×
09.06.2019
219.017.7a5e

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕКУЩЕЙ КОНДЕНСАТОНАСЫЩЕННОСТИ В ПРИЗАБОЙНОЙ ЗОНЕ СКВАЖИНЫ В ГАЗОКОНДЕНСАТНОМ ПЛАСТЕ-КОЛЛЕКТОРЕ

Вид РИД

Изобретение

№ охранного документа
0002386027
Дата охранного документа
10.04.2010
Аннотация: Изобретение относится к разработке газоконденсатных месторождений и может быть использовано для определения текущей конденсатонасыщенности в призабойной зоне скважины в пласте-коллекторе. Техническим результатом изобретения является повышение точности определения текущего значения конденсатонасыщенности в призабойной зоне как обсаженной, так и необсаженной скважины. Для чего до начала эксплуатации скважины измеряют параметры пласта-коллектора и пластового флюида традиционными методами каротажа, включая нейтронный, и путем анализа проб керна и флюида. Для эксплуатационной скважины создают численную модель изменения сигналов нейтронного каротажа для измеренных параметров пласта, пластового флюида и предполагаемой конденсатонасыщенности. Предполагаемую конденсатонасыщенность определяют путем гидродинамического моделирования состава газоконденсатной смеси для измеренных параметров пласта, пластового флюида и функций фазовой проницаемости. В процессе эксплуатации при снижении продуктивности скважины осуществляют нейтронный каротаж. Сравнивают измеренные сигналы нейтронного каротажа и сигналы созданной численной модели. Определяют текущую конденсатонасыщенность по результатам совпадения измеренных и смоделированных сигналов нейтронного каротажа. 1 з.п. ф-лы.

Изобретение относится к разработке газоконденсатных месторождений и может быть использовано при исследованиях для определения текущей конденсатонасыщенности в призабойной зоне скважины в пласте-коллекторе.

При разработке газоконденсатных месторождений возникает необходимость определения текущей конденсатонасыщенности пласта, поскольку производительность скважин на газоконденсатных месторождениях часто резко снижается в связи с выпадением конденсата в призабойной зоне скважины и частичной блокировкой притока газа в скважину. Так, насыщенность коллектора жидкостью в призабойной зоне может возрасти до 40-60%, а продуктивность скважины может уменьшиться в несколько раз. Разработка газоконденсатных залежей при давлении ниже точки росы приводит к конденсации жидких углеводородов в продуктивном пласте. Для призабойных зон скважин характерной особенностью является отличие составов газовой и жидкой фаз, а также конденсатонасыщенности коллектора от этих параметров в остальной части пласта. Ниже точки росы на степень снижения дебита начинает влиять так называемая «конденсатная банка» - зона вокруг скважины со значительной насыщенностью конденсатом; конденсатные банки могут иметь радиус в несколько десятков метров. Коэффициент продуктивности скважин при этом может снижаться в 3-4 раза.

До настоящего момента конденсатонасыщенность в призабойной зоне скважины геофизическими методами исследования скважин не определялась. Предпринимались попытки определения конденсатонасыщенности в газоконденсатных пластах-коллекторах, но они предусматривали определение конденсатонасыщенности в пласте в целом и не позволяли определить конденсатонасыщенность в призабойной зоне скважины. Так, в авторских свидетельствах СССР 1514918 и 1645484 описаны способы определения насыщенности газоконденсатного пласта жидкими углеводородами, предусматривающие закачивание в пласт через нагнетательную скважину индикатора, растворимого в жидких углеводородах, и инертного к ним индикатора с газообразным носителем с последующей регистрацией времени появления индикаторов в продукции эксплуатационной скважины.

Предлагаемым изобретением решается задача определения текущего значения конденсатонасыщенности в призабойной зоне скважины как обсаженной, так и необсаженной.

