×
04.06.2019
219.017.72f9

Результат интеллектуальной деятельности: СПИНТРОННОЕ УСТРОЙСТВО ГЕНЕРИРОВАНИЯ СВЕРХВЫСОКОЧАСТОТНЫХ КОЛЕБАНИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам генерирования и формирования СВЧ радиосигналов. Технический результат - увеличение мощности и стабильности выходных колебаний. Для этого в устройство генерирования СВЧ колебаний, содержащее спин-трансферный генератор 1, состоящий из последовательно закрепленных друг на друге первого электрода 11, адгезионного слоя 12, антиферромагнитного слоя 13, первого ферромагнитного слоя 14, изолирующего слоя 15, второго ферромагнитного слоя 16, промежуточного слоя 17, свободного слоя 18 и второго электрода 19, введены усилитель мощности 2, мост 3, первый делитель частоты 4, фазовый детектор 5, фильтр 6, источник тока 7, опорный кварцевый генератор 8 и второй делитель частоты 9. При этом спин-трансферный генератор 1 через последовательно соединенные усилитель мощности 2, мост 3 и первый делитель частоты 4 подключен к фазовому детектору 5. К фазовому детектору 5 через второй делитель частоты 9 подключен опорный кварцевый генератор 8. При этом выход фазового детектора 5 через последовательно подключенные фильтр 6 и источник тока 7 подключен к спин-трансферному генератору 1. 2 з.п. ф-лы, 4 ил.

Изобретение относится к устройствам генерирования и формирования СВЧ радиосигналов и может быть использовано, например, в качестве перестраиваемого генератора в синтезаторах частот.

Известно устройство спин-трансферный генератор [1], состоящее из трех слоев: ферромагнитного слоя с фиксированной намагниченностью, промежуточного немагнитного слоя и ферромагнитного слоя со свободной намагниченностью. Протекающий через это устройство постоянный ток высокой плотности за счет эффекта спинового переноса момента поляризуется по спину и приводит к прецессии намагниченности ферромагнитного слоя со свободной намагниченностью. Прецессия намагниченности за счет эффекта гигантского магнетосопротивления приводит к осцилляциям сопротивления трехслойной структуры в СВЧ диапазоне.

Недостаток этого устройства заключается в низкой мощности колебаний, вызванной низким переменным сопротивлением спин-трансферного генератора. Мощность составляет порядка нескольких нановатт.

Известно также спин-волновое устройство [2], которое содержит первый электрод, адгезионный слой, антиферромагнитный слой, первый ферромагнитный слой, изолирующий слой, второй ферромагнитный слой, промежуточный слой, свободный слой и второй электрод. Дополнительные слои необходимы для повышения сопротивления спин-волнового устройства.

Это устройство выбрано в качестве прототипа предложенного решения.

Первый недостаток этого устройства заключается в низкой мощности колебаний. Максимальная мощность может достигать нескольких микроватт.

Второй недостаток заключается в низкой стабильности колебаний, вызванных неравномерной плотностью тока, протекающего через спин-трансферный генератор.

Технический результат предполагаемого изобретения заключается в увеличении мощности и стабильности выходных колебаний.

Указанный технический результат достигается за счет того, что в устройство генерирования СВЧ колебаний, содержащее спин-трансферный генератор, состоящий из последовательно закрепленных друг на друге первого электрода, адгезионного слоя, антиферромагнитного слоя, первого ферромагнитного слоя, изолирующего слоя, второго ферромагнитного слоя, промежуточного слоя, свободного слоя и второго электрода, введены усилитель мощности, мост, первый делитель частоты, фазовый детектор, фильтр низких частот, источник тока, опорный кварцевый генератор и второй делитель частоты. При этом спин-трансферный генератор через последовательно соединенные усилитель мощности, мост и первый делитель частоты подключен к фазовому детектору. К фазовому детектору через второй делитель частоты подключен опорный кварцевый генератор. При этом выход фазового детектора через последовательно подключенные фильтр низких частот и источник тока подключен к спин-трансферному генератору.

