×
31.05.2019
219.017.7199

Результат интеллектуальной деятельности: Способ сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам интенсификации сорбционных процессов путем воздействия внешних электромагнитных полей, а именно к способу электроуправляемой сорбции органических загрязнений, нефтепродуктов, пестицидов, ядохимикатов, солей тяжелых металлов, нитратов, нитритов и т.п. Указанный технический результат достигается тем, что согласно заявляемому способу сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов целевой раствор, подлежащий очистке, пропускают через сорбционную ячейку, содержащую фильтрующий элемент с навеской сорбента. Также в ячейке располагаются два изолированных электрода, на которые подается напряжение в диапазоне от 5 до 150 В. Сорбенты перед процессом сорбции подвергают поверхностному наноуглеродному модифицированию, включающему: 1) пропитку раствором веществ-прекурсоров - катализатором синтеза углеродных нанотрубок (УНТ); 2) последовательную ступенчатую сушку и отжиг пропитанного материала; 3) газофазное химическое осаждение УНТ на подготовленном образце в реакторе периодического действия. Реализация заявленного способа позволяет обеспечить: а) увеличение эффективности сорбции наномодифицированных углеродных материалов по отношению к ионам тяжелых металлов и органическим примесям; б) увеличение степени взаимодействия извлекаемых молекул загрязнителя с сорбционно-активными центрами наномодифицированного материала-поглотителя за счет подбора эффективных параметров электромагнитного поля, воздействующего на процесс извлечения. 4 ил.

Изобретение относится к способам обработки водных растворов, а именно к способу интенсификации сорбционных процессов внешнем электромагнитным полем. Это позволяет значительно увеличить сорбционную активность используемых материалов по извлечению органических загрязнений, нефтепродуктов, пестицидов, ядохимикатов, солей тяжелых металлов, нитратов, нитритов и т.п.из водных растворов.

Известен способ очистки воды от тяжелых металлов с помощью электросорбции (US Patent №5690806 МПК С25С 1/00; С25С 7/00; С25С 001/08; С25С 001/12; С25С 001/20; С25С 007/04, 1997). Очистку воды осуществляют с помощью электрохимического восстановления катионов тяжелых металлов на катоде из волокнистых углеродных материалов с высокоразвитой поверхностью.

Недостатками известного способа являются большой расход электроэнергии, низкая эффективность очистки и невозможность удаления органических веществ.

Известен способ очистки воды от органических веществ и ионов тяжелых металлов путем модификации поверхности пористых углеродных сорбентов специальными добавками. Способ получения модифицированного активного угля включает приготовление раствора модификатора, пропитку угля и его сушку. В качестве модификатора используют кверцетин (Quercetin), альгиновую кислоту или ее соли щелочных металлов, причем используют активный уголь с отношением объема микропор к суммарному объему пор 0,3÷0,4, а пропитку ведут водным раствором модификатора при соотношении объемов пропитки и угля 0,8÷1,0. (Патент РФ №2104927, кл. С01В 31/16, B01J 20/20, 1998).

Недостатком этого способа является низкий ресурс работы по катионам тяжелых металлов и низкая степень регенерации сорбента.

Известен способ электрохимически управляемой сорбции растворенных органических веществ и катионов тяжелых металлов (Патент РФ №2110482, МПК C02F 1/46, 1/28, 1998). Очистка воды по этому способу осуществляется на гранулированном активированном угле, который засыпают в электролизер-массообменник, разделенный неэлектропроводной диафрагмой на катодную и анодную камеры, и подвергают периодической электрохимической (катодной и анодной) обработке. Поляризация сорбента осуществляется от внешнего источника при объемной плотности тока 1-10 А/г, а величина потенциала фиксируется при помощи встроенного электрода сравнения.

Недостатками известного способа являются: необходимость предварительной электрохимической обработки сорбента; необходимость постоянного контроля величины электрического потенциала сорбента; высокая энергоемкость процесса предварительной электрохимической обработки сорбента (анода и катода) и необходимость использования для этого специального электролита; прерывистый режим работы устройства, связанный с периодической поляризацией сорбента и отмывкой его от электролита.

Известен принятый за прототип способ управляемой электросорбции органических веществ и тяжелых металлов из водных растворов, согласно которому водные растворы, подлежащие очистке, пропускают через катод и анод из пористых углеродных сорбентов с последующей их регенерацией в процессе работы (Пат. РФ №2181107, МПК C02F 1/46, C02F 1/28, C02F 1/46, C02F 101/16, C02F 101/20, C02F 101/30, 2002). В качестве катода и анода используют блоки из пористого углеродного сорбента, термоскрепленного полимерным связующим, и поляризуют их во время очистки постоянным напряжением 0,5-5,0 В в расчете на 1 кг массы блока. Скорость потока водного раствора поддерживают в диапазоне 50-500 л/ч, а регенерацию проводят путем смены знака поляризации на противоположный постоянным напряжением 10-20 В в расчете на 1 кг массы блока.

