×
13.06.2019
219.017.80d9

Результат интеллектуальной деятельности: Способ определения давления насыщения нефти газом

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам определения давления насыщения нефти газом Р во внутрискважинной зоне. Способ реализуется на скважинах, оборудованных электроцентробежным насосом (ЭЦН) и частотным преобразователем электрического тока погружного электродвигателя. С помощью двух датчиков давления, расположенных на фиксированном расстоянии друг от друга, во внутрискважинной зоне от глубинного насоса до продуктивного нефтяного пласта организуется измерение давления при различных режимах эксплуатации ЭЦН. Датчики давления соединены с линией электропитания с функцией обратной связи со станцией управления скважиной. На первом этапе с помощью частотного преобразователя тока обеспечивается в зоне датчиков давление выше Р, об этом можно судить по стабилизации разницы давлений между двумя датчиками. На втором этапе измерений значительно повышают производительность ЭЦН выше притока жидкости из пласта, в результате давление между датчиками снижается ниже давления насыщения нефти газом, из нефти выделяются первые пузырьки газа, его плотность заметно понижается. Величину давления насыщения нефти газом определяют по графику зависимости разницы давлений между датчиками от среднего значения их показаний при значительном изменении производительности ЭЦН в сторону снижения или, наоборот, повышения. 2 ил.

Предлагаемое изобретение относится к области изучения свойств пластовой нефти и подготовки исходной информации для организации разработки нефтяных месторождений и скважинной добычи нефти. Способ реализуется на скважинах, оборудованных глубинными электроцентробежными насосами и частотными преобразователями тока.

Давление насыщение нефти газом Рнас является важным ориентировочным параметром при выборе режима фильтрации флюидов в призабойной зоне пласта путем поддержания забойного давления на определенном уровне. Параметр также необходимо учитывать при установлении величины давления скважинной продукции на приеме глубинного насоса. Как правило, величину давления насыщения нефти газом определяют в лабораторных условиях при стандартном наборе исследований свойств пластовой нефти, которую отбирают при испытании пласта на продуктивность либо в течение эксплуатации скважины с помощью глубинного пробоотборника. На сегодня в нефтепромысловой практике является актуальной техническая задача по определению параметра Рнас непосредственно в скважинных условиях.

Известно изобретение «Способ определения обводненности продукции нефтедобывающей скважины» по патенту РФ №2610941 (опубл. 17.02.2017, бюл. 5), по которому над продуктивным нефтенасыщенным пластом располагают в скважинной зоне два датчика давления на фиксированном расстоянии друг от друга. По разнице показаний датчиков можно судить о содержании нефти и воды в добываемой пластовой продукции при отсутствии третьей - газовой фазы. Способ реализуем только при давлении в зоне датчиков выше давления насыщения нефти газом, поэтому априори невозможно определить по данному способу величину параметра Рнас.

Известен способ определения искомого параметра Рнас, заключающийся в последовательном снижении давления на приеме насоса с помощью изменения производительности глубинного насоса и снижения динамичского уровня жидкости в межтрубном пространстве скважины по патенту РФ №2521091 «Способ определения давления насыщения нефти газом» (опубл. 27.06.2014). Данное изобретение рассматривается нами по техническому содержанию как наиболее близкое к заявляемому, и будет служить прототипом.

Рассматриваемый способ реализуем в промысловых условиях, но требуется информация по динамическому уровню нефти и устьевому давлению в межтрубном пространстве (МП) скважины. Для этого необходимы операторы по обслуживанию скважин с переносными уровнемерами либо стационарные уровнемеры на устье скважин для периодического измерения глубины уровня нефти (жидкости) в МП.

По изобретению №2521091 оценивается состояние жидкости в межтрубном пространстве от приема насоса до динамического уровня. При снижении давления в зоне насоса ниже давления насыщения нефти газом происходит значительное снижение плотности нефти в МП из-за интенсивной дегазации нефти в зоне насоса. Но дегазация нефти в МП на большом расстоянии от насоса происходит постоянно, и это может внести определенную погрешность в графо-аналитическое решение поставленной задачи. Уровень жидкости в межтрубном пространстве определяется с определенной погрешностью звукометрическим методом, поэтому определение давления насыщения нефти газом Рнас, согласно прототипа, будет происходить с определенной систематической погрешностью.

