×
07.06.2019
219.017.74d8

СПОСОБ ПОЛУЧЕНИЯ И ОБРАБОТКИ ИЗОБРАЖЕНИЙ, СФОРМИРОВАННЫХ С ПОМОЩЬЮ ПРОТОННОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для протонной радиографии. Сущность изобретения заключается в том, что в камере для размещения объекта исследования сначала размещают тест-объект, который представляет собой подложку с одинаковыми реперными отметками, например стальными шарами, в узлах ортогональной решетки и закрепленным в центре подложки протяженным элементом, например трубкой; осуществляют юстировку тест-объекта перпендикулярно оси магнитооптической системы по цифровому изображению протонного пучка, который пропускают через магнитооптическую систему и камеру с тест-объектом, добиваясь путем углового перемещения тест-объекта соответствия размера сквозного отверстия трубки на изображении фактическому геометрическому размеру. Для определения соответствия между размерами тест-объекта на полученном изображении и его фактическими геометрическими размерами используют изображение тест-объекта, на котором сквозное отверстие трубки соответствует фактическому геометрическому размеру. Соответствие между размерами тест-объекта при сквозной калибровке масштабного коэффициента переноса изображения в тракте формирования и регистрации изображений устанавливают путем определения пиксельных координат центров всех стальных шаров и подбором проективного преобразования, позволяющего перевести установленные пиксельные координаты в известные координаты центров стальных шаров в плоскости тест-объекта. Далее заменяют тест-объект на исследуемый объект и получают цифровое изображение протонного пучка, который пропускают через магнитооптическую систему и камеру с объектом исследования. Затем подобранное на изображении тест-объекта проективное преобразование применяют при обработке изображений объекта исследования. Технический результат: повышение качества и точности обработки зарегистрированных протонных изображений. 4 з.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к области протонной радиографии, в частности к способам обработки изображений, сформированных с помощью протонного излучения, и может быть использовано, например, в системах цифровой съемки для определения внутренней структуры объектов или исследования быстропротекающих процессов.

При регистрации протонных изображений существуют геометрические искажения, связанные с магнитной оптикой, с неперпендикулярным расположением сцинтиллятора и пучка, с различными ракурсами, под которыми ведется съемка протонных изображений различными каналами регистрации.

Задачей, стоящей в рассматриваемой области техники, является получение достоверной информации об исследуемых объектах.

Известен способ получения и обработки изображений, сформированных с помощью протонного излучения (Physics Division Progress Report 1999-2000 Proton Radiography, D.A. Clarc et al., p. 156-168), включающий получение двух цифровых изображений протонного пучка до прохождения им области исследования с помощью первой и второй систем регистрации и цифрового изображения протонного пучка после прохождения им области исследования в плоскости фокусировки магнитооптической системы с помощью третьей системы регистрации. Каждая из систем регистрации включает конвертор, преобразующий протонное излучение в фотоны, регистрируемые ПЗС-матрицей. Первое изображение протонного пучка получают непосредственно перед диффузором, наличие которого необходимо для дальнейшей обработки изображения и который размещают в магнитооптическом канале. Второе изображение получают на значительном удалении от диффузора - 6 м. Далее осуществляют обработку полученных цифровых изображений и расчетным путем получают изображение области исследования. При этом осуществляют следующие операции. С помощью первых двух изображений расчетным путем получают изображение протонного пучка в области исследования/плоскости объекта исследования, далее осуществляют попиксельное деление третьего изображения на полученное расчетным путем с получением изображения области исследования.

Недостаток известного способа является то, что получение расчетного изображения по двум экспериментальным изображениям приводит к снижению точности обработки.

Известен другой способ получения и обработки изображений, сформированных с помощью протонного излучения (D. Varentsov, O. Antonov, A. Bakhmutova, C.W. Barnes, A. Bogdanov, C.R. Danly, S. Efimov, M. Tndres, A. Fertman, A.A. Golubev, D.H.H Hoffmann, B. Lonita, A. Kantsyrev, Ya.E. Krasik, P.M. Lang, I. Lomonosov, F.G. Mariam, N. Markov, F.E. Merrill, V.B. Mintsev, D. Nikolaev, V. Panyushkin, M. Rodionova, M. Schanz, K. Schoenberg, A. Semennikov, L. Shestov, V.S. Skachkov, V. Turtikov, S. Udrea, O. Vasylyev, K. Weyrich, C. Wilde, A. Zubareva, Commissioning of the PRIOR proton microscope, arxiv: 1512.05644v2 [physics.ins-det] 19 jan 2016), выбранный в качестве ближайшего аналога. Способ включает получение изображений протонного пучка с помощью системы регистрации путем пропускания его через магнитооптическую систему и область исследования, в которой сначала устанавливают тест-объект, а затем его заменяют исследуемым объектом и последующую обработку полученных изображений. Тест-объект представляет собой медную квадратную подложку с отверстиями в узлах ортогональной сетки, нанесенной на площадь 9×9 мм. Тест-объект устанавливают встречно потоку протонов. При пропускании протонного пучка через тест-объект получают изображение, по которому устанавливают соответствие между размерами тест-объекта на полученном изображении и его фактическими геометрическими размерами путем пространственной калибровки (учитывая расстояние между крайними элементами по горизонтальному и вертикальному направлениям), которое применяют при обработке изображения объекта исследования.

