГА) проведен на воздухе на дериватографе «Perkin-Elmer» при скорости подъема температуры 5° в минуту. Температуры стеклования (Тстекл.) определены методом дифференциальной сканирующей калориметрии («Perkin-Elmer»). Приведенные вязкости (ηприв) определены для 0,5%-ных растворов ароматических полиэфирэфир- и сополиэфирэфиркетонов в хлороформе. Удельная ударная вязкость ( с надрезом) определена на образцах с размерами 4*6*10 мм на приборе «Динстат» по ГОСТ 4647-2015 (Межгосударственный стандарт. Пластмассы. Метод определения ударной вязкости по Шарпи). Насыпная плотность капсулированного полимерного материала определялась в соответствии с ГОСТ Р 50485-93.

Исходя из выше изложенного следует, что разработанный процесс капсулирования ароматических полиэфирэфир- и сополиэфирэфиркетонов является простым, экономически оправданным, используемые реагенты легко регенерируются и способны к многократнму использованию. Сами капсулированные образцы ароматических полиэфирэфир- и сополиэфирэфиркетонов являются неслипающимися, легко перерабатываемыми методами литья под давлением и экструзии материалами с более высокой (минимум в 7-8 раз) насыпной плотностью, чем у исходных полимеров.


Способ получения термостойких ароматических полиэфирэфир- и сополиэфирэфиркетонов с улучшенными физико-механическими характеристиками
Способ получения термостойких ароматических полиэфирэфир- и сополиэфирэфиркетонов с улучшенными физико-механическими характеристиками
Способ получения термостойких ароматических полиэфирэфир- и сополиэфирэфиркетонов с улучшенными физико-механическими характеристиками
Способ получения термостойких ароматических полиэфирэфир- и сополиэфирэфиркетонов с улучшенными физико-механическими характеристиками
Способ получения термостойких ароматических полиэфирэфир- и сополиэфирэфиркетонов с улучшенными физико-механическими характеристиками
Способ получения термостойких ароматических полиэфирэфир- и сополиэфирэфиркетонов с улучшенными физико-механическими характеристиками
Способ получения термостойких ароматических полиэфирэфир- и сополиэфирэфиркетонов с улучшенными физико-механическими характеристиками
Способ получения термостойких ароматических полиэфирэфир- и сополиэфирэфиркетонов с улучшенными физико-механическими характеристиками
Способ получения термостойких ароматических полиэфирэфир- и сополиэфирэфиркетонов с улучшенными физико-механическими характеристиками
Способ получения термостойких ароматических полиэфирэфир- и сополиэфирэфиркетонов с улучшенными физико-механическими характеристиками
Источник поступления информации: Роспатент

Showing 121-130 of 174 items.
27.12.2019
№219.017.f366

Способ записи информации в нанопористом кварцоидном стекле

Изобретение относится к области оптического материаловедения, в частности к способу записи информации на носитель из нанопористого кварцоидного стекла под действием лазерного излучения. Изобретение позволяет увеличить скорость записи информации, осуществляемой наведением...
Тип: Изобретение
Номер охранного документа: 0002710389
Дата охранного документа: 26.12.2019
27.12.2019
№219.017.f3a1

Способ и устройство считывания данных с носителя из стекла

Изобретение относится к анализатору поляризации излучения, способу считывания информации, записанной в виде наведенной анизотропии показателя преломления в многослойном оптическом диске из кварцевого стекла, и устройству для считывания информации с диска. Устройство может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002710388
Дата охранного документа: 26.12.2019
27.12.2019
№219.017.f3ab

Способ записи информации в кварцевом стекле

Изобретение относится к области оптического материаловедения, в частности, к способу записи информации на носитель из кварцевого стекла под действием лазерного излучения. Запись производится за счет наведения поляризационно-зависимого двулучепреломления путем модифицирования кварцевого стекла...
Тип: Изобретение
Номер охранного документа: 0002710387
Дата охранного документа: 26.12.2019
05.02.2020
№220.017.fe35

Оптический носитель информации на основе оксидных стекол

Изобретение относится к области оптического материаловедения, в частности к оптическому носителю информации на основе оксидных стекол, и может быть использовано для записи и хранения информации. Изобретение позволяет упростить и удешевить технологический процесс изготовления оптического...
Тип: Изобретение
Номер охранного документа: 0002713044
Дата охранного документа: 03.02.2020
06.02.2020
№220.017.fffc

