×
31.05.2019
219.017.7045

Результат интеллектуальной деятельности: Керамический композиционный материал

Вид РИД

Изобретение

Аннотация: Изобретение относится к керамическим композиционным материалам, армированным гомогенно диспергированными нитевидными кристаллами карбида кремния, и может быть использовано при изготовлении теплонагруженных узлов и деталей перспективных газотурбинных двигателей, работающих при температурах до 1500°C на воздухе и в продуктах сгорания топлива. Керамический композиционный материал имеет следующий химический состав, мас.%: SiC 25-55; ВС 15-25; нитевидные кристаллы SiC 20-40; AlN - остальное. Керамический композиционный материал обладает рабочей температурой 1500°C, трещиностойкостью 7,1-8,0 МПа⋅м, прочностью при изгибе 490-520 МПа, твердостью 27-29 ГПа, термостойкостью по режиму 1500↔20°C не менее 100 циклов, жаростойкостью (изменением массы) при температуре 1500°C в течение 500 ч не более 0,5% и низкой плотностью 3,04 г/см. Способ получения керамического композиционного материала включает приготовление шихты путем перемешивания указанных исходных компонентов в среде изопропилового спирта в пропорции шихта : изопропиловый спирт 1:5 на магнитной мешалке со скоростью 900-1000 об/мин и при воздействии ультразвука частотой не менее 22 кГц в течение 4,5-5 ч, сушку шихты в сушильном шкафу при температуре 100°C в течение 4-6 ч, обработку методом искрового плазменного спекания в режиме совмещенного нагрева с индуктором при температуре 1700-1800°C в течение 15-20 мин и давлении прессования 40-50 МПа. 2 н. и 2 з.п. ф-лы, 3 пр., 2 табл.

Изобретение относится к керамическим композиционным материалам, армированным гомогенно диспергированными нитевидными кристаллами карбида кремния и может быть использовано при изготовлении теплонагруженных узлов и деталей перспективных газотурбинных двигателей, работающих при температурах до 1500°C на воздухе и в продуктах сгорания топлива.

В настоящее время охлаждение лопаток ротора турбины, соплового аппарата и жаровой трубы камеры сгорания приводит к существенному расходу воздуха, что заметно снижает полноту сжигания топлива непосредственно в камере сгорания газотурбинного двигателя (ГТД) и, следовательно, ухудшает тягу и КПД двигателя. Поэтому обращает на себя внимание смещение акцента в применении конструкционных высокотемпературных материалов от металлических к неметаллическим. Современные никелевые жаропрочные сплавы (НЖС) для литья лопаток ГТД достигли своего предела рабочих температур (1100-1150)°C, что составляет (80-85)% температуры плавления. Температурный уровень работоспособности каждого нового из предыдущих четырех поколений НЖС примерно на 30°C превосходил предыдущие. Однако при этом значительно возрастали их плотность, жаропрочность, стоимость за счет легирования дефицитными и дорогостоящими элементами, такими как рений, рутений и др. Таким образом, совершенствование системы охлаждения лопаток и легирование жаропрочных сплавов не приводят в настоящее время к значительному повышению их рабочих температур. В свою очередь керамические материалы и композиты на их основе не имеют альтернативы в условиях длительного (от сотен до нескольких тысяч часов) воздействия температуры в окислительной среде выше 1200°C, обладают отличными коррозионными и эрозионными свойствами.

Из уровня техники известен композиционный материал, который состоит из матрицы, включающей 91-99,35 масс. % фазы SiC и 0,5-5 масс. % карбонизированного органического материала, 0,15-3 масс. % бора и до 1,0% дополнительного углерода и имеет плотность около 2,40 г/см3 (US 4312954, опуб. 26.02.1986 С04В 35/565).

Недостатком указанного композиционного материала является высокая пористость (5-25%) и высокая температура спекания до 2500°C.

Известен также керамический композиционный материал следующего состава, масс. %:

SiC 40-60
В4С 40-60
Органическое связующее 5-10

(RU 2440956, опуб. 27.01.2012, С04В 35/56).

Материал может быть использован для получения бронекерамики. К недостаткам этого материала следует отнести недостаточно высокий предел прочности при изгибе (280-380 МПа) и низкую трещиностойкость (2,5 МПа⋅м1/2).

Известен композиционный материал с высокой вязкостью и прочностью разрушения, который состоит из 5-40 масс. % SiC, включая вискеры карбида кремния SiCw (1-30 масс. %), одного или нескольких оксидов Al, Sc, Y, редкоземельных элементов и оксинитрида кремния (Si2N2O). Оксинитрид кремния и фазы SiC являются преобладающими. Недостатком данного композиционного материала является недостаточная микротвердость и низкая окислительная стойкость (US 4956317, опуб. 11.09.1990 С04В 35/597).