Недостаток способа состоит в том, что из-за конструкции используемого тест-объекта невозможно выставить его строго перпендикулярно оси магнитооптической системы регистрации, что не позволяет полностью исключить влияние на протонное изображение неточности в позиционировании объекта исследования по углу относительно этой оси и приводит к снижению точности обработки изображений.

Техническим результатом заявляемого способа является повышение качества и точности обработки зарегистрированных протонных изображений.

Указанный технический результат достигается за счет того, что в способе получения и обработки изображений, сформированных с помощью протонного излучения, включающем получение цифровых изображений протонного пучка с помощью системы регистрации путем пропускания его через магнитооптическую систему и область исследования, в которой сначала размещают тест-объект, представляющий собой подложку с одинаковыми реперными отметками в узлах ортогональной решетки, с последующей заменой тест-объекта на исследуемый объект, по полученному изображению тест-объекта устанавливают соответствие между его размерами на изображении с фактическими геометрическими размерами, которое учитывают при обработке полученного изображения объекта исследования, новым является то, что до получения изображения тест-объекта осуществляют его юстировку относительно оси магнитооптической системы, для чего в центре тест-объекта перпендикулярно подложке закрепляют протяженный элемент постоянного сечения, и, осуществляя угловое перемещение тест-объекта, выставляют его перпендикулярно оси магнитооптической системы, а соответствие между размерами тест-объекта на полученном изображении и его фактическими геометрическими размерами устанавливают путем определения пиксельных координат реперных отметок и подбором проективного преобразования, позволяющего перевести установленные пиксельные координаты в известные координаты реперных отметок в плоскости тест-объекта.

В качестве тест-объекта может быть использован объект, представляющий собой набор одинаковых элементов, выполненных из менее плотного материала, чем материал подложки.

В качестве набора одинаковых элементов могут быть использованы сферические металлические элементы.

В протяженном элементе может быть выполнено сквозное отверстие. Подложка может быть выполнена из оргстекла.

Осуществляя юстировку тест-объекта относительно оси магнитооптической системы, для чего в центре тест-объекта перпендикулярно подложке закрепляют протяженный элемент постоянного сечения, и, осуществляя угловое перемещение тест-объекта, выставляют его перпендикулярно оси магнитооптической системы, можно добиться точности в позиционировании тест-объекта по углу относительно оси магнитооптической системы, что приведет в дальнейшем к точности в позиционировании объекта исследования относительно этой оси, что в конечном итоге повысит качество и точность обработки зарегистрированных протонных изображений.

Установление соответствия между размерами тест-объекта на полученном изображении и его фактическими геометрическими размерами путем определения пиксельных координат всех реперных отметок и подбором проективного преобразования, позволяющего перевести установленные пиксельные координаты в известные координаты реперных отметок в плоскости тест-объекта позволяет более точно определить координаты найденных элементов в плоскости тест-объекта.

Использование в качестве тест-объекта объекта, представляющего собой набор одинаковых элементов, выполненных из менее плотного материала, чем материал подложки, позволяет получить более качественное изображение тест-объекта.

Применение высокоточных сферически-симметричных объектов позволяет максимально исключить влияние на протонное изображение неточности в позиционировании объекта по углу относительно оси магнитооптической системы.

Выполнение в протяженном элементе сквозного отверстия позволяет наиболее точно осуществить юстировку-тест объекта относительно оси магнитооптической системы.

На фиг. 1, представлен фрагмент тест-объекта, на фиг. 2 - фотография тест-объекта, на фиг. 3 - изображение тест-объекта при пропускании пучка протонов, где: 1 - протяженный элемент постоянного сечения; 2 - реперные отметки в узлах ортогональной решетки; 3 - подложка.