Недостатком этого способа является уменьшение поверхности контакта между сорбентом и очищаемой средой за счет термоскрепления.

Задачей изобретения является увеличение степени взаимодействия извлекаемых молекул загрязнителя с сорбционно-активными центрами наномодифицированного материала-поглотителя за счет подбора эффективных параметров электромагнитного поля, воздействующего на процесс извлечения.

Технический результат - оптимизация процесса очистки загрязненной воды за счет подбора наиболее эффективного напряжения, подаваемого на наномодифицированный сорбент; снижение удельных энергозатрат.

Указанный технический результат достигается тем, что согласно заявляемому способу сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов, целевой раствор, подлежащий очистке, пропускают через сорбционную ячейку, содержащую фильтрующий элемент с навеской сорбента. Также, в ячейке располагаются два изолированных электрода, на которые подается напряжение в диапазоне от 5 до 150 В. Сорбенты перед процессом сорбции подвергают поверхностному наноуглеродному модифицированию, включающему: 1) пропитку раствором веществ-прекурсоров - катализатором синтеза УНТ; 2) последовательную ступенчатую сушку и отжиг пропитанного материала; 3) газофазное химическое осаждение УНТ на подготовленном образце в реакторе периодического действия.

В качестве адсорбента используют наномодифицированные угли различной химической природы (например, уголь активный кокосовый или каменноугольный).

Методика получения наномодифицированного пористого сорбента включает следующие технологические стадии:

1) пропитывают следующим каталитическим составом веществ-прекурсоров, масс. %:

Со(NO3)2⋅6H2O - кобальт азотно-кислый 6-водный - 1.5;

Ni(NO3)2⋅6H2O - никель азотно-кислый 6-водный - 13.3;

Mg(NO3)2⋅6Н2О - магний азотно-кислый 6-водный - 16.2;

C6H8O2 - лимонная кислота - 43.9;

С2Н6О2 - этиленгликоль - 14.1;

Н2О - вода - 11.

После пропитки материал выдерживают при температуре 80-100°С в течение 3 часов для образования пространственной структуры геля на поверхности гранул сорбента, после чего подвергают сушке при 140-150°С в течении 1 часа для завершения процесса гелеобразования. Затем отжигают при температуре 500-600°С в инертной атмосфере в течение 1 часа для образования ксерогеля. Таким образом, в результате осуществления вышеописанных стадий, гранулы сорбента покрыты оксидами металлов, которые после восстановления будут являться центрами роста УНТ.

2) помещают пропитанный по п. 1 сорбент в емкостной реактор периодического действия, где проводят процесс синтеза УНТ. Подвергают программному нагреву до 650°С в среде инертного газа - аргона, для нейтрализации кислородсодержащей среды. Путем подачи в реакционное пространство пропанобутановой смеси давлением ~ 1 атм., осуществляют процесс синтеза УНТ в течение 1 часа.

3) охлаждают до комнатной температуры реакционное пространство в среде инертного газа для предотвращения деструкции наноуглерода.

4) проводят окислительную обработку синтезируемого материала 30%-м раствором концентрированной азотной кислоты для удаления аморфного углерода и частиц непрореагировавшего катализатора.

5) промывают от остатков кислоты и сушат при температуре 120°С в течение 1,5 часов для удаления влаги.

Реализация предлагаемого способа осуществляется по принципиальной электрической схеме экспериментальной установки сорбционной очистки воды, приведенной на фиг. 1. Переменное напряжение (220 В) через двухполюсный автоматический выключатель (SA) с защитой от короткого замыкания и перегрузки подается на разделительный трансформатор (Т1). Разделительный трансформатор имеет коэффициент трансформации равный 1, и включается в схему из соображений обеспечения безопасности при проведении исследований. После разделительного трансформатора (Т1) безопасное напряжение, поступает на лабораторный автотрансформатор (Т2), который варьирует напряжение в диапазоне от 0 до 220 В. Выход лабораторного автотрансформатора соединен с выпрямительным мостом, состоящим из четырех диодов (VD1-VD4). Для сглаживания полуволн выпрямленной синусоиды в схему параллельно нагрузке введен электролитический конденсатор. Напряжение на электродах устанавливают с помощью лабораторного автотрансформатора (Т2) по показаниям вольтметра (V), а величину тока оценивают с помощью амперметра (А).

Проверка предлагаемого способа выполнялась на экспериментальном стенде, схема которого отражена на фиг. 2.

