×
13.06.2019
219.017.8178

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КАТАЛИТИЧЕСКИ-СОРБЦИОННОГО МАТЕРИАЛА И СПОСОБ ИЗВЛЕЧЕНИЯ МЫШЬЯКА В ЕГО ПРИСУТСТВИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нефтепереработки и нефтехимии, а именно к удалению мышьяка и его соединений из нефтяных фракций, и может быть использовано на нефтеперерабатывающих предприятиях при очистке нефтяных фракций от примесей для последующего получения дизельного топлива и других нефтепродуктов. Предлагается способ получения каталитически-сорбционного материала для извлечения мышьяка из нефтяных дистиллятов, включающий получение мезопористого носителя из смеси, содержащей органическое соединение кремния и соединение алюминия, пропитку полученного носителя растворами гептамолибдата аммония и нитрата никеля. Способ отличается тем, что получение мезопористого носителя включает получение раствора темплата - триблоксополимера этилен- и пропиленоксида в разбавленной соляной кислоте, добавление в него предварительно приготовленной смеси тетраэтоксисилана и втор-бутоксида алюминия, перемешивание и выдерживание при 90-100°С, отношение кремния к алюминию в полученном мезопористом носителе составляет 40-100, а растворы гептамолибдата аммония и нитрата никеля берут в отношении, обеспечивающем содержание в катализаторе 8-14% молибдена и 4-8% никеля в пересчете на оксиды. Также заявляется способ извлечения мышьяка из нефтяных дистиллятов путем гидроочистки в присутствии разработанного каталитически-сорбционного материала при температуре 340-380°С и давлении водорода 5-9 МПа. Технический результат изобретения заключается в получении каталитически-сорбционного материала, обеспечивающего высокую степень извлечения мышьяка из фракций нефтяных дистиллятов в отсутствии гидрокрекинга целевой фракции, благодаря чему достигается высокий выход целевых фракций, снижение образования кокса и легких газов. 2 н.п. ф-лы, 2 ил., 4 табл.

Изобретение относится к области нефтепереработки и нефтехимии, а именно, к удалению мышьяка и его соединений из нефтяных фракций, и может быть использовано на нефтеперерабатывающих предприятиях при очистке нефтяных фракций от примесей для последующего получения дизельного топлива и других нефтепродуктов.

Мышьяк содержится в нефтях, добываемых в таких регионах, как Западная Африка, Россия, Венесуэла, США и др., причем соединения мышьяка распределены по всему интервалу выкипания фракций, в том числе, и в дизельных фракциях. Соединения мышьяка представлены, как правило, органическими соединениями арсина общей формулой RR'R''As. Содержание мышьяка в прямогонных дизельных фракциях может достигать 1-5 ч./млн. мас. Соединения мышьяка способны отравлять катализаторы, применяемые при конверсии или очистке, поэтому требуется их удаление из нефтяных фракций перед тем, как они будут направлены на дальнейшую переработку.

Известны каталитически-сорбционные материалы для извлечения мышьяка, включающие соединения каталитических металлов на носителе. Например, в патенте Франции №2617497 А1, кл. МПК C10G 45/06, опубл. 06.01.1989, описан способ получения катализатора извлечения мышьяка путем нанесения на пористый носитель, например, оксид кремния или оксид алюминия, соединений никеля, обжига в атмосфере кислорода при 300-600°С и последующей обработки водородом при 250-600°С. С помощью этого катализатора из жидких углеводородов удаляют мышьяк из легких нефтяных фракций (нафта, керосиновая фракция) в присутствии водорода, при давлении 1-100 бар (0.1-10 МПа) и температуре 110-280°С в продолжение 10-200 ч.

Недостаток известного способа состоит в длительной обработке нефтяных фракций для извлечения мышьяка.

В статье Zhao D., Feng J., Huo Q., Melosh N. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores // Scince. 1998. V. 279. P. 548-552. впервые описано получение силиката SBA-15, а в работе Yue Y., Gedeon A., Bonardet J.-L., Melosh N., D'Espinose J.-B., Fraissard J. Direct synthesis of AlSBA mesoporous molecular sieves: characterization and catalytic activities // Chem. Commun. 1999. P. 1967-1968. описано получение алюмосиликатов AlSBA-15.

