×
31.05.2019
219.017.7199

Результат интеллектуальной деятельности: Способ сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам интенсификации сорбционных процессов путем воздействия внешних электромагнитных полей, а именно к способу электроуправляемой сорбции органических загрязнений, нефтепродуктов, пестицидов, ядохимикатов, солей тяжелых металлов, нитратов, нитритов и т.п. Указанный технический результат достигается тем, что согласно заявляемому способу сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов целевой раствор, подлежащий очистке, пропускают через сорбционную ячейку, содержащую фильтрующий элемент с навеской сорбента. Также в ячейке располагаются два изолированных электрода, на которые подается напряжение в диапазоне от 5 до 150 В. Сорбенты перед процессом сорбции подвергают поверхностному наноуглеродному модифицированию, включающему: 1) пропитку раствором веществ-прекурсоров - катализатором синтеза углеродных нанотрубок (УНТ); 2) последовательную ступенчатую сушку и отжиг пропитанного материала; 3) газофазное химическое осаждение УНТ на подготовленном образце в реакторе периодического действия. Реализация заявленного способа позволяет обеспечить: а) увеличение эффективности сорбции наномодифицированных углеродных материалов по отношению к ионам тяжелых металлов и органическим примесям; б) увеличение степени взаимодействия извлекаемых молекул загрязнителя с сорбционно-активными центрами наномодифицированного материала-поглотителя за счет подбора эффективных параметров электромагнитного поля, воздействующего на процесс извлечения. 4 ил.

Изобретение относится к способам обработки водных растворов, а именно к способу интенсификации сорбционных процессов внешнем электромагнитным полем. Это позволяет значительно увеличить сорбционную активность используемых материалов по извлечению органических загрязнений, нефтепродуктов, пестицидов, ядохимикатов, солей тяжелых металлов, нитратов, нитритов и т.п.из водных растворов.

Известен способ очистки воды от тяжелых металлов с помощью электросорбции (US Patent №5690806 МПК С25С 1/00; С25С 7/00; С25С 001/08; С25С 001/12; С25С 001/20; С25С 007/04, 1997). Очистку воды осуществляют с помощью электрохимического восстановления катионов тяжелых металлов на катоде из волокнистых углеродных материалов с высокоразвитой поверхностью.

Недостатками известного способа являются большой расход электроэнергии, низкая эффективность очистки и невозможность удаления органических веществ.

Известен способ очистки воды от органических веществ и ионов тяжелых металлов путем модификации поверхности пористых углеродных сорбентов специальными добавками. Способ получения модифицированного активного угля включает приготовление раствора модификатора, пропитку угля и его сушку. В качестве модификатора используют кверцетин (Quercetin), альгиновую кислоту или ее соли щелочных металлов, причем используют активный уголь с отношением объема микропор к суммарному объему пор 0,3÷0,4, а пропитку ведут водным раствором модификатора при соотношении объемов пропитки и угля 0,8÷1,0. (Патент РФ №2104927, кл. С01В 31/16, B01J 20/20, 1998).

Недостатком этого способа является низкий ресурс работы по катионам тяжелых металлов и низкая степень регенерации сорбента.

Известен способ электрохимически управляемой сорбции растворенных органических веществ и катионов тяжелых металлов (Патент РФ №2110482, МПК C02F 1/46, 1/28, 1998). Очистка воды по этому способу осуществляется на гранулированном активированном угле, который засыпают в электролизер-массообменник, разделенный неэлектропроводной диафрагмой на катодную и анодную камеры, и подвергают периодической электрохимической (катодной и анодной) обработке. Поляризация сорбента осуществляется от внешнего источника при объемной плотности тока 1-10 А/г, а величина потенциала фиксируется при помощи встроенного электрода сравнения.

Недостатками известного способа являются: необходимость предварительной электрохимической обработки сорбента; необходимость постоянного контроля величины электрического потенциала сорбента; высокая энергоемкость процесса предварительной электрохимической обработки сорбента (анода и катода) и необходимость использования для этого специального электролита; прерывистый режим работы устройства, связанный с периодической поляризацией сорбента и отмывкой его от электролита.

Известен принятый за прототип способ управляемой электросорбции органических веществ и тяжелых металлов из водных растворов, согласно которому водные растворы, подлежащие очистке, пропускают через катод и анод из пористых углеродных сорбентов с последующей их регенерацией в процессе работы (Пат. РФ №2181107, МПК C02F 1/46, C02F 1/28, C02F 1/46, C02F 101/16, C02F 101/20, C02F 101/30, 2002). В качестве катода и анода используют блоки из пористого углеродного сорбента, термоскрепленного полимерным связующим, и поляризуют их во время очистки постоянным напряжением 0,5-5,0 В в расчете на 1 кг массы блока. Скорость потока водного раствора поддерживают в диапазоне 50-500 л/ч, а регенерацию проводят путем смены знака поляризации на противоположный постоянным напряжением 10-20 В в расчете на 1 кг массы блока.

