×
29.05.2019
219.017.6555

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ПЕРЕДАЧИ ИНФОРМАЦИИ БЫСТРОЙ ОБРАТНОЙ СВЯЗИ ВОСХОДЯЩЕЙ ЛИНИИ СВЯЗИ В СИСТЕМЕ СВЯЗИ OFDMA

Вид РИД

Изобретение

№ охранного документа
0002341031
Дата охранного документа
10.12.2008
Аннотация: Изобретение относится к системе связи множественного доступа с ортогональным частотным разделением каналов (OFDMA). Техническим результатом является собственно создание способа и устройства для передачи информации быстрой обратной связи восходящей линии связи с использованием схемы некогерентной модуляции. Указанный технический результат достигается тем, что кодер канала формирует информацию быстрой обратной связи восходящей линии связи, которая должна быть передана, и выводит кодовые комбинации, сформированные таким образом, чтобы минимальное расстояние Хэмминга между кодовыми комбинациями было максимизировано согласно информации быстрой обратной связи восходящей линии связи. Некогерентный модулятор выполняет ортогональную модуляцию над символами передачи, соответствующими кодовым комбинациям, и назначает ортогонально модулированные символы передачи на кластер поднесущих. Блок обратного быстрого преобразования Фурье (ОБПФ) выполняет ОБПФ над сигналом передачи, имеющим в распоряжении кластер поднесущих, и передает сигнал передачи, обработанный по процедуре ОБПФ. 4 н. и 23 з.п. ф-лы, 9 ил.

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение в целом относится к способу и устройству для передачи управляющей информации в системе мобильной связи и, в частности, к способу и устройству для передачи информации быстрой обратной связи, которая является типом управляющей информации восходящей линии связи, в системе связи множественного доступа с ортогональным частотным разделением каналов (OFDMA).

ОПИСАНИЕ ПРЕДШЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ

Системы мобильной связи эволюционируют в систему мобильной связи 4-го поколения (4G), поддерживающую сверхвысокоскоростное мультимедийное обслуживание, следующую за аналоговой системой 1-го поколения (1G), цифровой системой 2-го поколения (2G) и системой IMT-2000 3-го поколения (3G), поддерживающими высокоскоростное мультимедийное обслуживание. В системе мобильной связи 4G пользователь может осуществлять доступ к спутниковой сети, локальной сети (LAN) и сети Интернет с помощью единственного терминала. То есть пользователь может использовать множество видов услуг, таких как услуги передачи голоса, изображений, мультимедийные услуги, данных сети Интернет, голосовой почты и мгновенной отправки сообщений, с помощью одного мобильного терминала. Система мобильной связи 4G направлена на достижение скорости передачи данных 20 Мбит/сек для сверхвысокоскоростного мультимедийного обслуживания и обычно использует схему мультиплексирования с ортогональным частотным разделением каналов (OFDM).

Схема OFDM, которая является схемой цифровой модуляции для мультиплексирования множества сигналов ортогональных несущих, делит единый поток данных на несколько низкоскоростных потоков и одновременно передает низкоскоростные потоки с использованием нескольких поднесущих с низкой скоростью передачи данных.

Схема множественного доступа, использующая схему OFDM, известна как схема множественного доступа с ортогональным частотным разделением каналов (OFDMA). В схеме OFDMA поднесущие в одном символе OFDM совместно используются множеством пользователей, то есть абонентских терминалов. Система связи, основанная на схеме OFDMA (в дальнейшем упоминаемая как «система связи OFDMA»), имеет в распоряжении отдельные физические каналы для передачи информации быстрой обратной связи восходящей линии связи, которая является типом управляющей информации восходящей линии связи. Информация быстрой обратной связи восходящей линии связи включает в себя полное отношение сигнал/шум (SNR), дифференциальное SNR по полосам, информацию быстрой обратной связи для режима с множеством входов и множеством выходов (MIMO) и информацию обратной связи выбора режима.

Фиг.1 - схема, иллюстрирующая передатчик для передачи управляющей информации восходящей линии связи в системе связи OFDMA согласно предшествующему уровню техники. Согласно фиг.1 передатчик 10 включает в себя бинарный кодер 11 канала, модулятор 12 и блок 13 обратного быстрого преобразования Фурье (ОБПФ). Если имеются информационные биты данных для управляющей информации восходящей линии связи для передачи, то бинарный кодер 11 канала кодирует биты информационных данных с образованием кодовой комбинации с использованием бинарного блочного кода, например блочного кода (20,5).