Однако его применение в очистке нефтяных фракций от соединений мышьяка неизвестно.

Наиболее близкими к заявленному по совокупности существенных признаков и достигаемому техническому результату (прототипом) является способ получения катализатора и адсорбента (каталитически-сорбционного материала) для извлечения из минеральных масел мышьяка и способ извлечения мышьяка из минеральных масел, предпочтительно бензина, топлива для реактивных двигателей, дизельного топлива, смазочного масла вакуумного газойля, остаточных фракций, жидкостей, производимых из угля и горючих сланцев. Способ включает приготовление носителя - силиката из синтетической смеси, содержащей, по меньшей мере, один источник диоксида кремния, источник диоксида кремния, или предшественник диоксида кремния (например, алкоксид, тетраэтилортосиликат, или силатран, триэтаноламин-замещенными силатранами, или неорганический источник кремния), по меньшей мере, один источник гетероатомов и, по меньшей мере, один пороформирующий органический стандартный агент. Источник гетероатомов может быть алкоксидом алюминия (например, изопропоксид алюминия), оксидом алюминия, гидроксидом алюминия, нитратом алюминия, сульфатом алюминия или хлоридом алюминия. Пороформирующими агентами могут быть гликоли (например, пропиленгликоль, глицерин, диэтиленгликоль, триэтиленгликоль, тетраэтиленгликоль), алканоламины (например, триэтаноламин ("ТЭА"), триизопропаноламин), дибензоат диэтилгликоля, триэтиленпентамин, крахмал и сульфолан. Все компоненты объединяют в водном растворе с образованием смеси (обычно геля), затем летучие компоненты смеси (например, вода, спирт) удаляются обычными способами, такими как сушка, и на конечном этапе органический пороформирующий стандартный агент удаляют обычными способами, такими как прокаливание или экстракция. Дополнительно синтетическую смесь можно нагревать в автоклаве при температуре от примерно 100°С до примерно 220°С в течение примерно до 10 дней, предпочтительно при температуре от примерно 120°С до примерно 200°С в течение до 96 часов, перед удалением пороформирующего агента. Этап нагревания в автоклаве может отрегулировать мезопористость таким образом, чтобы удовлетворять конкретным требованиям. В мезопористый силикат вводят переходные металлы, такие как кобальт, никель, молибден, вольфрам или их комбинации, или благородные металлы, такие как платина, палладий или их комбинации, например, путем пропитки. Полученный материал могут дополнительно сульфировать ex situ сероводородом. Каталитически-сорбционный материал используют для извлечения мышьяка путем гидроочистки. Полученный материал обеспечивает снижение содержания мышьяка в горючем сланце до 0.1 ч./млн. маc. при давлении 68 бар (6.8 МПа) и температуре 370-400°С (см., патент РФ 2334554 С1, кл. МПК B01J 21/02 и др., опубл. 27.09.2008).

Недостатком способа по прототипу является то, что при тех температурах, при которых достигается высокая степень извлечения мышьяка, известный каталитически-сорбционный материал проявляет высокую активность в реакции гидрокрекинга. Это может приводить к повышенному коксообразованию, а также образованию легких газов и снижению выхода целевой фракции.

Задача изобретения заключается в устранении недостатка прототипа, а именно, предотвращении нежелательных побочных реакций крекинга целевой нефтяной фракции и коксообразования за счет снижения кислотности каталитически-сорбционного материала при высокой степени извлечения мышьяка из нефтяных фракций.

Поставленная задача решается тем, что при использовании полученного материала обеспечивается высокий выход целевой фракции без протекания побочных реакций крекинга, так как образец не обладает кислотной компонентой.

В основе метода получения мезопористых силикатов лежит принцип мицеллярного темплатирования. Темплаты (структурообразующие агенты), которые чаще всего представляют собой ионогенные или неионогенные ПАВ, при добавлении в исходный раствор образуют наноразмерные мицеллы, на которых формируется каркас мезопористого силиката. Использование неионогенных ПАВ – блок-сополимеров, получаемых из этиленоксида и пропиленоксида, позволяет получать мезопористый силикат SBA-15, в котором мезопористые каналы образуют гексагональную упаковку, а соседние каналы разделены стенками, пронизанными порами размером 0,5-3 нм.