Известен композиционный материал, характеризующийся повышенной вязкостью и стойкостью к разрушению, состоящий из керамической матрицы (Al2O3, В4С или муллита (3Al2O3⋅2SiO2)) и гомогенно диспергированных в ней от 5 до 60 об. % вискеров карбида кремния, причем усы имеют монокристаллическую структуру (0,6 мкм в диаметре и длиной от 10 до 80 мкм). Недостатком данного композиционного материала является более высокая плотность 3,4-3,8 г/см3 (US 4543345, опуб. 24.09. 1985 С04В 35/563).

Наиболее близким аналогом, взятым за прототип, является ударопрочный горячепрессованный композиционный материал и способ его изготовления, содержащий нитрид алюминия AlN, карбид бора В4С, борид титана TiB2, карбид кремния SiC и кремний Si при соотношении компонентов, мас. %:

В4С 24-28
TiB2 7-9
SiC 6-8
Si 4-6
AlN оставшаяся часть

(UA 89241, опуб. 10.04.2014 С04В 35/56).

Недостатком данного композиционного материала являются более низкие показатели микротвердости, термостойкости и трещиностойкости. Наличие в материале Si, TiB2 приводит к существенному снижению жаростойкости и термостойкости (до 1200°С), микротвердости (менее 20 ГПа) и трещиностойкости (не более 5 МПа⋅м1/2).

Задачей настоящего изобретения является разработка состава и технологии изготовления керамического композиционного материала с высокой рабочей температурой, высокими прочностными характеристиками и с низкой плотностью, предназначенного для изготовления теплонагруженных узлов и деталей перспективных газотурбинных двигателей.

Технический результат заявленного изобретения заключается в разработке керамического композиционного материала с рабочей температурой 1500°C, критическим коэффициентом интенсивности напряжений (трещиностойкость) 7,1-8,0 МПа⋅м1/2, прочностью при изгибе 490-520 МПа, твердостью 27-29 ГПа), термостойкостью по режиму 1500↔20°C не менее 100 циклов, жаростойкостью (изменением массы) при температуре 1500°C в течение 500 ч не более 0,5% и с низкой плотностью 3,04 г/см3 и способа его изготовления.

Заявленный технический результат достигается тем, что керамический композиционный материал, содержит нитрид алюминия AlN, карбид бора В4С, карбид кремния SiC, и карбидкремниевые вискеры SiCw при следующем массовом соотношении, масс. %:

SiC 25-55
В4С 15-25
SiCw 20-40
AlN остальное

Предпочтительно, средний размер фракции применяемых порошков компонентов составляет: для карбида кремния - 1-3 мкм, для карбида бора - 0,5-1,5 мкм, нитрида алюминия - 0,5-1,0 мкм.

Заявлен также способ получения керамического композиционного материала включающий приготовление шихты керамического композиционного материала путем перемешивания исходных компонентов. В качестве исходных компонентов для приготовления шихты используют нитрид алюминия AlN, карбид бора В4С, карбид кремния SiC и карбидкремниевые вискеры SiCw,. Перемешивание исходных компонентов производят в среде изопропилового спирта в пропорции шихта : изопропиловый спирт - 1:5 на магнитной мешалке со скоростью 900-1000 об/мин и при воздействии ультразвука частотой не менее 22 кГц в течение 4,5-5 ч. Сушку шихты в сушильном шкафу осуществляют при температуре 100°C в течение 4-6 ч. Получение керамического композиционного материала осуществляют методом искрового плазменного спекания, предпочтительно в режиме совмещенного нагрева с индуктором по режиму: температура спекания 1700-1800°С, время спекания 15-20 мин, давление прессования - 40-50 МПа.

Авторами заявленного изобретения установлено, что содержание вискеров карбида кремния при заявленных соотношениях позволяет повысить прочность и трещиностойкость керамического композиционного материала. Нитрид алюминия AlN и карбид бора В4С в заданных соотношениях используются как твердые и термостойкие материалы. Кроме того, карбид бора В4С обеспечивает устойчивость материала в начале процесса разрушения, на стадии упругого деформирования, а нитрид алюминия AlN - устойчивость после начала разрушения за счет фрагментирования разрушенного материала в зоне ядра деформации и последующего уплотнения порошкообразного материала этой зоны. Карбид кремния SiC повышает механическую прочность, твердость и термостойкость материала. Высокая окислительная стойкость достигается за счет образования тугоплавкой боросиликатной стекловидной пленки на поверхности материала, препятствующей окислению на воздухе и в продуктах сгорания топлива при температурах до 1500°С в течение длительного времени (не менее 500 ч).