Модулятор 12 включает в себя когерентный модулятор или дифференциальный модулятор. Модулятор 12 определяет символ передачи, соответствующий кодовой комбинации, выведенной из бинарного кодера 11 канала, с использованием схемы когерентной или дифференциальной модуляции, и выводит символ передачи в блок 13 ОБПФ. Модулятор 12 может использовать предопределенную схему модуляции, например, схему квадратурной фазовой манипуляции (QPSK) или схему дифференциальной квадратурной фазовой манипуляции (DQPSK).

Блок 13 ОБПФ выполняет ОБПФ над символом передачи, выведенным из модулятора 12, и передает символ передачи, обработанный по процедуре ОБПФ.

На Фиг.2 показана схема, иллюстрирующая приемник для приема управляющей информации восходящей линии связи в системе связи OFDMA согласно предшествующему уровню техники. Согласно фиг.2 приемник 20 включает в себя блок 23 быстрого преобразования Фурье (БПФ), демодулятор 22 и бинарный декодер 21 канала.

После приема сигнала, переданного из передатчика 10, блок 23 БПФ выполняет БПФ над принятым сигналом и выводит принятый символ в демодулятор 22. Демодулятор 22 включает в себя когерентный демодулятор или дифференциальный демодулятор. Демодулятор 22 принимает выходные данные принятого символа из блока 23 БПФ и рассчитывает его значение мягкого решения с использованием схемы демодуляции, соответствующей схеме модуляции, используемой в передатчике 10, например, когерентной демодуляции или дифференциальной демодуляции.

Бинарный кодер 21 канала принимает значение мягкого решения, рассчитанное демодулятором 22, определяет, какая кодовая комбинация передавалась, и выводит соответствующие биты данных.

Информация быстрой обратной связи восходящей линии связи, обмениваемая между передатчиком 10 и приемником 20, является небольшой по объему относительно суммарных услуг связи. Однако, поскольку информация быстрой обратной связи восходящей линии связи является очень важной информацией, для информации быстрой обратной связи восходящей линии связи должна быть гарантирована высоконадежная передача. Однако обычно небольшое количество частотно-временных ресурсов выделяется физическим каналам, используемым для передачи информации быстрой обратной связи восходящей линии связи для снижения доли служебных сигналов. Следовательно, есть потребность в новом способе передачи, отличном от каналов, которым выделяется большое количество ресурсов и которые должны передавать большой объем информации, подобных каналу потока обмена.

Вообще, для передачи управляющей информации восходящей линии связи используется комбинированный способ бинарного кодирования канала и когерентной модуляции или дифференциальной модуляции.

Однако когда управляющая информация восходящей линии связи передается с использованием меньших частотно-временных ресурсов при этом способе, возрастает частота появления ошибок, тем самым понижая стабильность работы системы связи. То есть, хотя имеются тоны пилот-сигнала для нисходящей линии связи или передачи потока обмена восходящей линии связи, однако имеет место недостаточное количество тонов потока обмена для передачи управляющей информации восходящей линии связи. Недостаток тонов пилот-сигналов ухудшает выполнение оценки канала, тем самым снижая эффективность схемы когерентной модуляции/демодуляции.

Если количество тонов пилот-сигнала повышается, принимая во внимание только выполнение оценки канала, количество информационных тонов становится недостаточным. В дополнение разделение бинарного кодирования канала и модуляции становится причиной нарушения в оптимизированных эксплуатационных показателях.

Кроме того, если большое количество частотно-временных ресурсов используется для передачи информации быстрой обратной связи восходящей линии связи для того, чтобы увеличить стабильность, доля служебных сигналов увеличивается, что снижает пропускную способность системы связи.

Традиционный способ передачи информации быстрой обратной связи восходящей линии связи использует один подканал восходящей линии связи и передает 4-битную информацию. Однако передача 4-битной информации не может гарантировать достаточную точность для передачи полного SNR и может передавать дифференциальные SNR по полосам только для 4 полос. В дополнение, передача 4-битной информации испытывает недостаток в операционной гибкости, так что является затруднительным свободно выделять кодовые комбинации для передачи другой информации, так как есть не более чем 16 кодовых комбинаций.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Следовательно, цель настоящего изобретения состоит в том, чтобы предоставить способ и устройство для передачи информации быстрой обратной связи восходящей линии связи с использованием схемы некогерентной модуляции.

Еще одна цель настоящего изобретения состоит в том, чтобы предоставить способ и устройство для эффективной передачи информации быстрой обратной связи восходящей линии связи с использованием заданных частотно-временных ресурсов.