Материалы типа SBA-15 получают по методике, описанной в статье Yue Y., Gedeon A., Bonardet J.-L., Melosh N., D'Espinose J.-B., Fraissard J. Direct synthesis of AlSBA mesoporous molecular sieves: characterization and catalytic activities // Chem. Commun. 1999. P. 1967-1968. Исходными соединениями служили тетраэтоксисилан, темплатом - плюроник Р123 - триблок-сополимер этилен- и пропиленоксида ЕО20РО70ЕО20 с молекулярной массой 5800.

Смесь тетраэтоксисилана и втор-бутоксида алюминия в разбавленном растворе НСl с рН 1.5 после перемешивания в течение 3 ч прибавляют к раствору плюроника Р123 в разбавленной НСl (рН 1.5), термостатированному при 40°С. Смесь перемешивают при 40°С, а затем выдерживают 48 ч при 95°С. Мольное соотношение Si(OC2H5)4 и (втор-BuO)3Аl в реакционной смеси составляло 40, 100 и ∞ (в материале присутствует только Si). После прокаливания на воздухе получены мезопористые материалы (мелкодисперсные порошки) с количественными выходами.

Тетраэтоксисилан (тетраэтилсиликат, этилсиликат, тетраэтилортосиликат) - простой эфир ортокремниевой кислоты и этилового спирта с формулой (C2H5O)4Si. Представляет собой летучую прозрачную бесцветную жидкость с характерным пряно-сладковатым, несколько схожим со спиртовым, запахом. Производится в Российской Федерации согласно ТУ 2435-419-05763441-2003.

Определение структурных характеристик (удельной площади поверхности, объема и диаметра пор) заключается в исследовании адсорбции/десорбции азота на образце катализатора. Измерения удельной площади поверхности, диаметра и объема пор проводят на приборе Gemini VII 2390 (V1.02 t) фирмы Micromeritics. Для этого перед началом определения образцы катализатора подвергают дегазации (удалению адсорбированной влаги), а затем проводят непосредственное измерение с построением изотерм адсорбции и десорбции исследуемого образца.

Полученные в работе алюмосиликаты, по данным низкотемпературной адсорбции/десорбции азота, характеризуются высокими Sуд., большим объемом пор и средним размером пор от 43 до 74 , вычисленным по адсорбции. Не наблюдается явной зависимости между содержанием в материалах алюминия и их средним размером пор (Табл. 1).

*в материале присутствует только Si.

Наличие упорядоченной пористой структуры полученных мезопористых алюмосиликатов подтверждено также данными просвечивающей электронной микроскопии (ПЭМ). Просвечивающие электронные микрофотографии образцов мезопористых алюмосиликатов и сульфидных катализаторов выполнены на приборе JEM-2100, разрешение изображения: 0,19 нм при 200 кВ. При статистической оценке размерных характеристик более 100 частиц активного компонента на различных ПЭМ-снимках для каждого катализатора, получено распределение сульфидных частиц по их длине и количеству слоев в мультислойных агломератах. Гексагональная структура лучше просматривается для материалов с более низким содержанием алюминия. В качестве примера на Фиг. 1 приведены фотографии SBA-15 с соотношением Si/Al - 100 в различных плоскостях.

Кислотность мезопористых алюмосиликатов определяют на приборе УСГА-101. Для этого исследуемый образец в виде фракции 0,5-0,25 мм массой около 0,1 г помещают в кварцевый реактор между слоями кварца фракции 1-0,5 мм. Образец обрабатывают в токе гелия при 500°С в течение 1 ч с последующей продувкой азотом. Насыщение проводят в токе осушенного аммиака, разбавленного азотом, при температуре 60°С в течение 15 мин. Удаление физически адсорбированного аммиака проводят при 100°С в токе сухого гелия в течение 1 ч со скоростью продувки гелием 30 мл/мин. Для получения кривой ТПД образец остужают до 50-60°С и постепенно повышают температуру до 500°С со скоростью 8°/мин. Сигналы от катарометра и от датчика температуры регистрировали параллельно через многоканальный АЦП с помощью программы ECOCHROM.

