×
04.06.2019
219.017.7361

Результат интеллектуальной деятельности: ВНУТРИТРУБНЫЙ УПРУГИЙ МИКРОРОБОТ С УПРАВЛЯЕМОЙ ПЬЕЗОАКТЮАТОРОМ ФОРМОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к робототехнике, а именно к мобильным миниатюрным роботам, предназначенным для осуществления работ в трубчатых каналах различных типов. Внутритрубный упругий микроробот выполнен в виде гибкого многоопорного неразрезного стержня, опорами которого служат шарнирно закрепленные ползуны, расположенные симметрично по всей его длине и на концах, содержащего блок управления и питания и встроенный пьезоактюатор, выполненный с возможностью формирования изгибающих моментов, управляющих формой стержня в зависимости от изменения кривизны трубного канала. Изобретение направлено на уменьшение массогабаритных показателей и расширение функциональных возможностей. 4 з.п. ф-лы, 3 ил.

Изобретение относится к робототехнике, а именно к мобильным миниатюрным роботам, предназначенным для осуществления работ в трубчатых каналах различных типов.

Известен миниатюрный мобильный вибрационный робот с пьезоактюатором для движения в тонкой трубке. Мобильный робот содержит пьезоэлектрическую структуру биморфного типа, созданный путем присоединения двух пьезоэлектрических элементов, и четыре упругих гребня. Биморфная структура вибрацией создает изгиб в соответствии с прикладываемым напряжением переменного тока, и концы упругих гребней вибрируют вдоль внутренних стенок трубки. Динамическое трение при перемещении робота в горизонтальной трубке в левом направлении меньше трения в противоположном направлении. (Shin-ichi Aoshima, Takeshi Tsujimura, Tetsuro Yabuto A miniature mobile robot using piezo vibration for mobility in a thin tube // Journal of dynamic systems measurement and control // Vol. 115. P. 270-278). Недостатками такого устройства являются малая точность, невозможность реверсивного движения и высокое трение о внутренние поверхности трубки.

Наиболее близким по своей технической сущности к заявленному является ползающий робот с вибрационным актюатором (патент США №8294333 В2, МПК H01L 41/08, опубл. 23.10.2008), перемещающийся внутри трубки или вдоль поверхности, использующий множество гибких волокон, закрепленных на корпусе устройства. Наружная поверхность волокон имеет коэффициент анизотропного трения с поверхностью, вдоль которой устройство должно перемещаться, а волокна тянутся от корпуса устройства таким образом, что по меньшей мере некоторая часть длины волокон находится в контакте со стенками. Актюатор используется для вибрации устройства, таким образом, что оно движется вниз вдоль канала. Актюатором может быть устройство внутреннее или внешнее. Недостатками такого устройства является значительные массогабаритные характеристики и высокое анизотропное трение.

Техническая задача предлагаемого в качестве изобретения технического решения состоит в уменьшении массогабаритных показателей и расширении функциональных возможностей.

Технический эффект, возникающий при решении поставленной технической задачи, заключающийся в осуществлении диагностики трубчатых каналов различного поперечного сечения, обеспечении реверсивного движения в них и быстрой адресной доставке различных средств специального назначения в автономном режиме, достигается тем, что в известном внутритрубном упругом микророботе для создания движущих его сил реализовано управление формой изгиба микроробота в трубном канале переменной кривизны. Впервые такой возможный принцип создания силы тяги за счет внутренних сил живых организмов (ужей, рыб) для движения в твердом канале и жидкости был сформулирован М.А. Лаврентьевым и М.М. Лаврентьевым (Об одном принципе создания тяговой силы для движения // Прикл. мех. и техн. физика. 1962. №4 с. 3-9//), а на модели упругого стержня В.Ф. Журавлевым построено оптимальное управление формой изгиба змеи с помощью силового воздействия мышц при ее движении в канале синусоидальной формы (Об одной модели механизма движения змеи // Прикл. мат. и мех. 2002. т. 66. вып. 4 с. 534-538//). В предлагаемом устройстве управление формой внутритрубного робота осуществляется с помощью встроенного пьезоактюатора.

Указанный выше технический эффект достигается тем, что внутритрубный упругий микроробот, согласно изобретению, выполнен в виде гибкого многоопорного неразрезного стержня, опорами которого служат шарнирно закрепленные ползуны, расположенные симметрично по всей его длине и на концах стержня, имеет встроенный пьезоактюатор, формирующий с помощью блока управления и питания изгибающие моменты, управляющие формой микроробота в зависимости от изменения кривизны трубного канала.

Кроме того, во внутритрубном упругом микророботе с управляемой формой пьезоактюатор выполнен в виде композита биморфного типа: пьезопленка-металл и соответствующие проводящие слои.

