×
09.06.2019
219.017.76b9

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ОБЪЕМА ЗАКРЫТЫХ И ОТКРЫТЫХ ПОР ПЕНОМАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002263893
Дата охранного документа
10.11.2005
Аннотация: Использование: в контрольно-измерительной технике и может найти применение в криогенной технике при отработке технологии изготовления и контроля качества нанесения криогенной тепловой изоляции из жестких ячеистых пеноматериалов, в частности жестких пенополиуретанов. Сущность: способ предусматривает взвешивание образца материала в воздухе, измерение его объема, помещение его в герметичную измерительную камеру, имеющую возможность соединения с атмосферой, и ее вакуумирование. Измеряют изменение веса образца после вакуумирования, а объем закрытых пор определяют по формуле: объем открытых пор определяют по формуле: где V - объем закрытых пор, см; ΔG - изменение веса образца после вакуумирования, г; ρ - плотность воздуха, г/см; G - вес образца в воздухе, г; ρ - плотность материала каркаса, г/см; V - объем открытых пор, см; V - объем образца, см. Устройство для осуществления способа включает герметичную измерительную камеру для анализируемого образца, имеющую возможность соединения с атмосферой. Герметичная измерительная камера соединена с вакуумным насосом и в ней установлена вертикальная стойка с подставкой, на которой расположены датчик перемещений и корпус масляного демпфера. При этом на верхнем конце стойки установлен блок вертикальных перемещений, на котором через регулятор жесткости закреплен верхний конец пружины, а на нижнем конце пружины может быть подвешен образец и закреплены масляный демпфер и чувствительный элемент датчика перемещений. Использование предложенного способа и устройства позволяет повысить точность и упростить процесс измерения объема закрытых и открытых пор в образцах пеноматериалов. 2 н.п. ф-лы, 1 ил.

Изобретение относится к контрольно-измерительной технике и может найти применение в криогенной технике при отработке технологии изготовления и контроля качества нанесения криогенной тепловой изоляции из жестких ячеистых пеноматериалов, в частности жестких пенополиуретанов. В связи с возможностью криоподсоса в открытопористом (газопроницаемом) ячеистом пеноматериале, объем закрытых пор является одной из основных характеристик качества криогенной теплоизоляции.

Известен способ определения пористости тел (патент РФ №2045034, МПК4 G 01 N 15/08), который включает насыщение исследуемого образца смачивающей жидкостью с последующим измерением количества жидкости, содержащейся в порах исследуемого образца, а также в использовании вспомогательного образца, у которого геометрия и материал одинаковы с исследуемым образцом, помещение его в тонкую эластичную герметичную оболочку, кроме того, в камеру с исследуемым образцом помещают такую же эластичную оболочку, камеры заполняют равными объемами рабочей жидкости, нагружают образцы с помощью не смешивающейся с рабочей жидкостью с цветом, отличным от цвета рабочей жидкости, подаваемую через капилляры, подсоединенные к одному источнику давления, и по разности рабочей жидкости в капиллярах определяют искомую величину пористости.

Недостатком данного способа является невозможность измерения объема закрытых пор пеноматериалов.

Известно устройство для определения пористости тел, реализующее способ определения пористости тел (патент РФ №2045034, МПК4 G 01 N 15/08), которое включает в себя две одинаковые по объему камеры, подсоединенные через капилляры к источнику давления, в первой камере помещают исследуемый образец и тонкую эластичную оболочку, во второй камере располагают вспомогательный образец, у которого геометрия и материал одинаковы с исследуемым образцом, помещенный в тонкую эластичную герметичную оболочку.

Недостатком данного устройства является невозможность определения объема закрытых пор пеноматериалов.

Известен также способ раздельного измерения емкости (объема) открытых пор и каверн (закрытых пор) пористо-кавернозных пород (а.с. СССР №1469321, МПК4 G 01 N 15/08), который включает взвешивание образца материала в воздухе, измерение его объема, помещение его в герметичную камеру, имеющую возможность соединения с атмосферой, высушивание образцов материала и его кусочка, не содержащего каверн, насыщение их жидкостью, взвешивание насыщенного образца и его кусочка в жидкости, расчет коэффициентов емкости открытых пор и каверн, при этом кусочки породы, не содержащие каверн, получают путем дробления образца пористо-кавернозной породы с последующей сортировкой и отбором фракции кусочков размером, соизмеримым с размером каверн, а осушку общей поверхности жидкостенасыщенных кусочков от избытка жидкости производят центрифугированием. Это техническое решение принято за прототип.