Данным методом установлено, что для образца SBA-15 с соотношением Al/Si - 40 общая концентрация кислотных центров составляет 130 мкмоль/г. Для материала с соотношением Al/Si - 100 общая концентрация кислотных центров составляет 25 мкмоль/г, для силикатного материала SBA-15 - 5 мкмоль/г, что свидетельствует практически о полном отсутствии кислотности.

*в материале присутствует только Si

Число слабых кислотных центров определяют по количеству NH3, десорбированного до 300°С, кислотных центров средней силы - по количеству NH3, десорбированного выше 300°С. Наличие большого числа сильных кислотных центров могло бы приводить к тому, что основным направлением была не адсорбция мышьяксодержащих соединений, а гидрокрекинг.

Полученный носитель используют в приготовлении Ni-Mo катализатора с массовым содержанием металлов в пересчете на оксиды 14,0 масс. % Мо и 4,0 масс. % Ni. Нанесение металлов осуществляют в одну стадию пропиткой по влагоемкости. В качестве источников переходных металлов используют гептамолибдат аммония [(NH4)6Mo7O24]*4H2O и шестиводный нитрат никеля Ni(NO3)2⋅6H2O. Образец в количестве 1,0 г помещают в бюкс и при перемешивании шпателем прибавляют к нему 0,32 г гептамолибдата аммония и 0,24 г нитрата никеля в 0,5 М растворе щавелевой кислоты. Смесь тщательно перемешивают в течение 30 минут, бюкс закрывают крышкой и оставляют на ночь. Открытый бюкс с образцом помещают в сушильный шкаф и сушат с циркуляцией воздуха в течение 3 ч при 90°С, периодически перемешивая смесь шпателем. После этого сушат при температуре 120°С в течение 3 ч. Образец переносят в фарфоровую чашку и прокаливают в муфельной печи при 550°С в течение 4 ч.

Типичные микрофотографии NiMo систем на основе мезопористого SBA-15 представлены на Фиг. 2. На ПЭМ-снимках полученных катализаторов видно типичную слоистую структуру фазы, которая представляет собой нанопластинки MoS2, объединенные в агломераты.

Полученный катализатор используют для извлечения мышьяка из дизельной фракции.

В качестве сырья используют легкую дизельную фракцию (ЛДФ) с температурами выкипания: 170-240°С с установок атмосферной перегонки. Содержание мышьяка в ЛДФ составляет 0,500 ч./млн. мас. Так как она не содержит мышьяк выше допустимой нормы, в качестве модельного соединения в легкую дизельную фракцию массой 500,0 г добавляют трифениларсин массой 10,35 мг. Содержание мышьяка в полученной смеси составляет 5,30 ч./млн. мас.

Каталитические эксперименты проводят в автоклаве (внутренний объем 45 см3) с кварцевым вкладышем для предотвращения контакта сырья со стенками автоклава, снабженном магнитной мешалкой и манометром. В автоклав загружают 100 мг мелкорастертого сорбционно-каталитического материала и 3,0 мл субстрата. При проведении экспериментов автоклав заполняют водородом до давления 5-9 МПа, при температурах от 340 до 380°С при постоянном перемешивании в течение заданного времени (от 3 до 9 ч). После окончания реакции автоклав быстро охлаждают до комнатной температуры, сбрасывают давление. Анализ продуктов проводят ренттенофлуоресцентным методом.

Результаты экспериментов с использованием материалов на основе мезопористого SBA-15 представлены в Табл. 3. Условия экспериментов - давление водорода 5 МПа, время - 3 ч.

*в материале присутствует только Si

Влияние начального давления водорода на глубину гидроочистки модельной дизельной фракции изучают в условиях, близких к промышленным, в интервале 5-9 МПа (Табл. 4). Условия экспериментов: температура 360°С, время - 3 ч.

*в материале присутствует только Si

Для исследования очистки нефтяных фракций использовалась легкая дизельная фракция, содержащая в своем составе 0,5 ppm As. В качестве источника мышьяка добавляли трифениларсин до содержания 5.5 ppm As (содержание мышьяка определяли с помощью рентгенофлуоресцентного метода).

При формовании носителей для катализаторов в виде экструдатов в качестве связующего использовали псевдобемит фирмы «Sasol» марки «Pural SB».

