×
09.06.2019
219.017.7a36

Результат интеллектуальной деятельности: СПОСОБ ГРАНУЛИРОВАНИЯ ФЛЮСА

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам гранулирования флюсов для сварки низколегированных хладостойких сталей и сплавов, широкого диапазона составов и может быть применено во всех отраслях промышленности, производящих сварочные материалы, для сварки сталей и сплавов широкого диапазона составов, в том числе для сварки стали магистральных трубопроводов. Техническим результатом изобретения является повышение прочности гранул, отсутствие в них окисленных металлических компонентов. Согласно способу на поверхность металлической пластины с отражательной способностью не менее 0,65 наносят слой порошка шихты флюса, состоящего из смеси неметаллических и металлических компонентов с размером фракций не более 0,315 мм. Толщина слоя является достаточной для проплавления не менее 90% слоя порошка. Затем воздействуют на порошок шихты флюса потоком световой энергии в виде светового луча с длиной волны излучения более 0,56 мкм. Воздействие осуществляют с плотностью мощности излучения и в течение времени, достаточными для расплавления неметаллических компонентов флюса, и с продольной скоростью перемещения светового луча относительно обрабатываемого порошка 0,01-20,0 см/с. После чего проводят охлаждение капель расплава на поверхности металлической пластины в газовой среде с образованием гранул. 5 з.п. ф-лы, 3 табл.

Изобретение относится к методам гранулирования флюсов для сварки низколегированных хладостойких сталей и сплавов, широкого диапазона составов путем расплавления компонентов флюса, превращения их в жидкое состояние, затем в каплеобразную форму с последующим отвердеванием капель в газовой среде.

Изобретение может быть применено во всех отраслях промышленности, производящих сварочные материалы, для сварки сталей и сплавов широкого диапазона составов, в том числе для сварки стали магистральных трубопроводов.

В настоящее время известны три основные технологии изготовления сварочных флюсов: спечение, плавление и агломерирование. Сварка высокопрочных сталей требует кроме рафинирования еще и микролегирования сварочной ванны для обеспечения требуемого уровня прочностных и пластических свойств металла сварного шва и сварных соединений. Осуществить микролегирование сварочной ванны через флюс при сварке под плавленым флюсом невозможно, поскольку любые ферросплавы и металлические добавки, введенные в шихту флюса при его плавлении в процессе изготовления, окисляются и теряют свою металлургическую активность. Спеченные флюсы сложны в изготовлении и при их изготовлении также возможно окисление металлических компонентов (статья «Как выбрать сварочный флюс» Головко В.В., журнал «Мир техники и технологий». Апрель 4, (54), 2006 г.).

Технология получения гранулируемой массы, имеющей в своем составе рудоминеральные компоненты, позволяет вводить в состав агломерированных флюсов ферросплавы, лигатуры, осуществляющие микролегирование сварочной ванны при сварке. К недостаткам агломерированных флюсов, полученных скатыванием, комкованием или прессованием в различных вариантах, следует отнести их более низкую, по сравнению с плавлеными флюсами, механическую прочность гранул, а также более высокую способность, чем у плавленых флюсов, насыщаться влагой.

Для повышения механических свойств и качества металла сварного шва необходимо легирование ванны расплава металла сварного шва. Для этого необходимо обеспечить введение модифицирующих и раскисляющих компонентов через сварочную проволоку или флюс. Введение добавок через сварочную проволоку приводит к значительному выгоранию их в сварочной дуге. Введение металлических добавок через плавленый флюс невозможно в связи с их полным окислением в процессе изготовления флюса и низкой прочностью гранул. Изготовление синтетических спеченных флюсов связано с высокотемпературным нагревом (до 1100°С), что приводит к значительному окислению металлических компонентов. Низкая прочность гранул приводит к потере сварочно-технологических свойств флюса из-за образования пылевидной фракции.

Известны способы гранулирования расплава, защищенные патентами РФ №№2295431, 2285076, 2242532, 2144424, а также заявки на изобретения №2002106996, 2001127525, позволяющие получить гранулы за счет быстрого затвердевания жидкого расплава. Однако эти методы требуют нагрева компонентов шихты до расплавления, что приводит к химическому взаимодействию и окислению металлических компонентов шихты с потерей их металлургической активности.