Недостатком данного способа является сложность процесса измерения и низкая точность определения объема открытых и закрытых пор в ячеистых пеноматериалах. Это связано с тем, что жесткие ячеистые пеноматериалы состоят из каркаса, состоящего также из микропор образующего ячейки различного размера, соединенные с атмосферой - открытые поры и несоединенные с атмосферой - закрытые поры. Насыщение жидкостью (керосином) пеноматериалов такого типа, особенно на полимерной основе, вызывает существенные трудности, связанные с нарушением целостности перегородок микропор. Извлечение жидкости из микропор путем центрифугирования приводит к искажению и разрушению перегородок пор, что снижает точность измерения. Кроме того, дробление образцов пеноматериалов приводит к изменению формы и соответственно измеряемого объема.

Известно устройство для измерения пористости материала, реализующее способ измерения пористости (патент РФ №2172942, МПК7 G 01 N 15/08), которое включает герметичную измерительную камеру с помещенным в нее образцом материала, имеющую возможность соединения с атмосферой, заполняющую жидкость, датчики объема, давления и температуры, систему создания давления. Это устройство принято за прототип.

Недостатками прототипа является сложность процесса измерения и низкая точность определения объема открытых и закрытых пор.

Задачей изобретения является повышение точности измерения объема закрытых и открытых пор в пеноматериалах, а также упрощение процесса измерения.

Технический результат достигается за счет того, что в способе измерения объема закрытых и открытых пор пеноматериалов, включающем взвешивание образца материала в воздухе, измерение его объема, помещение его в герметичную измерительную камеру, имеющую возможность соединения с атмосферой, из герметичной измерительной камеры откачивают воздух, измеряют изменение веса образца после вакууммирования, а объем закрытых пор определяют по формуле:

объем открытых пор определяют по формуле:

где Vз - объем закрытых пор, см3;

ΔGобр - изменение веса образца после вакууммирования, г;

ρвоз - плотность воздуха, г/см3;

Gобр - вес образца в воздухе, г;

ρкар - плотность материала каркаса, г/см3;

Vо - объем открытых пор, см3;

V - объем образца, см3.

Поставленный технический результат достигается тем, что в устройстве для осуществления способа измерения объема закрытых и открытых пор пеноматериалов, включающее герметичную измерительную камеру с помещенным в нее образцом, имеющую возможность соединения с атмосферой, герметичная измерительная камера соединена с вакуумным насосом и в ней установлена вертикальная стойка с подставкой, на которой расположены датчик перемещений и корпус масляного демпфера, при этом на верхнем конце стойки установлен блок вертикальных перемещений, на котором через регулятор жесткости закреплен верхний конец пружины, а на нижнем конце пружины подвешен образец и закреплены масляный демпфер и чувствительный элемент датчика перемещений.

Сущность данного способа заключается в следующем. Объем образца пеноматериала, полученного путем вспенивания исходной смолы, например полиуретана, состоит из объема закрытых пор, объема открытых пор и объема каркаса, состоящего из исходной смолы. На подвешенный в воздухе образец действует выталкивающая сила, равная суммарному объему закрытых пор и каркаса, умноженному на плотность воздуха. После вакууммирования камеры на образец перестает действовать выталкивающая сила воздуха и образец станет тяжелее на ее величину. Следовательно, измерив изменение веса образца после вакууммирования ΔGобр и поделив его на плотность воздуха при температуре эксперимента - ρвоз, получим сумму объемов закрытых пор и каркаса. Объем каркаса определяется как отношение веса образца в воздухе к известной плотности отвержденной исходной смолы, из которой получен пеноматериал. Следовательно, объем закрытых пор определяют по формуле:

где Vз - объем закрытых пор, см3;

ΔGобр - изменение веса образца после вакууммирования, г;

ρвоз - плотность воздуха, г/см3;

Gобр - вес образца в воздухе, г;

ρкар - плотность материала каркаса, г/см3.

Открытые поры занимают объем, равный объему образца, за вычетом объема закрытых пор и каркаса и определяются по следующей формуле:

где Vо - объем открытых пор, см3;

V - объем образца, см3;

ΔGобр - изменение веса образца после вакууммирования, г;

ρвоз - плотность воздуха, г/см3.

Предложенное устройство для осуществления способа измерения объема закрытых и открытых пор пеноматериалов изображено на фиг.1, где

1 - герметичная измерительная камера;

2 - вентиль;

3 - вертикальная стойка;

4 - подставка;

5 - блок вертикальных перемещений;

6 - регулятор блока вертикальных перемещений;

7 - регулятор жесткости;

8 - пружина;

9 - датчик перемещений;

10 - чувствительный элемент датчика перемещений;

11 - корпус масляного демпфера;

12 - масляный демпфер;

13 - узел крепления образца;

14 - образец;

15 - вакуумный вентиль;

16 - вакуумный насос;

17 - регистрирующий прибор.