При приготовлении носителя вначале готовили смесь, состоящую из мезопористого материала и псевдобемита, тщательно перемешивали ее и растирали. Далее к этой смеси добавляли разбавленный дистиллированной водой раствор азотной кислоты, вымешивали «лепешку», нагревая ее при необходимости на водяной бане. Полученную массу продавливали через фильеры, сушили и прокаливали. Были получены экструдаты с содержанием активного компонента 35 масс. %.

Приготовление экструдатов, содержащих 35 масс. % мезопористого материала и 65 масс. % γ-Аl2O3, осуществляли одинаковым образом для всех синтезированных материалов по следующей методике:

В фарфоровую ступку помещали расчетное количество мезопористого материала и псевдобемита, тщательно растирали в течение 20 минут. При перемешивании небольшими порциями постепенно прибавляли раствор концентрированной азотной кислоты в дистиллированной воде и перемешивали в течение 15 минут. Далее растирали в течение 20 минут, при необходимости нагревая смесь на горячей водяной бане (в случае, если смесь оказавалась слишком жидкой). После того как смесь становилась вязкой и пластичной, ее формовали с помощью экструдера с диаметром выходного отверстия 1,2 мм. Экструдаты оставляли сушиться на ночь, затем сушили при циркуляции воздуха по следующей программе:

60°С в течение 2 часов;

80°С в течение 2 часов;

110°С в течение 2 часов.

Прокаливали в муфельной печи в токе воздуха при 550°С в течение 4 ч. В результате после сушки и прокаливания получали экструдаты диаметром около 1,1 мм, которые затем делили на части длиной 2-3 мм.

Нанесение активной фазы на экструдаты аналогично нанесению на порошки чистых мезопористых материалов.

Испытания проводились в следующих режимах: 360°С, 5 МПа, 1-4 ч-1 кратность по водороду - 300 нл/л (значения объемной скорости для всего сорбционно-каталитического слоя V=10,0 см3).

Загрузка реактора - 10,0 см3 NiMo_SBA-15/Al2O3. Выход на режим после достижения заданной температуры составлял 3 ч. Отбор проб осуществляли каждые 2 ч (по ~40 мл). В результате экспериментов было установлено, что содержание мышьяка во всех экспериментах снижалось до уровня менее 0,1 ppm.

В результате проведенных каталитических испытаний установлено, что синтезированные сорбционно-каталитические материалы проявляют высокую активность в снижении содержания мышьяка в модельной дизельной фракции.

Исходя из представленных данных оптимальной температурой для снижения содержания мышьяка в средних дистиллятах можно считать 360-380°С. Проведение реакции при более высоких температурах действительно может приводить к более полному разложению мышьяксодержащих соединений, однако при этом могут возникнуть побочные процессы, такие как крекинг, ароматизация и т.п.

Таким образом, предлагаемый каталитически-сорбционный материал обеспечивает высокую степень извлечения мышьяка из фракций нефтяных дистиллятов в отсутствии гидрокрекинга целевой фракции. Благодаря этому достигается высокий выход целевых фракций, снижение образования кокса и легких газов.


СПОСОБ ПОЛУЧЕНИЯ КАТАЛИТИЧЕСКИ-СОРБЦИОННОГО МАТЕРИАЛА И СПОСОБ ИЗВЛЕЧЕНИЯ МЫШЬЯКА В ЕГО ПРИСУТСТВИИ
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИТИЧЕСКИ-СОРБЦИОННОГО МАТЕРИАЛА И СПОСОБ ИЗВЛЕЧЕНИЯ МЫШЬЯКА В ЕГО ПРИСУТСТВИИ
Источник поступления информации: Роспатент

Showing 11-20 of 34 items.
25.08.2017
№217.015.caca

Углеводородная смазка для стальных канатов

Изобретение относится к области нефтехимии, в частности к составам углеводородных смазок, применяемых для смазывания стальных канатов при их изготовлении. Предлагается углеводородная смазка для стальных канатов, содержащая минеральное масло, пластификатор нефтяной, а также нефтяной отход,...
Тип: Изобретение
Номер охранного документа: 0002620082
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cafe

Антикоррозионная пластичная смазка для защиты клемм аккумуляторов и металлических поверхностей автомобилей

