×
09.06.2019
219.017.7d2a

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ НАНОСТРУКТУРНОГО ОМИЧЕСКОГО КОНТАКТА ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии изготовления полупроводниковых приборов. Сущность изобретения: в способ изготовления наноструктурного омического контакта проводят предварительную очистку поверхности GaSb р-типа проводимости ионно-плазменным травлением на глубину 5-30 нм с последующим последовательным напылением магнетронным распылением адгезионного слоя титана толщиной 5-30 нм и барьерного слоя платины толщиной 20-100 нм, напылением термическим испарением проводящего слоя серебра толщиной 50-5000 нм и контактирующего с окружающей средой слоя золота толщиной 30-200 нм. Изобретение обеспечивает воспроизводимое формирование омического контакта с малым удельным переходным сопротивлением. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области создания полупроводниковых приборов, в частности к изготовлению фотоэлектрических преобразователей (ФЭП) на основе антимонида галлия, способных эффективно преобразовывать падающее излучение высокой плотности.

В условиях экстремальной работы концентраторных ФЭП к качеству контактов предъявляются повышенные требования. Уменьшение сопротивления контактов необходимо для увеличения токосъема с приборов и уменьшения разогрева, связанного с протеканием токов большой плотности, и в конечном счете для увеличения КПД концентраторных ФЭП и срока их эксплуатации.

Известен способ изготовления наноструктурного омического контакта (см. заявка US 20080230904, МПК H01L 23/48, опубликована 25.09.2008), включающий последовательное нанесение на полупроводниковый слой на основе GaN контактного слоя из металла, выбранного из группы: Ni, Ir, Pt, Pd, Au, Ti, Ru, W, Та, V, Co, Os, Re, Rh, улучшающего адгезию на границе металл - полупроводник; отражающего слоя из Al или Ag; барьерного слоя из материала, выбранного из группы: Ru, Ir, Re, Rh, Os, V, Та, W, ITO (оксид индий-олова), IZO (оксид индий-цинка), RuO2, VO2, MgO, IrO2, ReO2, RhO2, OsO2, Ta2O3 или WO2, предотвращающего диффузию; а также первого и второго слоев для осуществления сварки. Первый слой наносят из металла, выбранного из группы: Ni, Cr, Ti, Pd, Ru, Ir, Rh, Re, Os, V, Та; второй слой наносят из металла, выбранного из группы: Au, Pd, Pt. Вжигание контактов производят в течение 10-100 с в атмосфере, содержащей от 5% до 100% кислорода, при температуре от 100 до 700°C. Предпочтительные материалы для изготовления омического контакта - (Ir, Ni, Pt)/Ag/Ru/Ni/Au. Контактный слой, выбранный из группы (Ir, Ni, Pt), имеет толщину от 5 до 500 Å (предпочтительнее 200 Å или менее). Отражающий слой Ag имеет толщину от 100 до 9000 Å (предпочтительнее - от 1000 до 2000 Å). Барьерный слой Ru имеет толщину от 50 до 1000 Å (предпочтительнее - от 100 до 800 Å). Первый слой Ni для осуществления сварки имеет толщину от 100 до 3000 Å (предпочтительнее - от 1000 Å или менее). Второй слой Au для осуществления сварки имеет толщину от 100 до 9000 Å (предпочтительнее - от 1000 Å или менее).

Известный способ предполагает последовательное нанесение адгезионного (контактного) слоя толщиной от 5 Å до 500 Å и слоя алюминия или серебра без барьерного слоя между ними. Предлагаемые толщины контактного слоя недостаточны для того, чтобы предотвратить интенсивную диффузию Ag в GaSb во время отжига, что приведет к нарушению планарности границы раздела металл - полупроводник.

Известен способ изготовления наноструктурного омического контакта (US Pat. №3978517, H01L 23/52. опубликован 31 августа 1976 г.), включающий последовательное нанесение на полупроводниковую структуру, в частности кремниевую, слоя титана (толщиной 60-80 нм), слоя серебра (толщиной 600-800 нм) и палладия (толщиной 100-150 нм).