Наиболее близким по технической сущности является способ получения самозащитного гранулированного флюса, включающий измельчение флюсующих ингредиентов и частиц галогенированного полимера с размером частиц 0,1-30 мкм до порошкообразного состояния, смешивание флюсующих ингредиентов с 0,1-5,0 мас.% галогенированного полимера, нагревание до температуры выше температуры плавления полимера для получения агломерированного материала и распыление его для получения гранул флюса (Патент РФ №2086379 С1, опубликованный 10.08.1997 г., МКИ В23К 35/362).

Недостатками указанного выше известного способа получения гранул флюса является то, что в способе прототипа получаемые гранулы обладают низкой прочностью из-за насыщения их элементами хладагента. Кроме того, металлические компоненты флюса, находясь в расплавленном состоянии, окисляются и теряют свою легирующую способность.

Техническим результатом изобретения является получение гранул флюса с повышенной прочностью и содержащих металлические компоненты, обладающие повышенной легирующей способностью.

Технический результат достигается за счет того, что способ гранулирования флюса заключается в том, что на поверхность металлической пластины с отражательной способностью не менее 0,65 наносят слой порошка шихты флюса, состоящего из смеси неметаллических и металлических компонентов с размером фракций более 0,315 мм, толщиной, достаточной для проплавления не менее 90% слоя порошка, при этом содержание неметаллических компонентов должно быть не менее 45 объем.%, затем воздействуют на порошок шихты флюса потоком световой энергии, например лучом лазера с длиной волны излучения более 0,56 мкм, в течение времени менее 20 с и с плотностью мощности излучения 102-106 Вт/см2, с продольной скоростью перемещения луча относительно металлической пластины 0,01-20,0 см/с, после чего проводят охлаждение капель расплава на металлической пластине в нейтральной газовой среде с образованием гранул.

Проблему получения прочных и износостойких плавленых гранул, имеющих в своем составе неокисленные металлические компоненты, можно решить путем расплавления и быстрого затвердевания капель расплава флюса. Добиться такой цели удалось за счет применения в качестве источника нагрева потока световой энергии, например луча лазера или подобных ему источников световых энергий с высокой плотностью мощности излучения.

Металлические компоненты шихты флюса требуют для расплавления значительно большей энергии, чем неметаллические, так как поверхность металлической частицы имеет более высокую отражательную способность световой энергии, а также более высокую теплопроводность, способствующую рассеиванию тепловой энергии по всему объему металлической частицы. В результате этого за время воздействия светового потока с параметрами предлагаемого способа металлические частицы не подвергаются расплавлению.

Луч световой энергии с высокой плотностью мощности излучения наиболее эффективно расплавляют неметаллические компоненты шихты флюса. Это объясняется тем, что поверхность неметаллических частиц флюса имеют меньшую отражательную способность, а также более низкую теплопроводность, чем металлических, что способствует высокой концентрации световой энергии на ее поверхности, которая производит ее послойное расплавление, превращая неметаллические компоненты в жидкое состояние за счет термокапиллярной диффузии. Эта жидкая масса обволакивает нерасплавленные металлические частицы и после завершения воздействия светового потока застывает, образуя гранулы, содержащие внутри нерасплавленные металлические компоненты флюса.

Кроме формирования гранул экспериментально установлено, что процесс сопровождается также очисткой сварочного материала от загрязнений серы, углерода и фосфора.

Исследованиями установлены параметры обработки порошка шихты флюса, позволяющие получать плавленые гранулы, обладающие более высокой прочностью.

Воздействие светового потока на порошок шихты флюса с длительностью более 20 с не позволяет получить флюс, отличный от нейтрального, т.к. в этом случае успевают пройти химико-термические процессы, приводящие к окислению металлических компонентов флюса.

Плотность мощности излучения менее 102 Вт/см2 и скорость перемещения светового луча более 0,01 см/с не позволяют расплавить неметаллические компоненты шихты флюса из-за недостаточного количества подводимой световой энергии, что приводит к появлению нежелательной спеченной корки.