Кроме того, во внутритрубном упругом микророботе с управляемой формой пьезоактюатор выполнен в виде композита триморфного типа: пьезопленка-металл-пьезопленка и соответствующие проводящие слои.

Кроме того, движение внутритрубного упругого микроробота с управляемой пьезоактюатором формой, может быть реализовано в трубе малого поперечного размера (менее 20 мм), осевая линия которой является комбинацией двух кривых: линии постоянной кривизны - горизонтальной прямой - и линии с периодически изменяющейся кривизной.

Кроме того, движение внутритрубного упругого микроробота с управляемой пьезоактюатором формой, может быть реализовано в трубе большого поперечного размера (более 100 мм), на внутренней поверхности которой выполнены направляющие специальной формы, являющиеся комбинацией двух кривых: винтовой линии с углом подъема θ - кривая постоянной кривизны - и геодезической кривой с периодически изменяющейся кривизной.

Упругий микроробот представлен на фиг. 1, выполнен в виде гибкого многоопорного неразрезного стержня 1, опорами которого служат шарнирно закрепленные ползуны 2, расположенные симметрично по всей его длине и на концах стержня (Фиг. 1, Фиг. 2).

Кроме того, во внутритрубном упругом микророботе с управляемой формой, пьезоактюатор выполнен в виде слоистой структуры (композита) (Фиг. 3).

Кроме того, во внутритрубном упругом микророботе с управляемой формой, пьезоактюатор выполнен в виде композита биморфного типа (пьезопленка-металл и соответствующие проводящие слои, образующие систему электродов).

Кроме того, во внутритрубном упругом микророботе с управляемой формой, пьезоактюатор выполнен в виде композита триморфного типа (пьезопленка 4, металл 5, пьезопленка 4 и соответствующие проводящие слои 6, образующие систему электродов (Фиг. 3).

На электроды 6 от блока, содержащего систему управления и источник питания (блок СУиП - Фиг. 3), по традиционной схеме подается управляющее электрическое напряжение. При электрическом нагружении пьезоактюатора в соответствии с обратным пьезоэффектом в неразрезном гибком стержне 1 слоистой структуры возникает напряженно-деформированное состояние, соответствующее изгибу под действием эквивалентных изгибающих управляющих моментов H, величина которых пропорциональна напряжению и формируется блоком управления и питания в зависимости от изменения кривизны трубного канала.

Предлагается упругий микроробот с управляемой пьезоактюатором формой для использования в трубных каналах двух типов: малого поперечного и большого поперечного сечений. При этом реверс движения осуществляется изменением знака напряжения, подаваемого на актюатор блоком управления и питания.

На фиг. 1 изображен микроробот при движении в трубчатом канале малого поперечного размера.

На фиг. 2 изображен микроробот при движении в трубчатом канале большого поперечного размера.

Для реализации движения микроробота в канале малого поперечного размера (менее 20 мм) используется трубка 3 (фиг. 1), осевая линия которой является комбинацией двух кривых: линии постоянной кривизны (горизонтальная прямая) и линии с периодически изменяющейся кривизной. Движение микроробота в канале большого поперечного размера (более 100 мм) реализуется в трубе 3 (фиг. 2), на внутренней поверхности которой выполнены направляющие, являющиеся комбинацией двух кривых: винтовой линии с постоянным углом подъема θ и геодезической кривой с периодически изменяющейся кривизной. Положение робота определяется координатой s на скелетной винтовой линии Трубный канал с направляющими указанного типа может быть выполнен с помощью современных 3D-технологий.


ВНУТРИТРУБНЫЙ УПРУГИЙ МИКРОРОБОТ С УПРАВЛЯЕМОЙ ПЬЕЗОАКТЮАТОРОМ ФОРМОЙ
ВНУТРИТРУБНЫЙ УПРУГИЙ МИКРОРОБОТ С УПРАВЛЯЕМОЙ ПЬЕЗОАКТЮАТОРОМ ФОРМОЙ
ВНУТРИТРУБНЫЙ УПРУГИЙ МИКРОРОБОТ С УПРАВЛЯЕМОЙ ПЬЕЗОАКТЮАТОРОМ ФОРМОЙ
Источник поступления информации: Роспатент

Showing 121-130 of 208 items.
29.03.2019
№219.016.ee55

Энергосберегающий электропривод для стенда испытаний тракторных шин

Изобретение относится к испытаниям транспортных средств, в частности к стендам для динамических испытаний пневматических шин. Стенд для динамических испытаний тракторных шин содержит установленный на опорах барабан, электродвигатель, вращающий барабан, инвертор напряжения, нагружающие...
Тип: Изобретение
Номер охранного документа: 0002682806
Дата охранного документа: 21.03.2019
29.03.2019
№219.016.ee64