Толщина слоя титана, наносимого в известном способе, слишком велика и может сказаться на увеличении последовательного сопротивления контакта. Кроме того, слой титана даже такой толщины может не предотвратить диффузию серебра в слой полупроводника при отжиге. Вместе с тем, толщина проводящего слоя серебра недостаточна для применения в технологии изготовления сильноточных приборов, таких как концентраторные ФЭП.

Известен способ изготовления наноструктурного омического контакта (см. патент US 5422307, МПК H01L 29/45, опубликован 06.06.1995), включающий метод формирования омического электрода, состоящий из последовательного нанесения на подложку GaAs слоев золота-германия, никеля, вольфрамового сплава и золота. Рисунок контакта создается с помощью нанесения защитной маски, предохраняющей область формирования омического электрода, удаления металлических слоев (золота-германия, никеля, вольфрамового сплава, золота) с нежелательных участков и последующего удаления защитной маски. Толщина металлических слоев лежит в диапазоне значений: золото-германий - 800-1200 Å, никеля - 200-400 Å, вольфрамового сплава - 200-1000 Å, золота - 1000-3000 Å. В качестве вольфрамового сплава используется TiW и WSi. Предусмотрен дополнительный отжиг контактов при температуре 450°C в течение 60 с. Возможно нанесение на подложку GaAs дополнительного изолирующего слоя (SiN или SiO2) с последующим удалением части указанного слоя за счет экспонирования подложки GaAs на участках в подконтактных областях.

К недостатках указанного способа следует отнести достаточно высокую (450°C) температуру вжигания контакта, которая может быть недопустима при формировании приборных структур с мелким p-n-переходом и приводит к возрастанию токов утечки. Пленки на основе вольфрамового сплава могут наноситься только методом магнетронного распыления, что усложняет технологию нанесения контакта и не может быть оправдано без указания полученных низких значений удельного переходного сопротивления

Известен способ изготовления наноструктурного омического контакта (см. патент US 5982036, МПК H01L 21/338, опубликован 09.11.1999), включающий осаждение на подложку n+- GaAs немонокристаллического слоя InAs, распыление пленок Ni, WSi и W, последующую взрывную литографию, вжигание контактов сначала при температуре 300°C в течение 30 минут и последующий прогрев многослойной структуры до 650°C (1 секунда).

Недостатки известного способа аналогичны указанным выше: высокие температуры вжигания контакта и большая длительность этой операции недопустимы при формировании приборов (в том числе фотоэлементов) на основе GaSb с мелким p-n-переходом.

Известен способ изготовления наноструктурного омического контакта (см. В.П.Хвостиков, М.Г.Растегаева, О.А.Хвостикова, С. В.Сорокина, А.В.Малевская, М.З.Шварц, А.Н.Андреев, Д.В.Давыдов, В.М.Андреев. - Высокоэффективные (49%) мощные фотоэлементы на основе антимонида галлия. - ФТП, 2006, т.40, вып.10, стр.1275-1279) для фотопреобразователей на основе GaSb, включающая последовательно нанесенные слои титана, платины и золота на поверхность антимонида галлия р-типа проводимости (р~1020 см-3), совпадающая с заявляемым техническим решением по наибольшему числу существенных признаков и принятая за прототип. Ti и Pt наносились на поверхность полупроводника методом магнетронного распыления, a Au-термическим испарением. Отжиг образцов проводился в потоке азота, его продолжительность составляла 1-2 минуты. Минимальная величина удельного переходного сопротивления омических контактов, определяемая по методике TLM (Transmission Line Method) (см. H.H.Berger. Models for contacts to planar devices. Solid State Electronics, 1972, Vol.15, pp.145-158), соответствовала ρc=(4-6)·10-6 Ом·см2. После отжига контактов в атмосфере азота при температуре 250°C величина ρc уменьшались до (1-3)·10-6 Ом·см2. Основным преимуществом таких контактов является тот факт, что Pt, являясь эффективным диффузионным барьером, препятствует глубокому проникновению Au в полупроводник и предотвращает возможность локального шунтирования мелкого p-n-перехода, обеспечивая стабильность работы приборов при повышенных температурах. Для уменьшения сопротивления контактной сетки производилось утолщение контакта посредством электрохимического осаждения золота из электролита. Электрохимическое осаждение осуществлялось с использованием маски фоторезиста путем последовательного нанесения слоев золота, никеля и вновь золота. Толщина осажденного золота составляет 1,5-3,5 мкм.