Устройство для осуществления предложенного способа содержит герметичную измерительную камеру 1, сообщающуюся с атмосферой при помощи вентиля 2, в которой размещена вертикальная стойка 3, на которой установлены подставка 4, блок вертикальных перемещений 5 с регулятором 6, пружина 8 с регулятором жесткости 7. На подставке 4 размещены датчик перемещений 9 с чувствительным элементом 10, подключенный к регистрирующему прибору 17 и установленный на нижнем конце пружины 8, и корпус масляного демпфера 11. На нижнем конце пружины 8 закреплен масляный демпфер 12 и чувствительный элемент датчика перемещений 10, а через узел крепления 13 подвешен исследуемый образец 14. Масляный демпфер 12 служит для более быстрого успокоения колебаний пружины 8 и соответственно чувствительного элемента датчика перемещений 10. Герметичная измерительная камера 1 через вакуумный вентиль 15 соединена с вакуумным насосом 16.

Предлагаемый способ реализуется при помощи представленного выше устройства следующим образом.

До начала испытания измеряют геометрические размеры образца 14, рассчитывают объем и взвешивают его в воздухе на аналитических весах с точностью до 0,1 мг. Снимают крышку герметичной измерительной камеры 1, имеющую возможность соединения с атмосферой через вентиль 2, и помещают туда образец 14, подвесив его на узел крепления 13. При помощи регулятора жесткости пружины 7 в зависимости от веса образца устанавливают чувствительный элемент датчика перемещений 10 в рабочей зоне датчика перемещений 9. При помощи регулятора блока вертикальных перемещений 6 устанавливают чувствительный элемент датчика перемещений 10 в положение нулевого отсчета по регистрирующему прибору 17, к которому подключен датчик перемещений 9. Если для компенсации веса данного образца пришлось изменить жесткость пружины 8, то проводят градуировку ее жесткости. Для этого в ожидаемом диапазоне изменения веса образца, при помощи нескольких аттестованных микрогирь, помещаемых по очереди на образец, определяют новый коэффициент градуировки пружины 8.

При помощи регулятора блока вертикальных перемещений 6 устанавливают чувствительный элемент датчика перемещений 10 и соответственно показание на регистрирующем приборе 17 в исходное (нулевое) положение. После этого закрывают крышку герметичной измерительной камеры 1 и включают вакуумный насос 16. Открывают вакуумный вентиль 15 и откачивают герметичную измерительную камеру 1 до момента регистрации установившегося показания нового значения веса образца 14 на регистрирующем приборе 17. Закрыв вакуумный вентиль 15, открывают вентиль 2 и заполняют герметичную измерительную камеру 1 воздухом до атмосферного давления. Регистрируют по показанию регистрирующего прибора 17 новое значение веса образца 14 в воздухе. Данные операции повторяют не менее трех раз. Для каждого эксперимента определяют, используя коэффициент градуировки пружины 8 и разность показаний веса образца по регистрирующему прибору 17 до и после вакууммирования герметичной измерительной камеры 1 (изменение веса образца после вакууммирования ΔGобр в граммах). По формуле (1) определяют объем закрытых пор Vз в см3, а по формуле (2) объем открытых пор Vо в см3.

Использование предложенного способа и устройства позволяет по сравнению с прототипом повысить точность и упростить процесс измерения объема закрытых и открытых пор в образцах пеноматериалов.

124000000008-DOC.tiftifdrawing77объемоткрытыхпоропределяютпоформуле123400000009-DOC.tiftifdrawing79гдеV-объемзакрытыхпор,см;ΔG-изменениевесаобразцапослевакуумирования,г;ρ-плотностьвоздуха,г/см;G-весобразцаввоздухе,г;ρ-плотностьматериалакаркаса,г/см;V-объемоткрытыхпор,см;V-объемобразца,см.1.Способизмеренияобъемазакрытыхиоткрытыхпорпеноматериалов,включающийвзвешиваниеобразцаматериалаввоздухе,измерениеегообъема,помещениееговгерметичнуюизмерительнуюкамеру,имеющуювозможностьсоединениясатмосферой,отличающийсятем,чтоизгерметичнойизмерительнойкамерыоткачиваютвоздух,измеряютизменениевесаобразцапослевакуумирования,аобъемзакрытыхпоропределяютпоформуле12.Устройстводляосуществленияспособаизмеренияобъемазакрытыхиоткрытыхпорпеноматериалов,включающеегерметичнуюизмерительнуюкамеруспомещеннымвнееобразцом,имеющуювозможностьсоединениясатмосферой,отличающеесятем,чтогерметичнаяизмерительнаякамерасоединенасвакуумнымнасосомивнейустановленавертикальнаястойкасподставкой,накоторойрасположеныдатчикперемещенийикорпусмасляногодемпфера,приэтомнаверхнемконцестойкиустановленблоквертикальныхперемещений,накоторомчерезрегуляторжесткостизакрепленверхнийконецпружины,ананижнемконцепружиныподвешенобразецизакрепленымасляныйдемпферичувствительныйэлементдатчикаперемещений.2
Источник поступления информации: Роспатент