Технической задачей изобретения является создание технологии определения давления насыщения нефти газом без предварительной оценки давления на устье скважины в МП и уровня жидкости. Технология должна быть применима для большинства скважин, в продукции которых преобладает нефть.

Поставленная задача решается по способу определения давления насыщения нефти газом, который заключается в последовательном изменении давления в скважине путем изменения производительности глубинного насоса регулированием частоты тока погружного электродвигателя, с предварительным расположением между глубинным насосом и нефтяным пластом на фиксированном расстоянии друг от друга двух датчиков давления, имеющих кабель электропитания с функцией обратной связи со станцией управления скважины на поверхности земли. На первом этапе способа путем снижения производительности насоса частотным преобразователем тока добиваются такого повышения давления в зоне датчиков, которое обеспечивает постоянную величину разницы давлений между датчиками (это возможно только при давлении выше, чем Рнас). На втором этапе повышают производительность насоса частотным преобразователем тока, и как следствие понижают давление в зоне датчиков до давлений ниже, чем давление насыщения нефти газом. По полученным опытным данным строят график зависимости разницы давлений между датчиками ΔР=P12 от среднего их значения Рср=(Р12)/2, где Р1 - давление в зоне нижнего датчика, Р2 - давление в зоне верхнего датчика. Значение параметра Рср, соответствующее переходу прямолинейной и горизонтальной части графика в криволинейную и ниспадающую часть и является давлением насыщения нефти газом.

На фиг. 1 приведена схема расположения датчиков давления в нефтедобывающей скважине, где 1- обсадная колонна, 2- колонна насосно-компрессорных (лифтовых) труб, 3- погружной электродвигатель (ПЭД), 4-верхний датчик давления. 5- нижний датчик давления, 6- жесткий стержень фиксированной длины, 7- кабель электропитания и обратной связи со станцией управления скважины, 8- станция управления скважины, 9-электроцентробежный насос (ЭЦН).

Длина жесткого стержня 6 будет предопределять точность измерений параметра Рнас. Например при достаточной точности измерений в 1,0 атм необходимо чтобы фиксированное расстояние между датчиками было не более 10 м.

График зависимости ΔР=Р12 от Рср по гипотетической нефтедобывающей скважине приведен на фиг. 2. Рассмотрим состояние пластовых флюидов между датчиками в зависимости от среднего давления между ними.

1. При обеспечении высокого давления в зоне двух датчиков выше 70 атм в нефти попутный газ находится в растворенном состоянии, поэтому между датчиками находится двухфазная жидкость с определенной средней плотностью в пределах 800-1000 кг/м3. Зависимость ΔР от Рср носит характер прямолинейного участка, параллельного горизонтальной оси Рср. И нефть и пластовая вода имеют малую величину коэффициента сжимаемости, поэтому повышение давление в рассматриваемой системе не приводит к чувствительному повышению плотности водо-нефтяной эмульсии, и как следствие, разница давлений между датчиками остается неизменной величиной.

2. На втором этапе измерений повышают частоту тока ПЭД, благодаря этому значительно растет производительность ЭЦН, в результате чего отбирается жидкость из межтрубного пространства, динамический уровень приближается к глубинному насосу и давление между датчиками Рср снижается ниже Рнас. В зоне между датчиками из нефти выделяются пузырьки газа. Значительно снижается плотность трехфазной системы, так как плотность попутного нефтяного газа при давлении 60-70 атм равна 70-100 кг/м3, что в несколько раз меньше, чем плотность нефти и воды (на порядок).

При дальнейшем снижении давления Рср будет расти количество пузырьков газа, а также объем среднестатистического пузырька, поэтому разница давлений между датчиками ΔР будет по параболе приближаться к горизонтальной оси графика на фиг. 2.

Переход прямолинейной части и горизонтальной части зависимости в криволинейную часть и будет соответствовать давлению насыщения нефти газом. По данным зависимости на фиг. 2 величина искомого параметра Рнас равна 70 атм.