Перечень позиций, указанных на чертеже:

1 - двухполюсный выключатель;

2 - разделительный трансформатор;

3 - лабораторный автотрансформатор;

4 - диодный мост с конденсатором;

5 - цифровой амперметр;

6 - соединительные провода;

7 - кран слива воды;

8 - соединительный патрубок

9 - кран отбора образцов;

10 - электроды;

11 - фильтрующий элемент;

12 - корпус фильтра;

13 - впускной кран;

14 - цифровой вольтметр;

15 - водяной счетчик.

Экспериментальный стенд соединен с электрической сетью через двухполюсный выключатель 1, разделительный трансформатор 2 и лабораторный автотрансформатор 3, через которые напряжение подается на диодный мост с конденсатором 4. Эти приборы через цифровой амперметр 5 и цифровой вольтметр 14 соединительными проводами 8 соединены с электродами 10, имеющими изолированную поверхность, помещенными в фильтрующий элемент 11, заключенный в корпус фильтра 12. Корпус фильтра 12 соединен соединительными патрубками 8 на входе через впускной кран 13 с водяным счетчиком 15, а на выходе с краном слива воды 7 и краном отбора образцов 9.

В процессе экспериментальных исследований было установлено, что напряжение влияет на сорбционные свойства материала прямо пропорционально в диапазоне от 5 до 100 В, повышение напряжения выше 100 В сопровождается снижением эффективности работы всех исследуемых наномодифицированных сорбентов.

Пример 1

При пропускании водных растворов ионов Pb2+и Cu2+с начальной концентрацией 125 мг/л и объемом 5 л через сорбционную ячейку, содержащую навеску наномодифицированного сорбента массой 0,02 кг при скорости фильтрации 50 л/час и напряжении поляризации 100 В установлено, что степень извлечения по свинцу составила 98%, по меди - 96%. Анализ содержания ионов в растворе выполняли методом Зеемановской поляризационной спектроскопии с высокочастотной модуляцией, реализуемым в атомно-абсорбционной спектрометрии. Установлено (Фиг. 3), что адсорбционная емкость наномодифицированного образца в сравнении с исходным материалом возросла в 0,4-0,8 раза, а воздействие электромагнитного поля способствовало увеличению адсорбции в 2-2,2 раза относительно стандартного сорбента. При этом время наступления сорбционного равновесия в присутствии модифицированного образца сократилось в 2 раза наряду с исходным.

Пример 2

При пропускании водного раствора органического красителя - гелиантина, с начальной концентрацией 1500 мг/л и объемом 5 л через сорбционную ячейку, содержащую навеску наномодифицированного сорбента массой 0,02 кг при скорости фильтрации 50 л/час и напряжении поляризации 100 В установлено, что степень извлечения составила 95%. Измерение концентрации раствора производят, используя стандартную методику спектрофотометрического анализа.

Результаты проведенных экспериментальных исследований по оценке сорбционной емкости сорбентов по отношению к органическому красителю изображены на Фиг. 4. Установлено, что реализация процесса поглощения под воздействием электромагнитного поля позволяет в 2-2,5 раза повысить сорбционную емкость материала, а также значительно увеличить его сорбционную активность. Следует отметить, что процесс наномодифицирования позволяет увеличить максимальную сорбционную емкость материала в 1,5-2 раза.

Таким образом, проведение процесса сорбции под воздействием электромагнитного поля на наномодифицированных углеродных сорбентах при минимальных затратах электроэнергии и простом аппаратурном оформлении является перспективным решением многих экологических проблем, что позволит сократить негативное влияние антропогенных факторов на гидросистему.

Фиг. 1 Принципиальная электрическая схема экспериментальной установки сорбционной очистки воды.

Фиг. 2 Схема экспериментальной установки.

Фиг. 3 Кинетические зависимости сорбции ионов меди из водных растворов:

1) «NWC» - стандартный образец активированного кокосового угля;

2) «NWC-модифиц.» - наномодифицированный уголь без воздействия внешнего поля; 3) «NWC-модифиц. (100 В)» - наномодифированный уголь при напряжении поля 100 В.

Фиг. 4 Кинетические зависимости сорбции метиленового оранжевого из водных растворов: 1) «NWC» - стандартный образец активированного кокосового угля; 2) «NWC-модифиц.» - наномодифицированный уголь без воздействия внешнего поля; 3) «NWC-модифиц. (100 В)» - наномодифированный уголь при напряжении поля 100 В.