Showing 351-360 of 370 items.
09.06.2019
№219.017.7d6b

Рабочее колесо осевого вентилятора

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники. Техническим результатом от использования изобретения является повышение технологичности и надежности. Указанный технический результат достигается в...
Тип: Изобретение
Номер охранного документа: 0002422681
Дата охранного документа: 27.06.2011
09.06.2019
№219.017.7d6e

Осевой вентилятор

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий космической техники. Техническим результатом, достигаемым с помощью заявленного изобретения, является повышение технологичности. Указанный технический результат достигается в осевом...
Тип: Изобретение
Номер охранного документа: 0002422680
Дата охранного документа: 27.06.2011
09.06.2019
№219.017.7dcf

Способ определения уровня диэлектрического вещества

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов. Сущность: способ определения уровня диэлектрического вещества заключается в формировании синусоидальных напряжений на...
Тип: Изобретение
Номер охранного документа: 0002456552
Дата охранного документа: 20.07.2012
09.06.2019
№219.017.7ef4

Способ определения параметров двухполюсника

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, что представляет существенный практический интерес для контроля широкого спектра выпускаемых электрорадиоизделий, а также двухполюсников, используемых в качестве датчиков...
Тип: Изобретение
Номер охранного документа: 0002449295
Дата охранного документа: 27.04.2012
09.06.2019
№219.017.7f6d

Способ построения орбитальной ориентации пилотируемого космического аппарата

Изобретение относится к управлению ориентацией пилотируемого космического аппарата (ПКА) при полете по орбите вокруг планеты. ПКА оснащен прибором наблюдения поверхности планеты. Способ включает построение ориентации ПКА по местной вертикали, после чего осуществляют поворот экранной сетки...
Тип: Изобретение
Номер охранного документа: 0002467929
Дата охранного документа: 27.11.2012
13.06.2019
№219.017.821e

Селектор импульсов по длительности

Предлагаемое изобретение относится к области электронной техники и может быть использовано при создании устройств для контроля длительности сигналов от нескольких независимых источников одновременно. Технический результат заключается в расширении функциональных возможностей, а именно...
Тип: Изобретение
Номер охранного документа: 0002332783
Дата охранного документа: 27.08.2008
19.06.2019
№219.017.8b6c

Планшет для выбора объектов наблюдения с орбитального космического аппарата

Планшет для выбора наземного объекта наблюдения с орбитального космического аппарата (КА) относится к космической технике. Планшет для выбора наземных объектов наблюдения с орбитального КА включает в себя гибкую ленту с картой поверхности планеты, установленную над ней полупрозрачную пластину и...
Тип: Изобретение
Номер охранного документа: 0002469274
Дата охранного документа: 10.12.2012
29.06.2019
№219.017.9a89

Способ определения угла между осью вращения многостепенной платформы и заданным направлением координатной оси

Изобретение относится к области измерения и может быть использовано для уточнения и калибровки положения измерительных осей датчиков, например, акселерометров относительно заданных координатных осей. Способ определения угла между осью вращения многостепенной платформы и заданным направлением...
Тип: Изобретение
Номер охранного документа: 02243570
Дата охранного документа: 27.12.2004
29.06.2019
№219.017.a116

Исполнительный механизм

Исполнительный механизм может быть использован в областях машиностроения, в частности в космической технике для раскрытия посадочного устройства пилотируемого космического корабля. В корпусе размещается цилиндр и зубчато-реечный механизм. Внутри цилиндра установлен поршень со штоком. На конце...
Тип: Изобретение
Номер охранного документа: 0002446322
Дата охранного документа: 27.03.2012
29.06.2019
№219.017.a131

Пневмопривод с тормозным устройством

Заявленный пневмопривод может быть использован в областях машиностроения, в частности в космической технике для раскрытия посадочного устройства пилотируемого космического корабля, где необходимо осуществить торможение поршня пневмоцилиндра в конце его движения для избежания удара. Пневмопривод...
Тип: Изобретение
Номер охранного документа: 0002447329
Дата охранного документа: 10.04.2012
Showing 1-1 of 1 item.
19.06.2019
№219.017.8594

Чугун

Изобретение относится к металлургии литейного производства, в частности к разработке составов чугуна для корпусных отливок с различной толщиной стенок. Чугун содержит углерод, кремний, марганец, медь, хром, серу, фосфор, барий, кальций, железо и дополнительно содержит олово при следующем...
Тип: Изобретение
Номер охранного документа: 02218442
Дата охранного документа: 10.12.2003
+ добавить свой РИД