В качестве примера конкретной реализации устройства, позволяющего осуществить заявляемый способ, может служить устройство, которое выполнено на основе действующего синхрофазотрона У-70, построенного в г. Протвино [Новости и проблемы фундаментальной физики, №1(5), 2009 г., с. 32-42], и включает камеру для размещения объекта исследования, систему формирования и регистрации протонного изображения. Система формирования представляет собой магнитооптическую систему, состоящую из магнитных линз и коллиматора. Система регистрации состоит из сцинтилляционного конвертера, зеркала и цифровых камер. Для проведения измерений использовался тест-объект (фиг. 2), который представляет собой набор 110 высокоточных стальных шаров диаметром 9 мм, закрепленных на подложке из органического стекла в узлах ортогональной решетки со строгим интервалом (20 мм) между собой. Посадочные места для крепления шаров выполнены на станке с ЧПУ с точностью ±10 мкм. В центре тест-объекта перпендикулярно подложке закреплен протяженный элемент одного сечения, в котором выполнено сквозное отверстие - трубка.

Для устранения геометрических искажений, связанных е различными ракурсами, под которыми ведется съемка протонных изображений различными каналами регистрации, и приведения полученных цифровых изображений к правильному ракурсу, предварительно в камеру для размещения объекта исследования помещают тест-объект (фиг. 2). Используя для этого тест-объект с высокоточными сферически-симметричными реперными отметками в виде стальных шаров и осуществляя юстировку тест-объекта перпендикулярно оси магнитооптической системы, можно практически полностью исключить влияние на протонное изображение неточности в позиционировании тест-объекта по углу относительно оси магнитооптической системы. Перпендикулярность подложки 3 оси магнитооптической системы проверяют по цифровому изображению протонного пучка, который пропускают через магнитооптическую систему и камеру с тест-объектом путем углового перемещения тест-объекта, пока сквозное отверстие трубки 2 на изображении не будет соответствовать фактическому геометрическому размеру. Полученное таким образом изображение тест-объекта используют для определения соответствия между размерами тест-объекта на полученном изображении и его фактическими геометрическими размерами. Соответствие между размерами тест-объекта при сквозной калибровке масштабного коэффициента переноса изображения в тракте формирования и регистрации изображений устанавливают путем определения пиксельных координат центров всех стальных шаров и подбором проективного преобразования, позволяющего перевести установленные пиксельные координаты в известные координаты центров стальных шаров в плоскости тест-объекта. Определив проективное преобразование, применяют его при обработке изображений исследуемых объектов, для чего заменяют тест-объект на исследуемый объект и получают, цифровое изображение протонного пучка, который пропускают через магнитооптическую систему и камеру с объектом исследования. Затем подобранное при использовании изображения тест-объекта проективное преобразование применяют при обработке изображений объекта исследования.

Т.о. заявляемый способ позволяет повысить качество и точность обработки зарегистрированных протонных изображений.


СПОСОБ ПОЛУЧЕНИЯ И ОБРАБОТКИ ИЗОБРАЖЕНИЙ, СФОРМИРОВАННЫХ С ПОМОЩЬЮ ПРОТОННОГО ИЗЛУЧЕНИЯ
СПОСОБ ПОЛУЧЕНИЯ И ОБРАБОТКИ ИЗОБРАЖЕНИЙ, СФОРМИРОВАННЫХ С ПОМОЩЬЮ ПРОТОННОГО ИЗЛУЧЕНИЯ
СПОСОБ ПОЛУЧЕНИЯ И ОБРАБОТКИ ИЗОБРАЖЕНИЙ, СФОРМИРОВАННЫХ С ПОМОЩЬЮ ПРОТОННОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Showing 51-60 of 796 items.
27.08.2015
№216.013.7563

Способ электронно-лучевой сварки круговых стыков

Изобретение относится к электронно-лучевой сварке круговых стыков, в частности к технологии сварки сканирующим электронным пучком, и может быть использовано в различных областях машиностроения. Предварительно совмещают траекторию развертки луча со свариваемым стыком. Электронный луч расщепляют...
Тип: Изобретение
Номер охранного документа: 0002561626
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75fb

Способ измерения нестационарных перемещений электропроводящих объектов

Изобретение относится к измерительной технике, а именно к области создания средств и методов бесконтактных измерений изменений зазоров между измерительным преобразователем и контролируемой поверхностью. Способ измерения нестационарных перемещений электропроводящих объектов заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002561792
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.75fe

Способ определения угла крена объекта, стабилизированного вращением

Изобретение относится к измерительной технике, а именно к способу определения углового положения (в частности, угла крена) объекта, стабилизированного вращением (ОСВ), в пространстве. Способ определения угла крена объекта, стабилизированного вращением (ОСВ), заключается в том, что начиная с...
Тип: Изобретение
Номер охранного документа: 0002561795
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7704