Изобретение относится к области нефтехимии, в частности к составам углеводородных смазок, применяемых для защиты клемм аккумуляторов и металлических поверхностей автомобилей. Предлагается антикоррозионная пластичная смазка для защиты клемм аккумуляторов и металлических поверхностей автомобилей,...
Тип: Изобретение
Номер охранного документа: 0002620081
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cb1c

Способ получения антидетонационной добавки к автомобильным бензинам и топливная композиция, содержащая антидетонационную добавку, полученную разработанным способом

Изобретение раскрывает способ получения антидетонационной добавки к автомобильным бензинам на основе алкил-трет-алкиловых эфиров, осуществляемый путем взаимодействия спирта с изоалкиленсодержащей фракцией, характеризующийся тем, что в качестве спирта используют метанол, в качестве...
Тип: Изобретение
Номер охранного документа: 0002620083
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cf51

Защитный воск

Изобретение относится к области нефтехимии, в частности к углеводородным составам, применяемым для защиты от атмосферных воздействий, а также от воздействия плесневых грибов изделий и конструкций. Предлагается защитный воск, включающий осадок, образующийся на стенках нефтяных трубопроводов при...
Тип: Изобретение
Номер охранного документа: 0002621048
Дата охранного документа: 31.05.2017
25.08.2017
№217.015.cf71

Консервационная смазка для металлических поверхностей машин

Изобретение относится к области нефтехимии, в частности к составам углеводородных смазок, применяемых для консервации и защиты от коррозии металлических поверхностей машин при хранении на длительный срок. Предлагается консервационная смазка для металлических поверхностей машин, содержащая...
Тип: Изобретение
Номер охранного документа: 0002621046
Дата охранного документа: 31.05.2017
25.08.2017
№217.015.d03f

Консервационная смазка для механизмов и приборов

Изобретение относится к области нефтехимии, в частности к составам углеводородных смазок, применяемых для консервации и защиты от коррозии механизмов и приборов при хранении на длительный срок. Предлагается консервационная смазка для механизмов и приборов, содержащая минеральное масло, присадку...
Тип: Изобретение
Номер охранного документа: 0002621186
Дата охранного документа: 01.06.2017
26.08.2017
№217.015.d5a7

Способ получения моторных топлив

Изобретение относится к способу получения моторных топлив путем гидрогенизационной переработки средних дистиллятов в присутствии катализаторов при повышенных температуре и давлении. При этом в качестве средних дистиллятов используют смесь прямогонной среднедистиллятной фракции нефтяного...
Тип: Изобретение
Номер охранного документа: 0002623088
Дата охранного документа: 22.06.2017
29.12.2017
№217.015.fa6e

Альтернативное автомобильное топливо

Изобретение раскрывает альтернативное автомобильное топливо с октановым числом не менее 90,0 единиц, определенным по исследовательскому методу, включающее в себя спирты C-C и углеводородную фракцию процесса Фишера-Тропша, при этом в качестве углеводородной фракции содержит бензиновую фракцию...
Тип: Изобретение
Номер охранного документа: 0002640199
Дата охранного документа: 27.12.2017
19.01.2018
№218.016.013f

Способ получения гранулированного катализатора крекинга

Настоящее изобретение относится к нефтепереработке, в частности катализаторам каталитического крекинга и способам их получения. Разработан способ получения гранулированного катализатора, который включает смешение порошков цеолита Y (фожазита), природных алюмосиликатов и связующего,...
Тип: Изобретение
Номер охранного документа: 0002629773
Дата охранного документа: 04.09.2017
13.02.2018
№218.016.1f74

Альтернативное топливо для автомобилей

Изобретение раскрывает альтернативное топливо для автомобилей с октановым числом по исследовательскому методу не менее 90 единиц и давлением насыщенных паров не менее 40 кПа, включающее в себя этиловый спирт, ароматические углеводороды С-С и рафинат, отличающееся тем, что содержит рафинат...
Тип: Изобретение
Номер охранного документа: 0002641108
Дата охранного документа: 16.01.2018
Showing 11-20 of 84 items.
25.08.2017
№217.015.a835

Средство для использования в фотон-захватной терапии злокачественных солидных новообразований