Приготовление шихты керамического композиционного материала проводят путем перемешивания исходных компонентов (согласно табл. 1) в среде изопропилового спирта в пропорции шихта : изопропиловый спирт - 1:5 на магнитной мешалке со скоростью 900-1000 об/мин и при воздействии ультразвука частотой не менее 22 кГц в течение 4,5-5 ч. Сушку шихты проводят в сушильном шкафу при температуре 100°C в течение 4-6 ч. Спекание керамического композиционного материала проводят методом искрового плазменного спекания в режиме совмещенного нагрева с индуктором по режиму: температура спекания 1700-1800°C, время спекания 15-20 мин, давление прессования - 40-50 МПа. Использование технологии искрового плазменного спекания в режиме совмещенного нагрева позволяет существенно снизить время изготовления керамического композиционного материала за счет быстрых скоростей нагрева и охлаждения и прохождения импульса постоянного тока непосредственно через заготовку.

Примеры осуществления

Для получения композиционного материала были приготовлены композиции предлагаемого керамического композиционного материала (1-3), соотношение компонентов в которых приведено в таблице №1.

Пример 1

Дисперсные частицы матрицы карбида кремния, карбида бора, нитрида алюминия и вискеры карбида кремния смешивают при помощи ультразвукового диспергатора (частота 22 кГц) и магнитной мешалки. Средний размер фракции применяемых компонентов составлял для карбида кремния - 1 мкм, для карбида бора - 0,5 мкм, нитрида алюминия - 0,5 мкм. Смешение проводили в среде изопропилового спирта в пропорции шихта : изопропиловый спирт - 1:5. Скорость вращения магнитной мешалки составляла 900 об/мин, время перемешивания - 4,5 ч. Полученную суспензию высушивали в сушильном шкафу при температуре 100°C в течение 4 ч. Полученную шихту спекали в графитовой пресс-форме в установке электроискрового плазменного спекания в режиме совмещенного нагрева с индуктором при температуре 1700°С, давлении 40 МПа, в течение 20 мин.

Пример 2

Дисперсные частицы матрицы карбида кремния, карбида бора, нитрида алюминия и вискеры карбида кремния смешивают при помощи ультразвукового диспергатора (частота 25 кГц) и магнитной мешалки. Средний размер фракции применяемых компонентов составлял для карбида кремния - 2 мкм, для карбида бора - 1 мкм, нитрида алюминия - 0,7 мкм. Смешение проводили в среде изопропилового спирта в пропорции шихта : изопропиловый спирт - 1:5. Скорость вращения магнитной мешалки составляла 950 об/мин, время перемешивания - 4,6 ч. Полученную суспензию высушивали в сушильном шкафу при температуре 100°C в течение 5 ч. Полученную шихту спекали в графитовой пресс-форме в установке электроискрового плазменного спекания в режиме совмещенного нагрева с индуктором при температуре 1780°C, давлении 47 МПа, в течение 17 мин.

Пример 3

Дисперсные частицы матрицы карбида кремния, карбида бора, нитрида алюминия и вискеры карбида кремния смешивают при помощи ультразвукового диспергатора (частота 22 кГц) и магнитной мешалки. Средний размер фракции применяемых компонентов составлял для карбида кремния - 3 мкм, для карбида бора - 1,5 мкм, нитрида алюминия - 1,0 мкм. Смешение проводили в среде изопропилового спирта в пропорции шихта : изопропиловый спирт - 1:5. Скорость вращения магнитной мешалки составляла 1000 об/мин, время перемешивания - 5 ч. Полученную суспензию высушивали в сушильном шкафу при температуре 100°C в течение 6 ч. Полученную шихту спекали в графитовой пресс-форме в установке электроискрового плазменного спекания в режиме совмещенного нагрева с индуктором при температуре 1800°C, давлении - 50 МПа, в течение 15 мин.

Образцы керамического композиционного материала, изготовленные по примерам 1-3 (табл. 1) испытывали на термостойкость по режиму 1500°C↔50°C - 100 циклов, охлаждение на воздухе, жаростойкость (изменение массы) за 500 часов при температуре 1500°C в окислительной среде, а также определяли прочность при четырехточечном изгибе при температуре 20°C, твердость по Виккерсу, трещиностойкость. Результаты исследований представлены в таблице №2.

* - для прототипа испытания на термостойкость проводили по режиму 1200↔20°C.