В соотвестствии с предлагаемым способом определения текущей конденсатонасыщенности в призабойной зоне скважины в газоконденсатном пласте-коллекторе измеряют параметры пласта-коллектора и пластового флюида до начала эксплуатации скважины и, следовательно, до начала скопления конденсата в призабойной зоне скважины, создают численную модель изменения сигнала нейтронного каротажа в процессе эксплуатации скважины для измеренных параметров пласта, пластового флюида и предполагаемой конденсатонасыщенности, определяемой путем гидродинамического моделирования состава газоконденсатной смеси для измеренных параметров пласта, пластового флюида и функций фазовой проницаемости, осуществляют эксплуатацию скважины, при снижении продуктивности скважины осуществляют нейтронный каротаж, а затем сравнивают измеренные сигналы с модельными расчетами и определяют текущую конденсатонасыщенность на основе обеспечения наилучшего совпадения измеренных и смоделированных сигналов нейтронного каротажа. Параметры пласта-коллектора и пластового флюида, измеряемые до начала эксплуатации скважины, включают в себя пористость пласта, минеральный состав породы, водонасыщенность и состав воды, давление, объем и температуру пластового газа, включая состав и точку росы. Указанные параметры определяют традиционными методами каротажа, включая нейтронный каротаж, а также путем анализа проб керна и флюида.

Изобретение основывается на новом подходе к интерпретации данных повторного нейтронного каротажа и позволяет определить текущую конденсатонасыщенность в призабойной зоне скважины.

На первом этапе газоконденсатный пласт, вскрытый вновь пробуренной скважиной, исследуется с помощью традиционного каротажного оборудования, а также путем проведения испытаний и опробования пласта. Исходная конденсатонасыщенность в пласте равна нулю или пренебрежимо мала. В результате этих стандартных измерений будет получен набор характеристических данных о пласте и пластовом флюиде, которые включают в себя данные о пористости пласта, минеральном составе породы, водонасыщенности и составе воды, параметрах давления, объема и температуры пластового газа, включая состав и точку росы. После этого скважина используется в качестве эксплуатационной скважины. На данном этапе, в случае, если давление в пласте падает ниже точки росы, происходит процесс скопления конденсата. Это ведет к образованию так называемой «конденсатной банки» вокруг ствола скважины.

После некоторого периода эксплуатации скважины можно ожидать значительного повышения конденсатонасыщенности вокруг ствола скважины. Косвенно это можно наблюдать как снижение коэффициента продуктивности. На данном этапе можно использовать нейтронный каротаж для оценки текущей конденсатонасыщенности в конденсатной банке. Может применяться любой метод нейтронного каротажа, который чувствителен к водородному индексу. Скважина может быть необсаженной или обсаженной, так как нейтронный поток может проходить сквозь стальные трубы. Наблюдаемый сигнал сам по себе не может отличить газонасыщенность от конденсатонасыщенности, так как он зависит от насыщенности, плотности фаз и состава фаз (при условии, что другие факторы, такие как параметры породы и воды, остаются без изменений). Однако неопределенность свойств газоконденсатной смеси можно свести лишь к неизвестной насыщенности с помощью традиционных программ гидродинамического моделирования состава. Действительно, зная историю эксплуатации скважины, можно провести ряд численных экспериментов, которые отличаются друг от друга по функциям фазовой проницаемости. В результате численных экспериментов будет получен набор теоретических вариантов параметров газоконденсатной смеси, которые существенно отличаются друг от друга по значениям насыщенности. С помощью этого набора вариантов можно смоделировать теоретические сигналы нейтронного каротажа. Сравнивая их с измеренным сигналом, можно определить фактически реализующийся вариант состояния газоконденсатной смеси вблизи эксплуатационной скважины. Это позволит зафиксировать текущую конденсатонасыщенность и другие свойства газоконденсатной смеси.

Используя программу гидродинамического моделирования газоконденсатной смеси, получаем в качестве выходных данных предполагаемую конденсатонасыщенность, состав газа и конденсата. Класс программ, позволяющих решить обсуждаемую задачу, базируется на модели трехфазной многокомпонентной изотермической фильтрации (см., например, Методические указания по созданию постоянно действующих геолого-технологических моделей нефтяных и нефтегазовых месторождений. Часть 2. Фильтрационные модели. М.: АОА ВНИИОЭНГ, 2003.). В частности, может быть использована программа Eclipse-300. Входные данные расчетного варианта для моделирующей программы включают в себя данные о локальном геологическом строении (включая распределение фильтрационно-емкостных свойств по стволу скважины), данные о пластовом давлении и температуре, данные о термодинамических и физико-химических свойствах пластовых флюидов, полученные в результате стандартных измерений до начала эксплуатации скважины, данные по истории работы скважины и функции фазовой проницаемости. Функции фазовой проницаемости могут быть приняты как некоторое текущее приближение (из данных кернового анализа или по аналогии с каким-то похожим пластом).