Изобретение относится к медицине. Средство для использования в фотон-захватной терапии злокачественных солидных новообразований представляет собой фармацевтическую субстанцию, включающую в своем составе диэтилентриаминопентауксусную кислоту в виде ее динатриевой соли, отличающееся тем, что в...
Тип: Изобретение
Номер охранного документа: 0002611379
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.ca66

Способ обессеривания сланцевой нефти и каталитическая окислительная композиция для обессеривания сланцевой нефти

Изобретение относится к способу обессеривания сланцевой нефти и к каталитической окислительной композиции, используемой в данном способе. Способ включает смешивание сланцевой нефти в органическом растворителе, при этом на одну часть сланцевой нефти берут не менее 9 частей органического...
Тип: Изобретение
Номер охранного документа: 0002619946
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.cabb

Способ получения высококачественной синтетической нефти

Изобретение относится к способу получения синтетической нефти из твердых горючих сланцев. Способ получения высококачественной синтетической нефти из горючих сланцев включает: предварительную подготовку горючего сланца путем его измельчения, удаления из него механических примесей через сита до...
Тип: Изобретение
Номер охранного документа: 0002620087
Дата охранного документа: 23.05.2017
26.08.2017
№217.015.ed74

Способ получения альдегидов гидроформилированием с модификацией лигандов ацетализацией

Изобретение относится к способу получения альдегидов гидроформилированием с модификацией лигандов ацетализацией. Предлагаемый способ включает следующие стадии: - смешивание в автоклаве этилового спирта (А), ацетилацетоната дикарбонила родия Rh(acac)(CO) (Б), при соотношении Б:А от 1:6000 до...
Тип: Изобретение
Номер охранного документа: 0002628609
Дата охранного документа: 21.08.2017
29.12.2017
№217.015.f51a

Катализатор, способ его приготовления и процесс селективной гидроочистки бензина каталитического крекинга

Изобретение относится к области химии, в частности к катализаторам для селективной гидроочистки бензинов каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Заявляется катализатор селективной гидроочистки бензина каталитического...
Тип: Изобретение
Номер охранного документа: 0002637808
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f6c0

Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Изобретение относится к области производства катализаторов гидроочистки углеводородного сырья. Описан носитель для приготовления катализаторов, представляющий собой модифицированный γ-AlO, имеющий объем пор 0,3-0,95 см/г, удельную поверхность 170-280 м/г, средний диаметр пор 7-22 нм и...
Тип: Изобретение
Номер охранного документа: 0002639159
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.fb29

Катализатор гидропереработки нефтяных фракций (варианты)

Изобретение относится к производству катализаторов для гидропереработки нефтяных фракций, в том числе обессеривания, гидрогенизации и гидродеароматизации. Предложен катализатор гидропереработки нефтяных фракций, полученный in situ путем термического разложения в углеводородном сырье - нефтяных...
Тип: Изобретение
Номер охранного документа: 0002640210
Дата охранного документа: 27.12.2017
29.12.2017
№217.015.fde4

Способ нанофильтрационного разделения жидких органических смесей

Изобретение относится к способу нанофильтрационного разделения жидких органических смесей, в частности к отделению крупных молекул органических веществ от органических растворителей с использованием мембран, и может быть использовано в химической и нефтехимической промышленности, в частности в...
Тип: Изобретение
Номер охранного документа: 0002638661
Дата охранного документа: 15.12.2017
13.02.2018
№218.016.22c8

Способ получения углеводородных продуктов из керогенсодержащих пород

Изобретение относится к способу получения синтетической нефти из твердых горючих сланцев. Способ получения высококачественной синтетической нефти из горючих сланцев включает: предварительную подготовку горючего сланца путем его измельчения, удаления из него механических примесей до фракций до...
Тип: Изобретение
Номер охранного документа: 0002641914
Дата охранного документа: 23.01.2018
10.05.2018
№218.016.3809

Фосфинсодержащие каликсареновые лиганды, способ их получения и применения

Изобретение относится к получению и использованию для каталитического гидроформилирования олефинов фосфинсодержащих лигандов общей формулы: где R выбран из групп COOH, CONHC(CHOH) или солюбилизирующих групп, содержащих от 4 до 12 гидроксильных групп. Указанные лиганды получают путем...
Тип: Изобретение
Номер охранного документа: 0002646763
Дата охранного документа: 07.03.2018
+ добавить свой РИД