Анализ полученных результатов свидетельствует о том, что при высокотемпературных испытаниях, предлагаемый керамический композиционный материал обладает более высокими показателями, такими как твердость, термостойкость и трещиностойкость по сравнению с материалом-прототипом.

Повышение термостойкости и жаростойкости композиционного материала, обусловленное образованием тугоплавкой боросиликатной стекловидной фазы, свидетельствует о наличии защитного эффекта матрицы предлагаемых составов композиционного материала при длительных термических нагрузках, предотвращающего диффузию кислорода воздуха вглубь образца и препятствующего его окислению.

Таким образом, применение предлагаемого керамического высокотемпературного композиционного материала полученного заявленным способом при изготовлении теплонагруженных деталей перспективных газотурбинных установок, в том числе, сопловых лопаток, обеспечивает их работоспособность в условиях термоциклических нагрузок при температурах 1500°С в агрессивных средах в течение длительного времени (не менее 500 ч) и, соответственно, позволяет повысить надежность и ресурс изделий.

Источник поступления информации: Роспатент

Showing 151-160 of 354 items.
25.08.2017
№217.015.9ac0

Способ защиты деталей газовых турбин из никелевых сплавов

Изобретение относится к области металлургии и может быть использовано для защиты деталей от высокотемпературного окисления. Способ защиты деталей газовых турбин из никелевых сплавов включает осаждение в вакууме на внешнюю поверхность деталей первого слоя покрытия из сплава на основе никеля,...
Тип: Изобретение
Номер охранного документа: 0002610188
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9ae1

Способ получения полуфабриката для изготовления металлического композиционного материала

Изобретение относится к области металлургии, в частности к способу получения полуфабриката, состоящего из волокон тугоплавких соединений и напыленного на них матричного материала из титана и его сплавов, предназначенного для изготовления волокнистого композиционного материала, применяемого в...
Тип: Изобретение
Номер охранного документа: 0002610189
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9b6f

Литьевой самозатухающий композиционный термопластичный материал

Изобретение относится к области термопластичных композиционных материалов, а именно к разработке размеростабильных термопластичных полимерных композиционных материалов (ПКМ) и технологий их переработки в детали и элементы системы кондиционирования воздуха (СКВ) для использования в авиационной...
Тип: Изобретение
Номер охранного документа: 0002610059
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9b9b

Экономнолегированный титановый сплав

Изобретение относится к области металлургии, а именно к созданию конструкционных титановых сплавов, предназначенных для изготовления средненагруженных деталей, в том числе для набора планера воздушного судна, работающих длительно при температурах от -70 до +400°С. Сплав на основе титана...
Тип: Изобретение
Номер охранного документа: 0002610193
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9da9

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к титановым сплавам, предназначенным для использования в качестве высокопрочного конструкционного термически упрочняемого материала для изготовления деталей силовых конструкций авиационной и космической техники, энергетических установок,...
Тип: Изобретение
Номер охранного документа: 0002610657
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.9df0

Способ изготовления составных заготовок типа "диск-диск" и "диск-вал" из жаропрочных титановых и никелевых сплавов

Изобретение относится к металлургии и может быть использовано при изготовлении изделий из жаропрочных никелевых сплавов, применяемых в авиационной промышленности и в энергетическом машиностроении. Для получения составной заготовки типа «диск-вал» из жаропрочных никелевых сплавов изготавливают...
Тип: Изобретение
Номер охранного документа: 0002610658
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.9e01

Способ получения абразивостойкого электрообогреваемого полимерного слоистого материала

Изобретение относится к многослойным легким ударостойким деталям остекления с применением полимерных стекол и может применяться во многих отраслях промышленности. Способ изготовления многослойного стекла включает сборку пакета из листов стекла, где в качестве внешнего слоя применяют...
Тип: Изобретение
Номер охранного документа: 0002610774
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.a0a2

Сплав на основе интерметаллида титана и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к сплавам на основе интерметаллидов титана и алюминия с рабочими температурами не выше 825°C, изделия из которых могут быть использованы в конструкции авиационных газотурбинных двигателей и наземных энергетических установок. Заявлены...
Тип: Изобретение
Номер охранного документа: 0002606368
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a0a4

Прибор контроля фазового состава стали

Изобретение относится к неразрушающему контролю металлов и сплавов, а именно к методам контроля фазового состава, и может быть использовано в металлургии, металлообработке, машиностроении, авиастроении для контроля качества продукции и стабильности технологических процессов. Прибор контроля...
Тип: Изобретение
Номер охранного документа: 0002606519
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a0ef