Наличие дополнительной и достаточно трудоемкой операции гальванического утолщения контактов, требуемой при изготовлении приборных структур, следует отнести к недостаткам способа. К недостаткам способа-прототипа также можно отнести его относительно высокую стоимость из-за повышенного расхода золота при изготовлении толстых, до 5 мкм толщиной, контактов.

Задачей заявляемого изобретения является разработка такого способа изготовления наноструктурного омического контакта к GaSb р-типа проводимости, который обеспечит воспроизводимое формирование омического контакта с малым удельным переходным сопротивлением.

Поставленная задача решается тем, что в способе изготовления наноструктурного омического контакта предварительно проводят очистку поверхности GaSb р-типа проводимости методом ионно-плазменного травления на глубину 5-30 нм. Затем последовательно напыляют методом магнетронного распыления адгезионный слой титана Ti толщиной 5-30 нм и барьерный слой платины Pt толщиной 20-100 нм. Далее напыляют термическим испарением проводящий слой серебра Ag толщиной 50-5000 нм и контактирующий с окружающей средой слой золота Au толщиной 30-200.

Изготовленный наноструктурный омический контакт для лучшей адгезии можно отжечь путем выдержки в атмосфере водорода или азота при температуре 170-250°C в течение 30-60 с.

Заявляемый способ изготовления наноструктурного омического контакта осуществляют следующим образом (см. чертеж). Непосредственно перед процессом напыления контактных слоев производят очистку фронтальной поверхности полупроводниковой структуры 1 на основе GaSb p-типа проводимости методом ионно-лучевого травления на глубину 5-300 нм. Удаление приповерхностного слоя необходимо для улучшения адгезии металла к полупроводниковой структуре 1 и для уменьшения переходного контактного сопротивления. При травлении на глубину меньше 5 нм недостаточно эффективно происходит удаление поверхностных загрязнений и окислов. При травлении на глубину больше 300 нм повышается дефектность структуры 1, что может приводить к снижению характеристик изготавливаемого прибора, например к снижению напряжения холостого хода фотоэлементов. Последовательно напыляют методом магнетронного распыления адгезионный слой 2 титана Ti толщиной 5-30 нм и барьерный слой 3 платины Pt толщиной 20-100 нм. Адгезионный слой 2 титана толщиной менее 5 нм может иметь нарушения сплошности (возникновение проколов слоя), а слой 2 титана толщиной более 30 нм может ощутимо увеличить последовательное сопротивление контакта (титан имеет высокое удельное сопротивление, почти в 35 раз больше, чем у серебра). Толщина слоя 3 платины 20-100 нм (зависит от толщины предварительно нанесенного слоя 2 титана) достаточна для того, чтобы существенно замедлить диффузию серебра через слой 3. Увеличивать толщину слоя 3 платины более указанных выше не представляется целесообразным из-за увеличения стоимости контакта. Далее напыляют термическим испарением при давлении остаточных газов в вакуумной камере ~8·10-8-1·10-6 мм рт. ст. проводящий слой 4 серебра Ag толщиной 50-5000 нм и контактирующий с окружающей средой слой 5 золота Au толщиной 30-200. Толщину проводящего слоя 4 серебра выбирают, прежде всего, из соображений уменьшения сопротивления контактной сетки, а также стоимости контакта. Учитываются также следующие соображения: при толщине контакта менее 1-1,5 мкм затрудняется процесс пайки солнечных элементов, а при толщинах контакта более 5 мкм могут возникнуть напряженные слои, вследствие чего уменьшается адгезия контакта к полупроводниковой структуре и его отслаивание. Кроме того, при таких толщинах контакта становится заметным затенение светочувствительной поверхности полупроводниковой структуры. Верхний предел давлений остаточных газов в вакуумной камере (8·10-8 мм рт.ст.) при термическом испарении определяется возможностями установки. Нижнее значение давления остаточных газов (1·10-6 мм рт.ст.) выбирается из соображений минимизации содержания остаточного кислорода, который может приводить к окислению серебра и, следовательно, ухудшению адгезии со слоем Pt. В композиции Ti-Pt-Ag верхний тонкий слой 5 золота наносят для предотвращения окисления контактной структуры (такие изменения свойств контакта могут вызывать трудности дальнейшего монтажа прибора, например, при пайке фотоэлементов в батарею). Кроме того, контактирующий верхний слой 5 золота обычно применяют, если прибор предназначен для работы в присутствии следов агрессивной среды.