Недостатком этого способа является уменьшение поверхности контакта между сорбентом и очищаемой средой за счет термоскрепления.

Задачей изобретения является увеличение степени взаимодействия извлекаемых молекул загрязнителя с сорбционно-активными центрами наномодифицированного материала-поглотителя за счет подбора эффективных параметров электромагнитного поля, воздействующего на процесс извлечения.

Технический результат - оптимизация процесса очистки загрязненной воды за счет подбора наиболее эффективного напряжения, подаваемого на наномодифицированный сорбент; снижение удельных энергозатрат.

Указанный технический результат достигается тем, что согласно заявляемому способу сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов, целевой раствор, подлежащий очистке, пропускают через сорбционную ячейку, содержащую фильтрующий элемент с навеской сорбента. Также, в ячейке располагаются два изолированных электрода, на которые подается напряжение в диапазоне от 5 до 150 В. Сорбенты перед процессом сорбции подвергают поверхностному наноуглеродному модифицированию, включающему: 1) пропитку раствором веществ-прекурсоров - катализатором синтеза УНТ; 2) последовательную ступенчатую сушку и отжиг пропитанного материала; 3) газофазное химическое осаждение УНТ на подготовленном образце в реакторе периодического действия.

В качестве адсорбента используют наномодифицированные угли различной химической природы (например, уголь активный кокосовый или каменноугольный).

Методика получения наномодифицированного пористого сорбента включает следующие технологические стадии:

1) пропитывают следующим каталитическим составом веществ-прекурсоров, масс. %:

Со(NO3)2⋅6H2O - кобальт азотно-кислый 6-водный - 1.5;

Ni(NO3)2⋅6H2O - никель азотно-кислый 6-водный - 13.3;

Mg(NO3)2⋅6Н2О - магний азотно-кислый 6-водный - 16.2;

C6H8O2 - лимонная кислота - 43.9;

С2Н6О2 - этиленгликоль - 14.1;

Н2О - вода - 11.

После пропитки материал выдерживают при температуре 80-100°С в течение 3 часов для образования пространственной структуры геля на поверхности гранул сорбента, после чего подвергают сушке при 140-150°С в течении 1 часа для завершения процесса гелеобразования. Затем отжигают при температуре 500-600°С в инертной атмосфере в течение 1 часа для образования ксерогеля. Таким образом, в результате осуществления вышеописанных стадий, гранулы сорбента покрыты оксидами металлов, которые после восстановления будут являться центрами роста УНТ.

2) помещают пропитанный по п. 1 сорбент в емкостной реактор периодического действия, где проводят процесс синтеза УНТ. Подвергают программному нагреву до 650°С в среде инертного газа - аргона, для нейтрализации кислородсодержащей среды. Путем подачи в реакционное пространство пропанобутановой смеси давлением ~ 1 атм., осуществляют процесс синтеза УНТ в течение 1 часа.

3) охлаждают до комнатной температуры реакционное пространство в среде инертного газа для предотвращения деструкции наноуглерода.

4) проводят окислительную обработку синтезируемого материала 30%-м раствором концентрированной азотной кислоты для удаления аморфного углерода и частиц непрореагировавшего катализатора.

5) промывают от остатков кислоты и сушат при температуре 120°С в течение 1,5 часов для удаления влаги.

Реализация предлагаемого способа осуществляется по принципиальной электрической схеме экспериментальной установки сорбционной очистки воды, приведенной на фиг. 1. Переменное напряжение (220 В) через двухполюсный автоматический выключатель (SA) с защитой от короткого замыкания и перегрузки подается на разделительный трансформатор (Т1). Разделительный трансформатор имеет коэффициент трансформации равный 1, и включается в схему из соображений обеспечения безопасности при проведении исследований. После разделительного трансформатора (Т1) безопасное напряжение, поступает на лабораторный автотрансформатор (Т2), который варьирует напряжение в диапазоне от 0 до 220 В. Выход лабораторного автотрансформатора соединен с выпрямительным мостом, состоящим из четырех диодов (VD1-VD4). Для сглаживания полуволн выпрямленной синусоиды в схему параллельно нагрузке введен электролитический конденсатор. Напряжение на электродах устанавливают с помощью лабораторного автотрансформатора (Т2) по показаниям вольтметра (V), а величину тока оценивают с помощью амперметра (А).

Проверка предлагаемого способа выполнялась на экспериментальном стенде, схема которого отражена на фиг. 2.