При плотности мощности излучения более 106 Вт/см2 и скорости перемещения светового луча менее 20,0 см/с наблюдается расплавление металлических компонентов, а также усиление процессов испарения других компонентов шихты флюса, что приводит к потере сварочно-технологических свойств флюса.

Длина волны излучения менее 0,56 мкм эффективно нагревает металлические компоненты шихты, что приводит к протеканию в них химико-термических процессов, приводящих к значительному расплавлению и окислению металлической части флюса.

Размер исходной фракции порошка шихты флюса более 0,315 мм приводит к неравномерному распределению элементов внутри одной гранулы, что может создать ликвацию элементов в металле шва.

Использование металлической пластины из материала с отражающей способностью менее 0,65 приводит к поглощению световой энергии и к оплавлению ее и, как следствие, к изменению химического состава гранул и нарушению технологического процесса.

Для получения гранул флюса необходимо и достаточно присутствие в составе компонентов шихты флюса не менее 45 объемн. % неметаллических компонентов.

При содержании неметаллических компонентов менее 45 объемн. % происходит нежелательное более глубокое оплавление металлических частиц компонентов флюса с потерей их металлургических свойств.

Обработка в атмосфере нейтрального газа аргона предохраняет металлические частицы от окисления, сохраняя их металлургическую активность.

Пример конкретного выполнения

На участке подготовки флюсов были изготовлены смеси порошков исходных компонентов флюса с размером фракций менее 0,315 мм. Состав исходной смеси представлен в таблице.

Таблица 1
Состав используемого в примере флюса
п/п Наименование компонента Содержание % по массе Содержание % по объему Вид составляющей флюса
1 Плавиковый шат 27,0 31,0 Неметаллический
2 Электрокорунд 21,7 16,0 Неметаллический
3 Обожженный магнезит 28,0 36,0 Неметаллический
4 Сфеновый концентрат 16,0 13,0 Неметаллический
5 Титаномагнетит 0,5 0,8 Неметаллический
6 Ферротитан 3,1 1,8 Металлический
7 Марганец металлический 3,0 1,0 Металлический
8 Ферробор 0,2 1,0 Металлический
9 Ферросилиций 0,6 0,3 Металлический

На лазерном участке ФГУП ЦНИИ КМ "Прометей" была проведена обработка компонентов порошка флюса с получением гранул. Лазерная обработка проводилась на лазерной технологической установке Комета-2, работающей в непрерывном режиме с длиной волны излучения до 10,6 мкм. Обработку проводили в атмосфере аргона по следующим режимам:

- Плотность мощности лазерного излучения составляла 102 Вт/см2 с длиной волны 0,56 мкм, время обработки компонентов смеси - 20 с, продольная скорость перемещения светового луча относительно металлической пластины с порошком флюса - 0,01 см/с.

- Плотность мощности лазерного излучения составляла 106 Вт/см2 с длиной волны 10,6 мкм, время обработки компонентов смеси - 0,01 с, продольная скоростью перемещения светового луча относительно металлической пластины с порошком флюса - 20,0 см/с.

- Обработка производилась на полированной алюминиевой пластине, отражательная способность которой составляла 0,67.

Затем произвели сварку под флюсом, изготовленным по предлагаемому и известному способам, низколегированной высокопрочной стали марки 10ГН следующего состава, мас.%: С - 0,092; Si - 0,3; Mn - 1,1; Cr - 0,04; Ni - 0,8; Mo - 0,15; Ti - 0,02; Cu - 0,20; Al - 0,03; S - 0,008; P - 0,008; железо - остальное, неплавящимися электродами. После сварки стали провели химический анализ металла сварного шва, полученного по обоим вариантам технологии сварки. Химический состав приведен в таблице 2.

Таблица 2
Химический состав металла шва после сварки под флюсом
Способ Содержание элементов
Al S С Si Mo Cu Ni P Mn Cr Ti Fe
Заявляемый 0,04 0,006 0,072 0,597 0,021 0,210 0,90 0,007 1,940 0,066 0,024 Оста льное
Известный 0,03 0,007 0,090 0,28 0,013 0,200 0,80 0,009 1,02 0,037 0,016

Затем были проведены испытания механической прочности гранул флюса, полученных известным способом (прототипа) и предлагаемым способом.