Инерционный включатель

Инерционный включатель содержит корпус, инерционное тело, размещенное на центральной оси, неподвижную направляющую, имеющую на боковых стенках наклонные пазы, контакты, перемыкатель и поворотный привод контактов. Включатель снабжен втулкой с радиальными выступами, закрепленной на инерционном...
Тип: Изобретение
Номер охранного документа: 0002562057
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.789b

Крышка люка контейнера

Изобретение относится к быстросъемным крышкам защитных контейнеров. Крышка люка контейнера содержит основание с установленным на его внешней поверхности устройством открывания/запирания и уплотнительную прокладку. Устройство открывания/запирания выполнено в виде взаимодействующих...
Тип: Изобретение
Номер охранного документа: 0002562464
Дата охранного документа: 10.09.2015
27.10.2015
№216.013.87ec

Способ определения структуры молекулярных кристаллов

Использование: для определения структуры молекулярных кристаллов. Сущность изобретения заключается в том, что выполняют подготовку поликристаллического или порошкообразного материала, воздействуют на него монохроматическим рентгеновским излучением, региструют дифракционную картину, определяют...
Тип: Изобретение
Номер охранного документа: 0002566399
Дата охранного документа: 27.10.2015
10.12.2015
№216.013.9741

Резонатор лазера

Изобретение относится к резонатору твердотельного лазера с диодной накачкой. Резонатор лазера содержит опорную конструкцию и закрепленную на ней с помощью двух крепежных устройств несущую конструкцию с установленными на ней зеркалами. Опорная конструкция выполнена в виде двух плит, жестко...
Тип: Изобретение
Номер охранного документа: 0002570341
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.975a

Универсальный резонатор лазера

Изобретение относится к резонатору твердотельного лазера с диодной накачкой. Указанный резонатор содержит две плиты, с закрепленными на них зеркалами, связанных между собой стержнями, и снабженные подвижными и неподвижными опорами. Подвижные опоры выполнены в виде шариков с возможностью их...
Тип: Изобретение
Номер охранного документа: 0002570366
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9c06

Способ управления движением аэробаллистического летательного аппарата по заданной пространственной траектории

Изобретение относится к области приборостроения, а именно к области автоматического регулирования, и может быть использовано в системах высокоточного управления движением центра масс подвижных объектов, в частности аэробаллистических летательных аппаратов. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002571567
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9f5e

Способ сварки деталей различного диаметра и разной толщины

Изобретение относится к способу сварки деталей различного диаметра и разной толщины и может быть использовано в приборостроении, в электронной и радиотехнической промышленности. Для сварки используют переходник 3, на одном конце которого формируют технологический бурт 4. На другом конце...
Тип: Изобретение
Номер охранного документа: 0002572435
Дата охранного документа: 10.01.2016
Showing 11-14 of 14 items.
02.10.2019
№219.017.cfb6

Способ определения экспериментальным путем функции размытия точки при обработке изображений, сформированных с помощью протонного излучения (варианты)

Использование: для протонной радиографии, в частности для обработки оптических изображений, сформированных с помощью протонного излучения, и может быть использовано, например, в системах цифровой съемки для определения внутренней структуры объектов или исследования быстропротекающих процессов....
Тип: Изобретение
Номер охранного документа: 0002700707
Дата охранного документа: 19.09.2019
12.12.2019
№219.017.ec56

Способ настройки магнитооптической системы протонографического комплекса

Использование: для настройки магнитооптической системы протонографического комплекса. Сущность изобретения заключается в том, что осуществляют пропускание пучка протонов через объектную плоскость магнитооптической системы, включающей магнитные линзы и коллиматор, с последующим получением с...
Тип: Изобретение
Номер охранного документа: 0002708541
Дата охранного документа: 09.12.2019
04.06.2020
№220.018.23d1

Способ получения и обработки изображений, сформированных с помощью протонного излучения

Изобретение относится к области протонной радиографии, в частности к способам обработки изображений, сформированных с помощью протонного излучения, и может быть использовано, например, в системах цифровой съемки для определения внутренней структуры объектов или исследования быстропротекающих...
Тип: Изобретение
Номер охранного документа: 0002722620
Дата охранного документа: 02.06.2020
24.07.2020
№220.018.371c

Способ настройки магнитооптической системы протонографического комплекса (варианты)

Использование: для настройки магнитооптической системы протонографического комплекса. Сущность изобретения заключается в том, что осуществляют подбор оптимального диаметра входящего в магнитооптическую систему коллиматора с точки зрения получения максимальной контрастной чувствительности...
Тип: Изобретение
Номер охранного документа: 0002727326
Дата охранного документа: 21.07.2020
+ добавить свой РИД