Существует вариант, в котором в качестве источника тока используют прецизионный источник тока с малым шагом перестройки.

Существует вариант, в котором перестроечная характеристика источника тока соответствует нелинейной регулировочной характеристике спин-трансферного генератора. Устройство генерирования СВЧ колебаний содержит спин-трансферный генератор 1 (фиг. 1), который включен в цепь фазовой автоподстройки с усилителем мощности 2, состоящей из моста 3, первого делителя частоты 4, фазового детектора 5, фильтра низких частот 6, источника тока 7, опорного кварцевого генератора 8 и второго делителя частоты 9. Первый делитель частоты 4 и второй делитель частоты 9 могут представлять собой микросхемы, выполненные по технологии ТТЛ КМОП, с задающимися оператором коэффициентами деления [3]. Опорный кварцевый генератор 8 термокомпенсирован или термостатирован, его частота может быть выбрана порядка 10 МГц [4]. Выход опорного кварцевого генератора 8 через второй делитель частоты 9 подключен к фазовому детектору 5, который представляет собой комбинацию умножающих и смешивающих диодов, реализованных в виде одной микросхемы [3]. Выход фазового детектора 5 подключен к фильтру низких частот 6, который является фильтром нижних частот. Выход фильтра 6 подключен к источнику тока 7. Источник тока 7 подключен к спин-трансферному генератору 1, который через усилитель мощности 2, мост 3 и первый делитель частоты 4 подключен к фазовому детектору 5. Усилитель мощности 2 представляет собой трехкаскадную схему усиления с высоким входным сопротивлением, выполненной по технологии КМОП. Мост 3 содержит два выхода, первый подключен к входу фазового детектора 5, второй служит для подключения полезной нагрузки. Спин-трансферный генератор 1, представляющий собой многослойную структуру типа «наностолб» с диаметром 50-200 нм [5], состоит из последовательно закрепленных друг на друге первого электрода 11 (фиг. 2), адгезионного слоя 12, антиферромагнитного слоя 13, первого ферромагнитного слоя 14, изолирующего слоя 15, второго ферромагнитного слоя 16, промежуточного слоя 17, свободного слоя 18, второго электрода 19. К первому электроду 11 подключается выход источника тока 7, второй электрод 20 подключается к входу усилителя мощности 2. Первый электрод 11 и второй электрод 20 выполнены из проводящего материала, например, меди. Толщина электродов 10-100 нм, площадь неограниченна. Адгезионный слой 12 имеет толщину 1-5 нм и выполнен, например из тантала. Антиферромагнитный слой 13 выполнен из сплава платины с марганцом (PtMn) или иридия с марганцем (IrMn). Его толщина составляет 10-30 нм. Первый ферромагнитный слой 14 и второй ферромагнитный слой 16 имеют толщину 10-20 нм. Первый ферромагнитный слой 14 выполнен из сплава кобальта с железом (CoFe), второй ферромагнитный слой 16 выполнен из сплава кобальт-железо-бор (CoFeB). Изолирующий слой 15 имеет толщину 1-5 нм и выполнен из немагнитного материала, например рутения (Ru). Промежуточный слой 17 выполнен из оксида магния (MgO), его толщина составляет 1-5 нм. Свободный слой 18 выполнен из ферромагнитного материала, например сплава кобальт-железо-бор, его толщина составляет от 3 до 15 нм. Спин-трансферный генератор 1 получают методом напыления, травления, литографии и планаризации.