Способ ингибирования роста опухоли у млекопитающего

Группа изобретений относится к медицине и может быть использована для ингибирования роста опухоли у млекопитающего. Для этого используют средство, в состав которого входит 20% жировая эмульсия липофундина, насыщенная инертным газом ксеноном, бета-блокатор пропранолол, симпатолитик резерпин,...
Тип: Изобретение
Номер охранного документа: 0002713153
Дата охранного документа: 04.02.2020
09.02.2020
№220.018.00ec

Управляемая пуля

Изобретение относится к области вооружений и может быть использовано в малогабаритных ракетных комплексах. Технический результат заключается в улучшении динамических свойств управляемой пули и увеличении точности стрельбы. Управляемая пуля содержит бронебойный стержень, стабилизирующие...
Тип: Изобретение
Номер охранного документа: 0002713831
Дата охранного документа: 07.02.2020
27.02.2020
№220.018.065c

Перезаряжаемая генерирующая электрический ток электрохимическая ловушка водорода

Изобретение относится к устройствам утилизации водорода в замкнутых помещениях, изолированных от внешней среды. Техническим результатом является возможность выработки электрической энергии с возвратом утилизированного водорода в приемник, например в бортовую систему для хранения или...
Тип: Изобретение
Номер охранного документа: 0002715052
Дата охранного документа: 25.02.2020
27.02.2020
№220.018.067e

Система криогенного хранения и подачи реагентов для энергетической установки с электрохимическими генераторами

Изобретение относится к системам криогенного хранения и подачи реагентов (СКХР), а именно к системам криогенного хранения и подачи жидкого водорода и жидкого кислорода на подводных лодках и подводных аппаратах (ПА) с энергетическими установками на базе электрохимических генераторов....
Тип: Изобретение
Номер охранного документа: 0002715053
Дата охранного документа: 25.02.2020
05.03.2020
№220.018.08c0

Генератор паров рабочего тела для термоэмиссионных преобразователей

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к источникам паров рабочего тела для термоэмиссионных преобразователей (ТЭП), и может быть использовано в составе цезиевых систем термоэмиссионных ядерных энергетических установок,...
Тип: Изобретение
Номер охранного документа: 0002715733
Дата охранного документа: 03.03.2020
19.03.2020
№220.018.0d7b

Низкопрофильная широкополосная высокоимпедансная магнитодиэлектрическая структура

Изобретение относится к антенной технике, в частности к высокоимпедансным широкополосным низкопрофильным основаниям (EBG-структурам или электромагнитным кристаллам) радиочастотных антенн и антенных решеток для систем связи и радаров, а также к пассивным устройствам подавления внутрисхемных...
Тип: Изобретение
Номер охранного документа: 0002716859
Дата охранного документа: 17.03.2020
Showing 91-93 of 93 items.
01.06.2023
№223.018.74e1

Способ получения аппретированных углеволокон и наполненный ими полиэфиримидный композит

Изобретение относится к области производства конструкционных изделий в аддитивных технологиях. Предложены способ получения аппретированного углеродного волокна путём нанесения аппрета, представляющего собой смесь п-фенилендиамина 1-4 мас.% и олигофениленсульфона на основе...
Тип: Изобретение
Номер охранного документа: 0002796405
Дата охранного документа: 23.05.2023
01.06.2023
№223.018.74e7

Способ получения аппретированных стеклянных волокон и полимерный композиционный материал

Изобретение относится к области производства конструкционных изделий специального назначения в аддитивных технологиях. Предложены способ получения аппретированного стекловолокна путём нанесения аппрета, представляющего собой 3,4-толуилендиамин 1,0-3,5 мас.%, на стекловолокно из раствора с...
Тип: Изобретение
Номер охранного документа: 0002796406
Дата охранного документа: 23.05.2023
01.06.2023
№223.018.74f6

Способ получения аппретированных углеволокон и полимерные композиции на их основе

Изобретение относится к области производства конструкционных изделий в аддитивных технологиях. Предложены способ получения аппретированного углеродного волокна путём нанесения аппрета, представляющего собой смесь аморфного эфирэфиркетона 1,0-3,5 мас. % и 1,3-бис(аминоформил)бензола 3,5-1,0 мас....
Тип: Изобретение
Номер охранного документа: 0002796404
Дата охранного документа: 23.05.2023
+ добавить свой РИД