Для количественного учета влияния потерь давления на трения при подъеме эмульсионной жидкости от нижнего датчика к верхнему проведены расчеты по формуле Дарси-Вейсбаха для условий: пластовый дебит в пределах 100 м3/сут, вязкость водо-нефтяной эмульсии - до 100 мПа⋅с, расстояние между датчиками - 10 м. Потери давления на трение между датчиками находятся в пределах 0,002 атм (0,2 кПа), что на два порядка (в сто раз) ниже, чем то необходимое изменение давления ΔР=0,2 атм, по которому по графику на фиг. 2 диагностируется снижение давления между датчиками ниже Рнас. Расчетами показано, что в рассматриваемых условиях потерями давления на трение можно пренебречь.

Основное отличие заявленного технического решения от прототипа заключается, по мнению авторов, в том, что рассматривается разность давлений между датчиками, которые находятся только в жидкой среде и на относительно малом расстоянии друг от друга. Благодаря применению двух датчиков давления в однотипной среде повышается точность оценки состояния и состава этой среды. По прототипу используется один датчик давления в зоне глубинного насоса, а второй - на устье скважины, в газовой среде, в котором давление будет формироваться газовой средой в зависимости от процесса дегазации жидкой среды. Расположение датчиков давления в средах с различными свойствами, имеющих межфазную поверхность, не способствует повышению точности оценки свойств одной среды. Достаточно отметить, что давление в газовой среде нефтедобывающей скважины может быть описано формулой Лапласа-Бабинэ, в то время как по прототипу используется значение давления на устье скважины, не в полной мере описывающее всю газовую среду в межтрубном пространстве скважины.

Способ определения давления насыщения нефти газом, заключающийся в последовательном изменении давления в скважине путем изменения производительности глубинного насоса регулированием частоты тока погружного электродвигателя, отличающийся тем, что предварительно между глубинным насосом и нефтяным пластом на фиксированном расстоянии друг от друга располагают два датчика давления, имеющих кабель электропитания с функцией обратной связи со станцией управления скважины на поверхности земли, на первом этапе способа путем снижения производительности насоса частотным преобразователем тока добиваются такого повышения давления в зоне датчиков, которое обеспечивает постоянную величину разницы давлений между датчиками, на втором этапе повышают производительность насоса частотным преобразователем тока и, как следствие, понижают давление в зоне датчиков до давлений ниже, чем давление насыщения нефти газом, по полученным опытным данным строят график зависимости разницы давлений между датчиками ΔР=P-Р от среднего их значения Р=(Р+Р)/2, где Р - давление в зоне нижнего датчика, Р - давление в зоне верхнего датчика, значение параметра Р, соответствующее переходу прямолинейной и горизонтальной части графика в криволинейную и ниспадающую часть, и является давлением насыщения нефти газом.
Способ определения давления насыщения нефти газом
Источник поступления информации: Роспатент

Showing 151-160 of 167 items.
15.05.2023
№223.018.5889

Акустический влагомер наклонных и горизонтальных скважин

Изобретение относится к аппаратуре для геофизических и гидродинамических исследований в нефтяной промышленности при исследовании действующих скважин. Устройство включает цилиндрический корпус, который по продольной оси разделен на n равных секторов, электрически изолированных друг от друга...
Тип: Изобретение
Номер охранного документа: 0002764609
Дата охранного документа: 18.01.2022
16.05.2023
№223.018.5f73

Смазочная добавка для буровых промывочных жидкостей на водной основе

Изобретение относится к области бурения нефтегазовых скважин, в частности к смазочным добавкам для регулирования свойств буровых промывочных жидкостей на водной основе. Технический результат – улучшение смазочных, противоприхватных, гидрофобизирующих и поверхностно-активных свойств глинистых и...
Тип: Изобретение
Номер охранного документа: 0002744890
Дата охранного документа: 16.03.2021
16.05.2023
№223.018.61af

Автоматизированная система управления процессом компаундирования разносортных нефтей с регулированием подкачки и сброса сернистой нефти