Способ сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов
Способ сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов
Способ сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов
Способ сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов
Источник поступления информации: Роспатент

Showing 101-110 of 118 items.
22.04.2020
№220.018.1774

Устройство подавления помех

Изобретение относится к радиотехнике и может быть использовано для подавления сигналов (помех), поступающих по боковым лепесткам диаграммы направленности антенны (ДНА). Техническим результатом изобретения является повышение уровня подавления помех. Устройство подавления помех содержит...
Тип: Изобретение
Номер охранного документа: 0002719406
Дата охранного документа: 17.04.2020
25.04.2020
№220.018.198a

Стенд для изготовления ригелей с термовкладышами шириной до 600 мм

Изобретение относится к области строительства, в частности к стенду для изготолвения ригеля. Техническим результатом является снижение трудозатрат при монтаже. Стенд состоит из железобетонного основания, в верхней части которого расположена ниша с установленными в ней трубами для циркуляции...
Тип: Изобретение
Номер охранного документа: 0002719806
Дата охранного документа: 23.04.2020
04.05.2020
№220.018.1b1c

Устройство для измельчения корнеплодов

Изобретение относится к сельскому хозяйству, в частности к устройствам для измельчения корнеплодов на животноводческих фермах и комплексах. Устройство для измельчения корнеплодов содержит корпус (1) с загрузочной горловиной, внутри корпуса на валу (2) в подшипниковых опорах установлен барабан...
Тип: Изобретение
Номер охранного документа: 0002720418
Дата охранного документа: 29.04.2020
14.05.2020
№220.018.1c24

Способ получения графеносодержащих суспензий и устройство для его реализации

Изобретение может быть использовано при получении модифицированных пластичных смазок, эпоксидных смол, бетонов. Сначала готовят смесь кристаллического графита с жидкостью и подают её в устройство для получения графенсодержащей суспензии сдвиговой эксфолиацией частиц графита поле центробежных...
Тип: Изобретение
Номер охранного документа: 0002720684
Дата охранного документа: 12.05.2020
29.05.2020
№220.018.217b

Технологическая линия для приема и обработки корнеклубнеплодов

Изобретение может быть использовано для производства кормов. Технологическая линия для приема и обработки корнеклубнеплодов содержит питатель-дозатор, скребковый транспортер и мойку-измельчитель. Питатель-дозатор прицепного типа включает в себя раму с бортовой платформой и шарнирно закрепленным...
Тип: Изобретение
Номер охранного документа: 0002722164
Дата охранного документа: 27.05.2020
24.06.2020
№220.018.299e

Инертный носитель для сушки суспензий и пастообразных материалов

Изобретение относится к области химической промышленности и служит для сушки высоковлажных пастообразных материалов. Инертный носитель для сушки суспензий и пастообразных материалов во взвешенном слое выполнен из эластичного полимерного материала, причем инертный носитель содержит эластичную...
Тип: Изобретение
Номер охранного документа: 0002724098
Дата охранного документа: 19.06.2020
07.07.2020
№220.018.304b

Способ получения нанокомпозиционного сорбционного материала на основе графена и наночастиц оксида железа

Изобретение относится к области химической технологии, в частности к получению нанокомпозиционного сорбционного материала на основе графена. Материалы могут быть использованы в качестве сорбентов, носителей катализаторов, электродных материалов, в сенсорах. Согласно изобретению смешивают оксид...
Тип: Изобретение
Номер охранного документа: 0002725822
Дата охранного документа: 06.07.2020
12.04.2023
№223.018.4818

Способ контроля степени исчерпания защитных свойств сыпучего сорбента

Изобретение относится к области неразрушающих методов контроля качественного состояния фильтрующе-поглощающих изделий. Заявлен способ контроля степени исчерпания защитных свойств сыпучего сорбента, заключающийся в том, что формируют стандартный и контролируемый образцы сорбента в форме плоского...
Тип: Изобретение
Номер охранного документа: 0002746238
Дата охранного документа: 09.04.2021
10.05.2023
№223.018.534e

Устройство для мойки и измельчения корнеклубнеплодов

Изобретение относится к области сельского хозяйства. Устройство содержит раму с бункером, выгрузной шнек, транспортёр и измельчитель. Рама и бункер представляют собой целую сварную металлическую конструкцию. Внутри бункера расположены две ограничительные решетки и два барабана. Ограничительные...
Тип: Изобретение
Номер охранного документа: 0002795312
Дата охранного документа: 02.05.2023
10.05.2023
№223.018.5393

Способ производства древесно-гипсового композита

Изобретение относится к области производства строительных материалов и может быть использовано при производстве древесно-гипсового композита, представляющего собой отделочный материал на основе гипсового вяжущего с добавление древесных опилок. Способ производства древесно-гипсового композита...
Тип: Изобретение
Номер охранного документа: 0002795289
Дата охранного документа: 02.05.2023
Showing 51-51 of 51 items.
21.05.2023
№223.018.6882

Реактор-нейтрализатор для активации углеродного материала

Изобретение относится к технологии и оборудованию получения углеродных материалов с развитой поверхностью и пористостью. Предложен реактор-нейтрализатор для активации углеродного материала, состоящий из камеры активации с соединённой сверху камерой нейтрализации, в которой установлена...
Тип: Изобретение
Номер охранного документа: 0002794893
Дата охранного документа: 25.04.2023
+ добавить свой РИД