Режим отжига контакта выбирают из условий минимизации удельного переходного сопротивления, а также обеспечения неглубокого залегания границы раздела металл - полупроводник.

Пример 1. Фронтальный наноструктурный омический контакт был сформирован на слое p-типа проводимости, полученном на подложке GaSb диффузией цинка. Концентрация свободных носителей заряда в слое составляла ~ 1·1020 см-3. Перед нанесением наноструктурного омического контакта на поверхности полупроводника была сформирована маска из двухслойного фоторезиста (с LOR-слоем), проведена очистка поверхности структуры методом ионно-лучевого травления (удалено 5 нм поверхностного слоя). Наноструктурный омический контакт состоял из слоя титана толщиной 30 нм, платины толщиной 90 нм, серебра толщиной 1070 нм и слоя золота толщиной 30 нм. Напыление Ag и Au проводили термическим испарением при давлении остаточных газов в вакуумной камере ~ 7·10-7 мм рт.ст. Переходное сопротивление контакта после отжига многослойной контактной структуры при температуре 250°C в течение 30 с составило 4,1·10-7 Ом·см2 (измерения по методике TLM).

Пример 2. Травление приповерхностного слоя на глубину 5 нм, магнетронное распыление адгезионного слоя титана толщиной 30 нм и барьерного слоя платины толщиной 90 нм, напыление термическим испарением при давлении остаточных газов в вакуумной камере 7·10-7 мм рт.ст. проводящего слоя серебра толщиной 1070 нм и слоя золота толщиной 30 нм. Переходное сопротивление контакта без дополнительного отжига многослойной контактной структуры составило 1,2·10-6 Ом·см2 (измерения по методике TLM).

Пример 3. Травление приповерхностного слоя на глубину 5 нм магнетронное распыление адгезионного слоя титана толщиной 5 нм и барьерного слоя платины толщиной 20 нм. Напыление термическим испарением при давлении остаточных газов в вакуумной камере 8·10-6 мм рт.ст. проводящего слоя серебра толщиной 5000 нм и контактирующего с окружающей средой слоя золота толщиной 200 нм. Переходное сопротивление контакта после отжига многослойной контактной структуры при температуре 250°C в течение 30 с составило 5,7·10-7 Ом·см2 (измерения по методике TLM).

Пример 4. Травление на глубину 30 нм магнетронное распыление адгезионного слоя титана толщиной 10 нм и барьерного слоя платины толщиной 50 нм. Напыление термическим испарением при давлении остаточных газов в вакуумной камере 6·10-6 мм рт.ст. проводящего слоя серебра толщиной 50 нм и контактирующего с окружающей средой слоя золота толщиной 30 нм. Переходное сопротивление контакта после отжига многослойной контактной структуры при температуре 170°C в течение 1 минуты составило 7,1·10-7 Ом·см2 (измерения по методике TLM).