Устройство работает следующим образом. Включают источник тока 7, при этом на вход спин-трансферного генератора 1 поступает постоянный ток. Таким образом, задается рабочая точка спин-трансферного генератора 1. В спин-трансферном генераторе 1 за счет эффекта гигантского магнетосопротивления и эффекта спинового переноса тока генерируются СВЧ колебания, обладающие малой стабильностью. Эти колебания попадают на вход усилителя мощности 2, где происходит усиление их мощности. Далее колебания попадают на вход моста 3, где сигнал делится на две равные части. Первая является полезным выходным сигналом, а вторая попадает на вход первого делителя частоты 4, где через заданный оператором коэффициент деления приводится к частоте сравнения, равной частоте колебаний опорного кварцевого генератора 8, деленной на значение коэффициента деления во втором делителе частоты 9. В фазовом детекторе 5 происходит сравнение текущих фаз двух колебаний на частоте сравнения - колебаний опорного кварцевого генератора 8 и колебаний спин-трансферного генератора 1. На выходе фазового детектора 5 создается постоянное напряжение, пропорциональное разности фаз опорного кварцевого генератора 8 и спин-трансферного генератора 1. Зависимость выходного напряжения от разности фаз определена типом детекторной характеристики фазового детектора 5. Подключенный к фазовому детектору 5 фильтр низких частот 6 блокирует все высокочастотные составляющие напряжения. Источник тока 7 по заданной характеристике (фиг. 3) преобразует входное напряжение в выходной ток, который может быть больше, или меньше тока в рабочей точке. Новое значение тока попадает на вход спин-трансферного генератора 1 и меняет его частоту (фиг. 4). Таким образом, происходит подстройка частоты спин-трансферного генератора 1 к частоте опорного кварцевого генератора 8. Это приводит к увеличению стабильности выходного колебания.

Введение цепи фазовой автоподстройки с усилителем позволяет перераспределить энергию выходных колебаний спин-трансферного генератора и максимизировать ее значение на выбранной частоте. Перераспределение энергии также приводит к увеличению стабильности колебаний.

ЛИТЕРАТУРА

1. Патент США 8,174,798 Spin-torque oscillator, a magnetic sensor and a magnetic recording system (аналог)

2. Патент США 8,476,724 Spin wave device (прототип)

3. Л.А. Белов. Радиоэлектроника. Формирование стабильных частот и сигналов. - М.: Издательство Юрайт.2018. - 242 с.

4. Л.А. Белов. Опорные генераторы. Электроника: наука, технология, бизнес.2010. №6. С. 38-44.

5. Т. Chen Т., R.K. Dumas, A. Eklund, Р.K. Muduli, A. Houshang, А.A. Awad, , В.G. Malm, A. Rusu, and . Spin-torque and spin-hall nano-oscillators // Proc. of IEEE. 2016. Vol. 104. No. 10. pp. 1919-1945.


СПИНТРОННОЕ УСТРОЙСТВО ГЕНЕРИРОВАНИЯ СВЕРХВЫСОКОЧАСТОТНЫХ КОЛЕБАНИЙ
СПИНТРОННОЕ УСТРОЙСТВО ГЕНЕРИРОВАНИЯ СВЕРХВЫСОКОЧАСТОТНЫХ КОЛЕБАНИЙ
СПИНТРОННОЕ УСТРОЙСТВО ГЕНЕРИРОВАНИЯ СВЕРХВЫСОКОЧАСТОТНЫХ КОЛЕБАНИЙ
Источник поступления информации: Роспатент

Showing 141-150 of 208 items.
05.07.2019
№219.017.a650

Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы

Изобретение относится к технологиям визуально-измерительного контроля. Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы, включает предварительную калибровку устройства на основе совместной...
Тип: Изобретение
Номер охранного документа: 0002693532
Дата охранного документа: 03.07.2019
10.07.2019
№219.017.a988

Цифровой обнаружитель фазоманипулированных сигналов

Изобретение относится к области радиотехники и может быть использовано в радиотехнических устройствах, использующих фазоманипулированные (ФМ) сигналы. Технический результат - снижение максимального уровня проникновения сигнальной компоненты в канал оценки интенсивности помехи при включении и...
Тип: Изобретение
Номер охранного документа: 0002693930
Дата охранного документа: 08.07.2019
10.07.2019
№219.017.a9a1