Способ управления фазоповоротным устройством

Изобретение относится к фазоповоротным устройствам (ФПУ), относящимся к области электротехники и электроэнергетики. Техническим результатом является повышение надежности работы ФПУ за счет обеспечения переключения тиристорных ключей тиристорного коммутатора в широком диапазоне изменения...
Тип: Изобретение
Номер охранного документа: 0002682852
Дата охранного документа: 21.03.2019
30.03.2019
№219.016.f952

Способ диагностики эксцентриситета ротора электрической машины переменного тока

Изобретение относится к способу диагностики эксцентриситета ротора электрической машины переменного тока. Способ основан на измерении емкости относительно ротора в четырех расположенных равномерно по окружности точках, сравнении значений емкостей в диаметрально противоположно расположенных...
Тип: Изобретение
Номер охранного документа: 0002683583
Дата охранного документа: 29.03.2019
13.04.2019
№219.017.0c4d

Фотоэлектрический модуль

Изобретение относится к области гелиоэнергетики и касается фотоэлектрического модуля. Фотоэлектрический модуль включает в себя корпус с боковыми стенками, прозрачную фронтальную стенку с линзой Френеля, расположенной на внутренней ее стороне, фотоэлектрические преобразователи с различной...
Тип: Изобретение
Номер охранного документа: 0002684685
Дата охранного документа: 11.04.2019
19.04.2019
№219.017.1ce9

Двухъярусная ступень с неразъемной вильчатой лопаткой

Изобретение относится к области энергетического машиностроения и призвано повысить экономичность двухъярусных ступеней, используемых в качестве предпоследних ступеней в цилиндрах низкого давления (ЦНД) конденсационных турбин. В двухъярусной ступени для цилиндра низкого давления мощной...
Тип: Изобретение
Номер охранного документа: 0002685162
Дата охранного документа: 16.04.2019
27.04.2019
№219.017.3c4a

Фотоэлектрический модуль

Изобретение относится к области концентраторных солнечных фотоэлектрических преобразователей, применяемых на наземных гелиоэнергетических установках. Согласно изобретению в известном фотоэлектрическом модуле, содержащем корпус с боковыми стенками, прозрачную фронтальную стенку с линзой Френеля,...
Тип: Изобретение
Номер охранного документа: 0002686123
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3cfb

Охлаждаемая лопатка газовой турбины

Охлаждаемая лопатка газовой турбины содержит полое перо, выполненное в виде передней и задней полости, разделенных радиальной перегородкой. В передней полости установлен передний дефлектор, в задней полости - задний дефлектор. В переднем дефлекторе выполнены отверстия струйного охлаждения...
Тип: Изобретение
Номер охранного документа: 0002686244
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3d25

Охлаждаемая лопатка газовой турбины

Охлаждаемая лопатка газовой турбины содержит полое перо с входной и выходной кромками, замковую часть и торцевую стенку. В полом пере установлена перегородка. Между стенкой входной кромки и перегородкой расположен канал охлаждения входной кромки, а между торцевой стенкой и перегородкой...
Тип: Изобретение
Номер охранного документа: 0002686245
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3d3b

Способ управления частотно-регулируемым электроприводом штангового глубинного насоса с асинхронным двигателем

Изобретение относится к области электротехники и может быть использовано в частотно-регулируемом электроприводе штангового глубинного насоса с асинхронным двигателем, подключенным к силовой сети через преобразователь частоты. Техническим результатом является уменьшение установленной мощности...
Тип: Изобретение
Номер охранного документа: 0002686304
Дата охранного документа: 25.04.2019
27.04.2019
№219.017.3dac

Цифровой управляющий гидрораспределитель

Цифровой управляющий гидрораспределитель относится к области машиностроительной гидравлики, в частности к управляющим гидравлическим аппаратам с пропорциональным управлением, и может быть использован в различных электрогидравлических приводах стационарных систем. Гидрораспределитель содержит...
Тип: Изобретение
Номер охранного документа: 0002686242
Дата охранного документа: 24.04.2019
Showing 21-21 of 21 items.
20.04.2023
№223.018.4aa0

Проходка волоконно-оптическая

Изобретение относится к волоконно-оптическим линиям связи и может быть использовано для обеспечения герметичного пропуска волоконно-оптических кабелей через стены в загрязненную зону, в частности, во внутреннее пространство герметичного подземного сооружения, предназначенного для проведения...
Тип: Изобретение
Номер охранного документа: 0002781766
Дата охранного документа: 17.10.2022
+ добавить свой РИД