Для оценки текущей конденсатонасыщенности пласта используется численная модель изменения сигнала нейтронного каротажа в процессе эксплуатации скважины. Входные параметры для модели включают пористость и водонасыщенность пласта, состав воды, минеральный состав породы, пластовое давление, объем и температура пластового газа, включая состав и точку росы, а также предполагаемую конденсатонасыщенность, состав газа и конденсата, полученные в результате гидродинамического моделирования параметров газоконденсатной смеси.

Текущая конденсатонасыщенность определяется по результатам наилучшего приближения смоделированных и полученных сигналов нейтронного каротажа в пределах точности воспроизведения водородного индекса, характерной для данного нейтронного метода. При значительном расхождении результатов производят коррекцию функций фазовой проницаемости таким образом, чтобы получить лучшее приближение измеренных и смоделированных сигналов нейтронного каротажа. Возможным вариантом коррекции функций фазовых проницаемостей является изменение показателя степени при степенной аппроксимации этих функций. При более сложном многопараметрическом задании функций фазовых проницаемостей следует варьировать набор этих определяющих параметров. Итерационная последовательность останавливается, когда расхождение между реальным каротажным сигналом и смоделированным сигналом является незначительным. В этот момент получают следующий набор данных: конденсатонасыщенность, состав газа и конденсата в пласте, функции фазовой проницаемости. В процессе эксплуатации скважины могут быть произведены отдельные или многократные замеры состава добываемой газоконденсатной смеси и на этапе гидродинамического моделирования эта информация может быть использована как дополнительный критерий сходимости модельных и фактических данных в пределах точности измерения вышеуказанного состава.

Источник поступления информации: Роспатент

Showing 21-30 of 112 items.
27.01.2014
№216.012.9c21

Способ определения свойств углеводного пласта и добываемых флюидов в процессе добычи

Изобретение относится к мониторингу свойств углеводородных пластов и свойств добываемых флюидов во время добычи, особенно в ходе механизированной добычи. Техническим результатом является определение характеристик параметров призабойной зоны и получение более качественных характеристик пласта на...
Тип: Изобретение
Номер охранного документа: 0002505675
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9fa4

Способ определения локального изменения концентрации примеси в потоке жидкости

Использование: для измерения локального изменения концентрации примеси в потоке жидкости на входе в измерительную ячейку. Сущность заключается в том, что сначала определяют изменение концентрации примеси во времени внутри измерительной ячейки для жидкости, содержащей примесь, изменение...
Тип: Изобретение
Номер охранного документа: 0002506576
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a1f7

Способ получения проппанта (варианты) и способ гидравлического разрыва пласта с использованием полученного проппанта (варианты)

Изобретение относится к керамическому проппанту и к способу его изготовления, а также к способу гидравлического разрыва пласта. Техническим результатом изобретения является снижение плотности и повышение стойкости к разрушению проппанта. Керамический проппант включает множество спеченных...
Тип: Изобретение
Номер охранного документа: 0002507178
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a339

Способ измерения весовой концентрации глинистого материала в образце пористой среды

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов,...
Тип: Изобретение
Номер охранного документа: 0002507500
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a33a

Способ измерения весовой концентрации глинистого материала в образце пористой среды

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов,...
Тип: Изобретение
Номер охранного документа: 0002507501
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a343

Способ измерения весовой концентрации глины в образце пористого материала

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов,...
Тип: Изобретение
Номер охранного документа: 0002507510
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a346

Способ определения количественного состава многокомпонентной среды

Изобретение относится к области исследования состава жидкостей и материалов с содержанием не менее двух компонентов, в частности к способам определения количественного состава многокомпонентных сред. В соответствии со способом определения количественного состава многокомпонентной среды,...
Тип: Изобретение
Номер охранного документа: 0002507513
Дата охранного документа: 20.02.2014
27.07.2014
№216.012.e445

Добавка к жидкости для обработки подземного пласта и способ обработки подземного пласта