Источник поступления информации: Роспатент

Showing 1-6 of 6 items.
10.04.2019
№219.017.0277

Способ формирования многослойного омического контакта фотоэлектрического преобразователя (варианты)

Изобретение относится к микроэлектронике. Сущность изобретения: в способе формирования многослойного омического контакта фотоэлектрического преобразователя на основе арсенида галлия электронной проводимости формируют фотолитографией топологию фоточувствительных областей и проводят травление...
Тип: Изобретение
Номер охранного документа: 0002391741
Дата охранного документа: 10.06.2010
18.05.2019
№219.017.566b

Туннельно-связанная полупроводниковая гетероструктура

Изобретение относится к полупроводниковой технике, квантовой оптоэлектронике и может быть использовано для разработки мощных когерентных импульсных источников излучения на основе эпитаксиально-интегрированных гетероструктур. Сущность изобретения: туннельно-связанная полупроводниковая...
Тип: Изобретение
Номер охранного документа: 0002396655
Дата охранного документа: 10.08.2010
18.05.2019
№219.017.5967

Солнечный фотоэлектрический модуль на основе наногетероструктурных фотопреобразователей

Концентраторный фотоэлектрический модуль на основе наногетероструктурных солнечных элементов относится к области фотоэлектрического преобразования энергии, в частности к системам с расщеплением солнечного спектра. Модуль содержит корпус (1), имеющий фронтальную панель (2), содержащую...
Тип: Изобретение
Номер охранного документа: 0002426198
Дата охранного документа: 10.08.2011
29.05.2019
№219.017.689a

Концентраторный солнечный элемент

Концентраторный солнечный элемент (8) выполнен в форме в форме прямоугольника с соотношением длин сторон, находящимся в интервале от 1 до 1,5. Он содержит подложку (3), многослойную структуру (4), сформированную на подложке (3), с центральной фоточувствительной областью (12), контактный слой...
Тип: Изобретение
Номер охранного документа: 0002407108
Дата охранного документа: 20.12.2010
09.06.2019
№219.017.79be

Способ определения размеров наночастиц и устройство для измерения спектра электронного парамагнитного резонанса

Изобретение относится к технике спектроскопии электронного парамагнитного резонанса (ЭПР) при исследованиях наноструктур методом ЭПР. Техническим результатом заявленного изобретения является повышение чувствительности регистрации спектров ЭПР мелких доноров в полупроводниковых нанокристаллах....
Тип: Изобретение
Номер охранного документа: 0002395448
Дата охранного документа: 27.07.2010
09.06.2019
№219.017.7d72

Способ формирования контакта для наногетероструктуры фотоэлектрического преобразователя на основе арсенида галлия

Изобретение относится к области создания полупроводниковых приборов, чувствительных к излучению, и может использоваться в технологиях по изготовлению омических контактных систем к фотоэлектрическим преобразователям (ФЭП) с высокими эксплуатационными характеристиками, и, в частности, изобретение...
Тип: Изобретение
Номер охранного документа: 0002428766
Дата охранного документа: 10.09.2011
Showing 61-62 of 62 items.
16.06.2023
№223.018.7c95

Способ изготовления фотоэлектрического концентраторного модуля

Способ изготовления фотоэлектрического концентраторного модуля включает формирование множества солнечных элементов, формирование вторичных концентраторов солнечного излучения, расположенных соосно над солнечными элементами, формирование панели первичных концентраторов, расположенных соосно над...
Тип: Изобретение
Номер охранного документа: 0002740862
Дата охранного документа: 21.01.2021
17.06.2023
№223.018.8105

Солнечный фотоэлектрический модуль

Солнечный фотоэлектрический модуль включает, по меньшей мере, два субмодуля (1), каждый субмодуль (1) содержит зеркальный параболический концентратор (5) солнечного излучения и солнечный элемент (6), расположенный в фокусе зеркального параболического концентратора (5). Зеркальный параболический...
Тип: Изобретение
Номер охранного документа: 0002763386
Дата охранного документа: 28.12.2021
+ добавить свой РИД