Результаты химического анализа металла сварного шва показывают, что химический состав металла шва, полученного при сварке под флюсом, полученным предлагаемым способом, имеет более высокую концентрацию легирующих компонентов, чем сварной шов, полученный при сварке под известным флюсом, что подтверждает факт дополнительного легирования металла сварного шва.

Исследование свойств гранул флюса, полученных по предлагаемому и известному способам, приведены в таблице 3.

Из таблицы следует, что гранулы, полученные предлагаемым способом, обладают повышенной прочностью по сравнению с гранулами, полученными известным способом (прототип).

Технико-экономический эффект от применения предлагаемого способа по сравнению с прототипом выразится в повышении прочности и надежности сварных соединений труб за счет создания равнопрочного сварного шва путем дополнительного его легирования.

Источник поступления информации: Роспатент

Showing 21-25 of 25 items.
09.06.2019
№219.017.79a8

Суспензия для получения покрытия

Изобретение относится к области стекломатериалов для функциональных покрытий с необходимыми электрофизическими свойствами. Технический результат изобретения заключается в разработке состава суспензии для получения покрытий для снятия статических электрических зарядов, работающего в диапазоне...
Тип: Изобретение
Номер охранного документа: 0002399595
Дата охранного документа: 20.09.2010
09.06.2019
№219.017.79e4

Смесь для изготовления литейных форм и стержней

Изобретение относится к области литейного производства. Смесь содержит в мас.%: огнеупорный наполнитель в виде порошка недоплава производства электротехнического периклаза 40,0-50,0, связующее в виде жидкого стекла 5,0-12,0 и порошок лома использованных литейных форм из недоплава 45,0-48,0....
Тип: Изобретение
Номер охранного документа: 0002312732
Дата охранного документа: 20.12.2007
09.06.2019
№219.017.7ab0

Титановый сплав для трубопроводов и трубных систем теплообменного оборудования атомной энергетики

Изобретение относится к металлургии титановых сплавов, содержащих в качестве основы титан с заданным отношением легирующих и примесных элементов, и предназначено для использования в судовом и энергетическом машиностроении при производстве трубопроводов и сварных трубных систем, отвечающих...
Тип: Изобретение
Номер охранного документа: 0002351671
Дата охранного документа: 10.04.2009
09.06.2019
№219.017.7c90

Способ сварки плавлением меди и ее сплавов со сталями

Изобретение может быть использовано в машиностроении, судостроении и других отраслях промышленности при изготовлении различных узлов и конструкций, включающих соединения медных сплавов со сталями, кроме деталей или изделий из оловянных бронз. Предварительно на кромку стальной детали наплавляют...
Тип: Изобретение
Номер охранного документа: 0002325252
Дата охранного документа: 27.05.2008
10.07.2019
№219.017.ad15

Способ производства штрипса для труб магистральных трубопроводов

Изобретение относится к области металлургии, конкретнее к производству штрипсовой стали для магистральных трубопроводов диаметром до 1420 мм, толщиной не менее 20 мм и не более 40 мм. Для повышения прочностных свойств и сопротивляемости хрупким разрушениям при температуре до -20°С при...
Тип: Изобретение
Номер охранного документа: 0002383633
Дата охранного документа: 10.03.2010
Showing 21-30 of 41 items.
29.04.2019
№219.017.3f46

Агломерированный флюс марки 48аф-55

Изобретение может быть использовано для автоматической сварки низколегированных хладостойких сталей нормальной, повышенной и высокой прочности на обычных режимах, а также форсированных режимах и повышенных скоростях сварки низколегированными проволоками. Флюс содержит, мас.%: электрокорунд...
Тип: Изобретение
Номер охранного документа: 0002295431
Дата охранного документа: 20.03.2007
29.04.2019
№219.017.4078

Среднелегированный электрод для сварки высокопрочных сталей

Электрод может быть использован для сварки с незначительной 50°С температурой предварительного подогрева высокопрочных сталей мартенситного и бейнитного класса. На стержень электрода из проволоки марки Св-03ХН3МД или Св-07ХН3МД нанесено покрытие, содержащее компоненты в следующем соотношении,...
Тип: Изобретение
Номер охранного документа: 0002349434
Дата охранного документа: 20.03.2009
29.04.2019
№219.017.41af