Изобретение относится к обработке подземных пластов, конкретно к добавкам, улучшающим свойства используемых при этом композиций, и способам обработки с использованием этих добавок. Добавка к обрабатывающей жидкости для повышения проницаемости проппантной упаковки содержит агент для...
Тип: Изобретение
Номер охранного документа: 0002524227
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e500

Способ определения теплоты адсорбции и теплоты смачивания поверхности и измерительная ячейка калориметра

Изобретение относится к области исследования свойств взаимодействия поверхности с флюидами и может быть использовано для определения теплоты адсорбции и смачивания поверхности. Заявлена измерительная ячейка калориметра, состоящая из изолированных друг от друга верхней и нижней частей,...
Тип: Изобретение
Номер охранного документа: 0002524414
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e7a4

Способ прогнозирования изменения свойств призабойной зоны пласта под воздействием бурового раствора

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для прогнозирования изменения характеристик призабойной зоны нефтегазосодержащих пластов. Техническим результатом является повышение точности и снижение трудоемкости прогнозирования изменения характеристик...
Тип: Изобретение
Номер охранного документа: 0002525093
Дата охранного документа: 10.08.2014
Showing 1-7 of 7 items.
27.08.2013
№216.012.652c

Способ определения свойств пористых материалов

Изобретение относится к области исследования свойств пористых материалов, в частности к методам определения величины смачиваемости и распределения пор по размерам. Способ определения свойств пористых материалов заключает в том, что сперва образец пористого материала помещают в ячейку...
Тип: Изобретение
Номер охранного документа: 0002491537
Дата охранного документа: 27.08.2013
10.02.2014
№216.012.9fa4

Способ определения локального изменения концентрации примеси в потоке жидкости

Использование: для измерения локального изменения концентрации примеси в потоке жидкости на входе в измерительную ячейку. Сущность заключается в том, что сначала определяют изменение концентрации примеси во времени внутри измерительной ячейки для жидкости, содержащей примесь, изменение...
Тип: Изобретение
Номер охранного документа: 0002506576
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a346

Способ определения количественного состава многокомпонентной среды

Изобретение относится к области исследования состава жидкостей и материалов с содержанием не менее двух компонентов, в частности к способам определения количественного состава многокомпонентных сред. В соответствии со способом определения количественного состава многокомпонентной среды,...
Тип: Изобретение
Номер охранного документа: 0002507513
Дата охранного документа: 20.02.2014
13.01.2017
№217.015.80cb

Способ определения характеристик газонефтяной переходной зоны в необсаженной скважине

Изобретение относится к способам геофизических исследований скважин для нефтяных залежей с газовыми шапками с известным минералогическим составом слагающих пород. Для определения характеристик газонефтяной переходной зоны берут по меньшей мере по одной пробе из газовой части и из нефтяной части...
Тип: Изобретение
Номер охранного документа: 0002602249
Дата охранного документа: 10.11.2016
29.12.2017
№217.015.f265

Способ определения механических свойств породы пласта-коллектора

Изобретение относится к области исследования свойств горных пород. При этом осуществляют отбор по меньшей мере одного образца породы пласта-коллектора и на отобранном образце породы определяют плотность, пористость и компонентный состав породы. Но основе полученных значений создают...
Тип: Изобретение
Номер охранного документа: 0002636821
Дата охранного документа: 28.11.2017
26.10.2018
№218.016.969a

Способ определения равновесной смачиваемости поверхности раздела пустотного пространства и твердой фазы образца горной породы

Изобретение относится к области изучения свойств смачивания. Для определения равновесной смачиваемости поверхности раздела пустотного пространства и твердой фазы образца горной породы получают трехмерное изображение внутренней структуры образца. На полученном изображении внутренней структуры...
Тип: Изобретение
Номер охранного документа: 0002670716
Дата охранного документа: 24.10.2018
09.06.2019
№219.017.7a89

Способ определения текущей газонасыщенности в призабойной зоне скважины в залежи летучей нефти

Изобретение относится к разработке залежей летучей нефти и может быть использовано для определения текущей газонасыщенности в призабойной зоне добывающей скважины в пласте-коллекторе. Техническим результатом изобретения является повышение точности определения значения газонасыщенности в...
Тип: Изобретение
Номер охранного документа: 0002385413
Дата охранного документа: 27.03.2010
+ добавить свой РИД