Способ контроля устройства релейной защиты электроустановки

Использование: в области электроэнергетики, в системах релейной защиты электроустановки. Технический результат - исключение случаев неправильной работы устройства путем своевременного выявления сверхнормативных отклонений его напряжений срабатывания и возврата, количества электричества импульса...
Тип: Изобретение
Номер охранного документа: 0002693931
Дата охранного документа: 08.07.2019
23.07.2019
№219.017.b81e

Устройство изготовления непрерывных базальтовых волокон

Изобретение относится к устройству для получения непрерывных базальтовых волокон. Устройство содержит фидерную печь, бункер с дозатором и загрузчиком базальта, теплообменник, при этом печь и фидер перекрыты сводом с установленными горелками, в фидере установлены фильерные питатели, под которыми...
Тип: Изобретение
Номер охранного документа: 0002695188
Дата охранного документа: 22.07.2019
23.08.2019
№219.017.c2b4

Устройство определения электропроводимости магнитных отложений на поверхности труб вихретоковым методом

Использование: для неразрушающего контроля. Техническая целесообразность изобретения заключается в том, что устройство вихретокового контроля удельной электрической проводимости магнитных отложения на поверхности труб содержит генератор прямоугольных периодических импульсов тока с периодом Тв,...
Тип: Изобретение
Номер охранного документа: 0002697936
Дата охранного документа: 21.08.2019
23.08.2019
№219.017.c2ec

Способ генерации механических импульсов и устройство для его осуществления

Изобретение относится к электротехнике. Технический результат - повышение надежности генерации механических импульсов. В способе генерации механических импульсов осуществляют формирование на множестве точек фазовой плоскости генератора непустого подмножества статически неустойчивых точек и...
Тип: Изобретение
Номер охранного документа: 0002698103
Дата охранного документа: 22.08.2019
27.08.2019
№219.017.c3f9

Способ защиты от эксцентриситета ротора электрической машины переменного тока

Изобретение относится к области электротехники и может быть использовано для защиты от эксцентриситета ротора электрических машин переменного тока. Технический результат заключается в повышении точности определения эксцентриситета ротора электрической машины в способе защиты от...
Тип: Изобретение
Номер охранного документа: 0002698312
Дата охранного документа: 26.08.2019
29.08.2019
№219.017.c486

Разъём универсальной последовательной шины

Изобретение относится к области цифровой техники. Технический результат - расширение функциональных возможностей стандартного разъема универсальной последовательной шины за счет увеличения скорости передачи данных на расстояния, соответствующие оптоволоконным линиям. Достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002698459
Дата охранного документа: 27.08.2019
06.09.2019
№219.017.c806

Термоядерный реактор

Изобретение относится к термоядерному реактору. Реактор содержит вакуумную камеру, каналы подачи газообразных реагентов в камеру, входной и выходной коллекторы охлаждающего камеру теплоносителя. Камера выполнена в виде полого цилиндра, внутренняя поверхность которого покрыта пористым...
Тип: Изобретение
Номер охранного документа: 0002699243
Дата охранного документа: 04.09.2019
06.09.2019
№219.017.c811

Планетарный магнитный редуктор

Изобретение относится к электротехнике. Технический результат состоит в повышении удельных показателей магнитного редуктора. Планетарный магнитный редуктор содержит статор с осью симметрии О, состоящий из магнитопровода статора 1 в виде полого цилиндра и постоянных магнитов статора 2 с числом...
Тип: Изобретение
Номер охранного документа: 0002699238
Дата охранного документа: 04.09.2019
Showing 1-1 of 1 item.
06.06.2023
№223.018.791e

Осциллятор для генератора терагерцового излучения

Изобретение относится к прикладной физике и может быть использовано в измерительной технике для генерации и приема излучения в диапазоне частот 0.1-5 ТГц. Осциллятор для генератора терагерцового излучения включает гетероструктуру на основе слоев антиферромагнитного диэлектрика и платины,...
Тип: Изобретение
Номер охранного документа: 0002742569
Дата охранного документа: 08.02.2021
+ добавить свой РИД