Изобретение относится к средствам автоматизации и может быть использовано в трубопроводном транспорте при перекачке нефти из нескольких трубопроводов в общую магистраль, по которой смесь нефтей транспортируется к потребителю. Автоматизированная система управления компаундированием разносортных...
Тип: Изобретение
Номер охранного документа: 0002746679
Дата охранного документа: 19.04.2021
16.05.2023
№223.018.6270

Способ измерения продукции нефтяной скважины

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения массового дебита нефти, а также газового фактора нефти с измерением остаточного количества растворенного газа в нефти в рабочих условиях измерений. Способ измерения продукции нефтяной скважины...
Тип: Изобретение
Номер охранного документа: 0002781205
Дата охранного документа: 07.10.2022
16.05.2023
№223.018.62f7

Байпасная и импульсная обвязки линейных кранов в составе крановых узлов многониточных магистральных газопроводов, проложенных в одном технологическом коридоре

Изобретение относится к области эксплуатации магистральных газопроводов и может быть использовано для безопасного выполнения предремонтных (опорожнение) и предпусковых (заполнение участков магистральных газопроводов природным газом) операций, а также для создания резервного питания импульсным...
Тип: Изобретение
Номер охранного документа: 0002777810
Дата охранного документа: 10.08.2022
16.05.2023
№223.018.6379

Блочно-модульный мобильный автономный малотоннажный комплекс подготовки и переработки попутного и природного газа

Изобретение относится к области формирования структуры производства по подготовке и переработке попутного и природного газа и может быть использовано на предприятиях нефтяной и газовой промышленности. Блочно-модульный мобильный автономный малотоннажный комплекс подготовки и переработки...
Тип: Изобретение
Номер охранного документа: 0002779480
Дата охранного документа: 07.09.2022
Тип: Изобретение
Номер охранного документа: 0002748711
Дата охранного документа: 31.05.2021
21.05.2023
№223.018.682d

Способ получения легких газообразных и жидких углеводородов путем каталитической конверсии бензина термического крекинга

Изобретение относится к способу получения легких газообразных и жидких углеводородов путем каталитической конверсии углеводородных соединений в среде неорганического расплавленного катализатора на основе двойных солей хлоридов металлов. В качестве углеводородных соединений используют бензин...
Тип: Изобретение
Номер охранного документа: 0002794942
Дата охранного документа: 25.04.2023
21.05.2023
№223.018.68b4

Способ оценки качества потенциально пригодного сырья для получения игольчатого кокса по интегральным параметрам оптических спектров поглощения

Изобретение относится к области нефтепереработки, в частности к способу оценки качества сырья для получения игольчатого кокса, и направлено на упрощение и ускорение процесса оценки качества сырья для получения игольчатого кокса. Способ осуществляют следующим образом. Различные виды сырья...
Тип: Изобретение
Номер охранного документа: 0002794435
Дата охранного документа: 18.04.2023
21.05.2023
№223.018.6903

Способ определения остаточной ёмкости химических источников тока

Изобретение относится к области электротехники, а именно к способу определения остаточной электрической емкости первичных химических источников тока (ХИТ), т.е. неперезаряжаемых гальванических элементов питания, непосредственно в условиях эксплуатации, без отключения от нагрузки. Определение...
Тип: Изобретение
Номер охранного документа: 0002794518
Дата охранного документа: 20.04.2023
Showing 61-62 of 62 items.
02.06.2023
№223.018.7565

Устройство по определению скорости химической реакции веществ газометрическим способом

Изобретение относится к устройствам по измерению скорости химических реакций и может быть использовано для измерения кинетики растворения образцов карбонатных. Устройство по определению скорости реакции веществ газометрическим способом содержит колбообразный реактор из корпуса и крышки,...
Тип: Изобретение
Номер охранного документа: 0002767448
Дата охранного документа: 17.03.2022
16.06.2023
№223.018.7b61

Колонна лифтовых труб для скважинного электроцентробежного насоса

Изобретение относится к нефтедобывающей промышленности и предназначено для использования на малодебитных скважинах, эксплуатируемых электроцентробежными насосами (ЭЦН) в периодическом режиме. Технический результат - повышение эффективности работы электроцентробежного насоса, работающего в...
Тип: Изобретение
Номер охранного документа: 0002751026
Дата охранного документа: 07.07.2021
+ добавить свой РИД