Перечень позиций, указанных на чертеже:

1 - двухполюсный выключатель;

2 - разделительный трансформатор;

3 - лабораторный автотрансформатор;

4 - диодный мост с конденсатором;

5 - цифровой амперметр;

6 - соединительные провода;

7 - кран слива воды;

8 - соединительный патрубок

9 - кран отбора образцов;

10 - электроды;

11 - фильтрующий элемент;

12 - корпус фильтра;

13 - впускной кран;

14 - цифровой вольтметр;

15 - водяной счетчик.

Экспериментальный стенд соединен с электрической сетью через двухполюсный выключатель 1, разделительный трансформатор 2 и лабораторный автотрансформатор 3, через которые напряжение подается на диодный мост с конденсатором 4. Эти приборы через цифровой амперметр 5 и цифровой вольтметр 14 соединительными проводами 8 соединены с электродами 10, имеющими изолированную поверхность, помещенными в фильтрующий элемент 11, заключенный в корпус фильтра 12. Корпус фильтра 12 соединен соединительными патрубками 8 на входе через впускной кран 13 с водяным счетчиком 15, а на выходе с краном слива воды 7 и краном отбора образцов 9.

В процессе экспериментальных исследований было установлено, что напряжение влияет на сорбционные свойства материала прямо пропорционально в диапазоне от 5 до 100 В, повышение напряжения выше 100 В сопровождается снижением эффективности работы всех исследуемых наномодифицированных сорбентов.

Пример 1

При пропускании водных растворов ионов Pb2+и Cu2+с начальной концентрацией 125 мг/л и объемом 5 л через сорбционную ячейку, содержащую навеску наномодифицированного сорбента массой 0,02 кг при скорости фильтрации 50 л/час и напряжении поляризации 100 В установлено, что степень извлечения по свинцу составила 98%, по меди - 96%. Анализ содержания ионов в растворе выполняли методом Зеемановской поляризационной спектроскопии с высокочастотной модуляцией, реализуемым в атомно-абсорбционной спектрометрии. Установлено (Фиг. 3), что адсорбционная емкость наномодифицированного образца в сравнении с исходным материалом возросла в 0,4-0,8 раза, а воздействие электромагнитного поля способствовало увеличению адсорбции в 2-2,2 раза относительно стандартного сорбента. При этом время наступления сорбционного равновесия в присутствии модифицированного образца сократилось в 2 раза наряду с исходным.

Пример 2

При пропускании водного раствора органического красителя - гелиантина, с начальной концентрацией 1500 мг/л и объемом 5 л через сорбционную ячейку, содержащую навеску наномодифицированного сорбента массой 0,02 кг при скорости фильтрации 50 л/час и напряжении поляризации 100 В установлено, что степень извлечения составила 95%. Измерение концентрации раствора производят, используя стандартную методику спектрофотометрического анализа.

Результаты проведенных экспериментальных исследований по оценке сорбционной емкости сорбентов по отношению к органическому красителю изображены на Фиг. 4. Установлено, что реализация процесса поглощения под воздействием электромагнитного поля позволяет в 2-2,5 раза повысить сорбционную емкость материала, а также значительно увеличить его сорбционную активность. Следует отметить, что процесс наномодифицирования позволяет увеличить максимальную сорбционную емкость материала в 1,5-2 раза.

Таким образом, проведение процесса сорбции под воздействием электромагнитного поля на наномодифицированных углеродных сорбентах при минимальных затратах электроэнергии и простом аппаратурном оформлении является перспективным решением многих экологических проблем, что позволит сократить негативное влияние антропогенных факторов на гидросистему.

Фиг. 1 Принципиальная электрическая схема экспериментальной установки сорбционной очистки воды.

Фиг. 2 Схема экспериментальной установки.

Фиг. 3 Кинетические зависимости сорбции ионов меди из водных растворов:

1) «NWC» - стандартный образец активированного кокосового угля;

2) «NWC-модифиц.» - наномодифицированный уголь без воздействия внешнего поля; 3) «NWC-модифиц. (100 В)» - наномодифированный уголь при напряжении поля 100 В.

Фиг. 4 Кинетические зависимости сорбции метиленового оранжевого из водных растворов: 1) «NWC» - стандартный образец активированного кокосового угля; 2) «NWC-модифиц.» - наномодифицированный уголь без воздействия внешнего поля; 3) «NWC-модифиц. (100 В)» - наномодифированный уголь при напряжении поля 100 В.