Способ получения наноструктурированных функционально-градиентных износостойких покрытий

Предлагаемый способ относится к области получения покрытий и создания наноструктурированных материалов с функционально-градиентными свойствами. Способ включает подачу порошковой композиции, по крайней мере, из двух дозаторов в сверхзвуковой поток подогретого газа и нанесение порошковой...
Тип: Изобретение
Номер охранного документа: 0002354749
Дата охранного документа: 10.05.2009
20.05.2019
№219.017.5d4f

Флюс для аргонодуговой сварки изделий из медно-никелевых сплавов

Изобретение может быть использовано при сварке неплавящимся электродом в среде аргона стыков труб из медно-никелевого сплава типа МНЖ5-1. Флюс содержит компоненты в следующем соотношении, мас.%: фторид алюминия 56-62, фторид кальция 8-14, хлорид калия 10-20, борный ангидрид 10-20. Флюс...
Тип: Изобретение
Номер охранного документа: 0002396157
Дата охранного документа: 10.08.2010
20.05.2019
№219.017.5d51

Состав порошковой проволоки для сварки труб категории прочности х90

Изобретение может быть использовано для автоматической и механизированной сварки в среде защитных газов низколегированных трубных сталей категории прочности Х90. Порошковая проволока содержит, мас.%: двуокись титана 4,21-7,32; полевой шпат 0,50-1,50; электрокорунд 0,21-0,71; плавиковый шпат...
Тип: Изобретение
Номер охранного документа: 0002387527
Дата охранного документа: 27.04.2010
20.05.2019
№219.017.5d5e

Коррозионно-стойкая экономнолегированная сталь со структурой азотистого мартенсита для медицинских инструментов

Изобретение относится к области металлургии, а именно к составам коррозионно-стойких экономнолегированных сталей со структурой азотистого мартенсита, предназначенных для изготовления медицинского инструмента. Сталь содержит углерод, хром, марганец, кремний, азот, железо и неизбежные примеси при...
Тип: Изобретение
Номер охранного документа: 0002419672
Дата охранного документа: 27.05.2011
20.05.2019
№219.017.5d63

Высокопрочная коррозионно-стойкая высокоазотистая немагнитная сталь

Изобретение относится к области металлургии, а именно к составу высокопрочной коррозионно-стойкой высокоазотистой немагнитной стали, используемой в машиностроении, приборостроении, судостроении и для создания высокоэффективной буровой техники. Сталь содержит углерод, кремний, марганец, хром,...
Тип: Изобретение
Номер охранного документа: 0002425905
Дата охранного документа: 10.08.2011
20.05.2019
№219.017.5d66

Флюс для сварки изделий из медно-никелевых сплавов

Изобретение может быть использовано при сварке неплавящимся электродом в среде аргона изделий из медно-никелевых сплавов с содержанием 10-20% никеля, в частности, сплавов типа МНЖМц 11-1,1-0,6. Флюс содержит компоненты в следующем соотношении, мас.%: фторид алюминия 44-50, фторид кальция 12-16,...
Тип: Изобретение
Номер охранного документа: 0002406598
Дата охранного документа: 20.12.2010
20.05.2019
№219.017.5d67

Флюс для аргонодуговой сварки изделий из медных сплавов

Изобретение может быть использовано при сварке неплавящимся электродом в среде аргона изделий из медных сплавов, в частности оловянных бронз. Флюс содержит компоненты в следующем соотношении, мас.%: бура 35-40, борная кислота 35-40, фторид кальция 15-20, хлорид лития 5-10. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002406600
Дата охранного документа: 20.12.2010
20.05.2019
№219.017.5d68

Флюс для аргонодуговой сварки изделий из меди

Изобретение может быть использовано при сварке неплавящимся электродом в среде аргона изделий из меди типа МЗр. Флюс содержит компоненты в следующем соотношении компонентов, мас.%: фторид алюминия 51-57, фторид кальция 32-37, хлорид калия 7-9, бура 2-5. Изобретение обеспечивает увеличение...
Тип: Изобретение
Номер охранного документа: 0002406599
Дата охранного документа: 20.12.2010
+ добавить свой РИД