Способ получения защитного покрытия

Изобретение относится к области машиностроения, а именно к способам получения гальванических покрытий с последующей термообработкой для защиты от коррозии стальных изделий. Способ включает последовательное электролитическое нанесение на деталь цинкового слоя, а затем оловянного слоя с...
Тип: Изобретение
Номер охранного документа: 0002606364
Дата охранного документа: 10.01.2017
Showing 151-160 of 325 items.
24.08.2017
№217.015.955b

Резиновая смесь

Изобретение относится к резиновой промышленности, в частности к разработке эластомерных материалов уплотнительного назначения, и может быть использовано для изготовления резиновых деталей уплотнительных узлов наружного и внутреннего контуров машин и механизмов, работающих в среде воздуха во...
Тип: Изобретение
Номер охранного документа: 0002608399
Дата охранного документа: 18.01.2017
24.08.2017
№217.015.95ed

Полиэфирное связующее и изделие на его основе

Изобретение относится к области создания полимерных связующих на основе полиэфирного олигомера с наполнителем в виде коротких волокон для полимерных композиционных материалов (ПКМ), получаемых из листового полуфабриката (SMC-препрега) методом прямого прессования, которые могут быть использованы...
Тип: Изобретение
Номер охранного документа: 0002608892
Дата охранного документа: 26.01.2017
25.08.2017
№217.015.9ab5

Высокопрочный сплав на основе алюминия и изделие, выполненное из него

Изобретение относится к области цветной металлургии, в частности к высокопрочным сплавам на основе алюминия. Сплав на основе алюминия содержит, мас.%: медь 0,5-3,5; магний 1,5-4,5; цинк 7,0-10,0; марганец 0,005-0,9; цирконий 0,005-0,5; кобальт 0,005-0,5; церий 0,005-0,5; бериллий 0,0001-0,01;...
Тип: Изобретение
Номер охранного документа: 0002610190
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9ac0

Способ защиты деталей газовых турбин из никелевых сплавов

Изобретение относится к области металлургии и может быть использовано для защиты деталей от высокотемпературного окисления. Способ защиты деталей газовых турбин из никелевых сплавов включает осаждение в вакууме на внешнюю поверхность деталей первого слоя покрытия из сплава на основе никеля,...
Тип: Изобретение
Номер охранного документа: 0002610188
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9ae1

Способ получения полуфабриката для изготовления металлического композиционного материала

Изобретение относится к области металлургии, в частности к способу получения полуфабриката, состоящего из волокон тугоплавких соединений и напыленного на них матричного материала из титана и его сплавов, предназначенного для изготовления волокнистого композиционного материала, применяемого в...
Тип: Изобретение
Номер охранного документа: 0002610189
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9b6f

Литьевой самозатухающий композиционный термопластичный материал

Изобретение относится к области термопластичных композиционных материалов, а именно к разработке размеростабильных термопластичных полимерных композиционных материалов (ПКМ) и технологий их переработки в детали и элементы системы кондиционирования воздуха (СКВ) для использования в авиационной...
Тип: Изобретение
Номер охранного документа: 0002610059
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9b9b

Экономнолегированный титановый сплав

Изобретение относится к области металлургии, а именно к созданию конструкционных титановых сплавов, предназначенных для изготовления средненагруженных деталей, в том числе для набора планера воздушного судна, работающих длительно при температурах от -70 до +400°С. Сплав на основе титана...
Тип: Изобретение
Номер охранного документа: 0002610193
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9da9

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к титановым сплавам, предназначенным для использования в качестве высокопрочного конструкционного термически упрочняемого материала для изготовления деталей силовых конструкций авиационной и космической техники, энергетических установок,...
Тип: Изобретение
Номер охранного документа: 0002610657
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.9df0

Способ изготовления составных заготовок типа "диск-диск" и "диск-вал" из жаропрочных титановых и никелевых сплавов

Изобретение относится к металлургии и может быть использовано при изготовлении изделий из жаропрочных никелевых сплавов, применяемых в авиационной промышленности и в энергетическом машиностроении. Для получения составной заготовки типа «диск-вал» из жаропрочных никелевых сплавов изготавливают...
Тип: Изобретение
Номер охранного документа: 0002610658
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.9e01

Способ получения абразивостойкого электрообогреваемого полимерного слоистого материала

Изобретение относится к многослойным легким ударостойким деталям остекления с применением полимерных стекол и может применяться во многих отраслях промышленности. Способ изготовления многослойного стекла включает сборку пакета из листов стекла, где в качестве внешнего слоя применяют...
Тип: Изобретение
Номер охранного документа: 0002610774
Дата охранного документа: 15.02.2017
+ добавить свой РИД