Способ сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов
Способ сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов
Способ сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов
Способ сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов
Источник поступления информации: Роспатент

Showing 61-70 of 118 items.
29.03.2019
№219.016.edea

Измельчитель корнеклубнеплодов

Изобретение относится к области сельского хозяйства. Устройство содержит бункер с кожухом. Внутри кожуха на валу в подшипниковых узлах свободно вращаются четыре вальца, имеющие на наружной поверхности насечку. Вальцы жестко связаны с валом при помощи водила. Обеспечивается повышение качества...
Тип: Изобретение
Номер охранного документа: 0002683220
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.ee35

Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности. Способ...
Тип: Изобретение
Номер охранного документа: 0002682837
Дата охранного документа: 21.03.2019
29.03.2019
№219.016.ee78

Поддон для изготовления ригеля с термовкладышами каркаса сборно-монолитного здания

Предложение относится к области производства строительных конструкций и может быть использовано при изготовлении ригеля с термовкладышами каркаса сборно-монолитного здания. Технической результат заявленного предложения заключается в возможности индустриально производить ригель с термовкладышами...
Тип: Изобретение
Номер охранного документа: 0002682832
Дата охранного документа: 21.03.2019
29.03.2019
№219.016.ee94

Установка для сушки дисперсных растительных материалов в полидисперсном слое инертных тел

Изобретение относятся к сушильной технике, а более конкретно к сушилкам с активным гидродинамическим режимом, предназначенным для сушки дисперсных растительных материалов в закрученном взвешенном слое инертных тел, и может найти применение в производстве пищевых продуктов, медицинских...
Тип: Изобретение
Номер охранного документа: 0002682794
Дата охранного документа: 21.03.2019
04.04.2019
№219.016.fb02

Гравитационный смеситель сыпучих материалов

Гравитационный смеситель относится к области смешивания сыпучих материалов. Технический результат - повышение качества готовой смеси за счет интенсивного перемешивания частиц сыпучего материала в процессе сдвигового движения по наклонным лоткам с поперечными стержнями. В устройстве, состоящем...
Тип: Изобретение
Номер охранного документа: 0002683838
Дата охранного документа: 02.04.2019
19.04.2019
№219.017.1cf6

Электробаромембранный аппарат трубчатого типа

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа. Электробаромембранный аппарат трубчатого типа состоит из: цилиндрического корпуса с ответными и торцевыми фланцами, монополярных электродов - анодов и катодов, сборников прианодного и прикатодного пермеата, каналов...
Тип: Изобретение
Номер охранного документа: 0002685091
Дата охранного документа: 16.04.2019
30.05.2019
№219.017.6b7e

Установка для сушки пастообразных материалов в закрученном взвешенном слое инертных тел

Изобретение относятся к сушильной технике, а более конкретно к сушилкам с активным гидродинамическим режимом, предназначенным для сушки пастообразных материалов, и может найти применение в производстве пищевых продуктов, медицинских препаратов и красителей. Сушилка для пастообразных материалов...
Тип: Изобретение
Номер охранного документа: 0002689495
Дата охранного документа: 28.05.2019
30.05.2019
№219.017.6b98

Способ изготовления маркёра горюче-смазочных материалов

Изобретение описывает способ изготовления маркера для горюче-смазочных материалов путем введения концентрата в минеральное моторное масло, отличающийся тем, что приготовление концентрата проводят путем введения в минеральное моторное масло УНМ «Таунит-М» с последующим перемешиванием в мешалке в...
Тип: Изобретение
Номер охранного документа: 0002689420
Дата охранного документа: 28.05.2019
31.05.2019
№219.017.705b

Способ проверки при автоматической сортировке картофеля

Изобретение относится к способам проверки овощей и фруктов при их автоматической сортировке. Способ проверки при сортировке картофеля, транспортируемого по оси х на цепном конвейере, содержащем множество роликов, смонтированных с возможностью свободного вращения каждого вокруг поперечной оси...
Тип: Изобретение
Номер охранного документа: 0002689854
Дата охранного документа: 29.05.2019
31.05.2019
№219.017.7118

Электробаромембранный аппарат трубчатого типа

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа. Конструкция аппарата состоит из корпуса с торцевыми и ответными фланцами, трубных решеток, монополярных электродов - анода и катода, прикатодных и прианодных мембран, сборников прианодного и прикатодного пермеата, клемм...
Тип: Изобретение
Номер охранного документа: 0002689615
Дата охранного документа: 28.05.2019
Showing 51-51 of 51 items.
21.05.2023
№223.018.6882

Реактор-нейтрализатор для активации углеродного материала

Изобретение относится к технологии и оборудованию получения углеродных материалов с развитой поверхностью и пористостью. Предложен реактор-нейтрализатор для активации углеродного материала, состоящий из камеры активации с соединённой сверху камерой нейтрализации, в которой установлена...
Тип: Изобретение
Номер охранного документа: 0002794893
Дата охранного документа: 25.04.2023
+ добавить свой РИД