Кроме того, еще одна цель настоящего изобретения состоит в том, чтобы предоставить способ и устройство для эффективной передачи 5-битной или 6-битной информации быстрой обратной связи восходящей линии связи, чтобы повысить точность передачи управляющей информации и операционную гибкость в системе связи.

Кроме того, еще одна цель настоящего изобретения состоит в том, чтобы предоставить способ передачи информации быстрой обратной связи восходящей линии связи и устройство для оптимизации эксплуатационных показателей посредством комбинирования M-арного кода канала со схемой некогерентной модуляции.

Согласно аспекту настоящего изобретения предоставлен способ передачи информации быстрой обратной связи восходящей линии связи с использованием канала быстрой обратной связи в системе связи, использующей схему множественного доступа с ортогональным частотным разделением каналов (OFDMA). Способ содержит этапы формирования информации быстрой обратной связи восходящей линии связи, которая должна быть передана; вывода кодовых комбинаций, сформированных таким образом, чтобы минимальное расстояние Хэмминга между кодовыми комбинациями было максимизировано, согласно информации быстрой обратной связи восходящей линии связи; выполнения ортогональной модуляции над символами передачи, соответствующими кодовым комбинациям; назначения ортогонально модулированных символов передачи на кластер поднесущих; выполнения обратного быстрого преобразования Фурье (ОБПФ) над сигналом передачи, имеющим в распоряжении кластер поднесущих; и передачи сигнала передачи, обработанного по процедуре ОБПФ.

Согласно еще одному аспекту настоящего изобретения предоставлен способ передачи информации быстрой обратной связи восходящей линии связи, которая должна использоваться для канала быстрой обратной связи в системе связи, использующей схему множественного доступа с ортогональным частотным разделением каналов (OFDMA). Способ содержит этапы: приема пяти информационных битов данных для информации быстрой обратной связи восходящей линии связи; вывода кодовых комбинаций, соответствующих информационным битам данных; выполнения ортогональной модуляции над символами для соответствующей кодовой комбинации принятых информационных битов данных; вывода символов передачи; выполнения ОБПФ над сигналом передачи, имеющим в распоряжении кластеры поднесущих, на каждый из которых назначены ортогонально модулированные символы передачи и символ пилот-сигнала; и передачи обработанного обратным БПФ сигнала передачи.

Согласно еще одному дополнительному аспекту настоящего изобретения предоставлен способ передачи информации быстрой обратной связи восходящей линии связи, которая должна использоваться для канала быстрой обратной связи в системе связи, использующей схему множественного доступа с ортогональным частотным разделением каналов (OFDMA). Способ содержит этапы: приема шести информационных битов данных для информации быстрой обратной связи восходящей линии связи; вывода кодовых комбинаций, соответствующих информационным битам данных; выполнения ортогональной модуляции над символами для соответствующей кодовой комбинации принятых информационных битов данных; вывода символов передачи поднесущих; выполнения ОБПФ над сигналом передачи, имеющим в распоряжении кластеры поднесущих, на каждый из которых назначены ортогонально модулированные символы передачи и символ пилот-сигнала; и передачи сигнала передачи, обработанного по процедуре ОБПФ.

Согласно еще одному другому аспекту настоящего изобретения предоставлено устройство для передачи информации быстрой обратной связи восходящей линии связи с использованием канала быстрой обратной связи в системе связи, использующей схему множественного доступа с ортогональным частотным разделением каналов (OFDMA). Устройство содержит кодер канала для формирования информации быстрой обратной связи восходящей линии связи, которая должна быть передана, и вывода кодовых комбинаций, сформированных таким образом, чтобы минимальное расстояние Хэмминга между кодовыми комбинациями было максимизировано, на основании и согласно информации быстрой обратной связи восходящей линии связи; некогерентный модулятор для выполнения ортогональной модуляции над символами передачи, соответствующими кодовым комбинациям, и назначения ортогонально модулированных символов передачи на каждый кластер поднесущих, определенный в системе связи; и блок ОБПФ для выполнения обратного БПФ над сигналом передачи, имеющим в распоряжении кластер поднесущих, и передачи сигнала передачи, обработанного по процедуре ОБПФ.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Вышеприведенные и другие цели, признаки и преимущества настоящего изобретения поясняются в последующем подробном описании со ссылками на чертежи, на которых представлено следующее:

фиг.1 - схема, иллюстрирующая передатчик для передачи управляющей информации восходящей линии связи в системе связи OFDMA согласно предшествующему уровню техники;

фиг.2 - схема, иллюстрирующая приемник для приема управляющей информации восходящей линии связи в системе связи OFDMA согласно предшествующему уровню техники;

фиг.3 - схема, иллюстрирующая передатчик для передачи информации быстрой обратной связи восходящей линии связи в системе связи OFDMA согласно варианту осуществления настоящего изобретения;

фиг.4 - схема, иллюстрирующая приемник для приема информации быстрой обратной связи восходящей линии связи в системе связи OFDMA согласно варианту осуществления настоящего изобретения;

фиг.5 - схема, иллюстрирующая частотно-временные ресурсы, выделенные для передачи информации быстрой обратной связи восходящей линии связи в системе связи OFDMA согласно варианту осуществления настоящего изобретения;

фиг.6 - схема, иллюстрирующая шестнадцать возможных кодовых комбинаций в системе связи OFDMA согласно варианту осуществления настоящего изобретения;

фиг.7 - схема, иллюстрирующая ортогональные векторы, которые должны использоваться для ортогональной модуляции в некогерентном модуляторе согласно варианту осуществления настоящего изобретения;

фиг.8 - схема, иллюстрирующая тридцать две возможных кодовых комбинаций, выводимых из 8-го кодера канала, согласно варианту осуществления настоящего изобретения; и

фиг.9 - схема, иллюстрирующая шестьдесят четыре возможных кодовых комбинаций, выводимых из 8-го кодера канала, согласно еще одному варианту осуществления настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНОГО ВАРИАНТА ОСУЩЕСТВЛЕНИЯ

Предпочтительные варианты осуществления настоящего изобретения подробно описаны ниже со ссылкой на прилагаемые чертежи, при этом подробное описание известных функций и конфигураций для краткости опущено.

Способ и устройство, предложенные в настоящем изобретении, используют М-й код канала и схему некогерентной модуляции для повышения надежности передачи информации быстрой обратной связи восходящей линии связи, которая является типом управляющей информации восходящей линии связи, и для снижения доли непроизводительной нагрузки. То есть настоящее изобретение относится к способу и устройству для рациональной передачи восходящей информации быстрой обратной связи с использованием М-го кода канала и схемы некогерентной модуляции.

Использование схемы некогерентной модуляции/демодуляции снижает использование частотно-временных ресурсов. Следовательно, можно эффективно передавать информацию быстрой обратной связи восходящей линии связи, для которой не может быть выделено большое количество тонов пилот-сигналов.

Настоящее изобретение предлагает способ для передачи 5-битной и 6-битной информации для передачи информации быстрой обратной связи восходящей линии связи, повышающий точность передачи информации и операционную гибкость.

Как описано выше, объем информации быстрой обратной связи восходящей линии связи, используемой в системе связи, невелик. Однако информация быстрой обратной связи восходящей линии связи весьма важна для системы связи. Поэтому способ и устройство, предложенные в настоящем изобретении, используют схему ортогональной модуляции для передачи информации быстрой обратной связи восходящей линии связи.

Предпочтительные варианты осуществления настоящего изобретения описаны ниже со ссылкой на систему связи множественного доступа с ортогональным частотным разделением каналов (OFDMA). Кроме того, описан способ передачи информации быстрой обратной связи восходящей линии связи с использованием схемы М-й фазовой манипуляции (PSK).

Фиг.3 иллюстрирует передатчик для передачи информации быстрой обратной связи восходящей линии связи в системе связи OFDMA согласно варианту осуществления настоящего изобретения. Согласно фиг.3 передатчик 100 включает в себя кодер 110 канала для кодирования битов данных управляющей информации восходящей линии связи, например, информации быстрой обратной связи восходящей линии связи, некогерентный модулятор 120 для модулирования информационных битов данных с использованием схемы некогерентной модуляции и блок 130 обратного быстрого преобразования Фурье (ОБПФ) для выполнения ОБПФ над сигналом передачи перед передачей.

Если имеются биты данных для передачи информации быстрой обратной связи восходящей линии связи, кодер 110 канала кодирует информационные биты данных для получения соответствующей кодовой комбинации и выводит кодовую комбинацию в некогерентный модулятор 120. Кодер 110 канала может включать в себя бинарный кодер канала или M-й кодер канала, который использует M-е блочные коды согласно входным битам.

Некогерентный модулятор 120 определяет символ передачи, соответствующий кодовой комбинации, выведенной из кодера 110 канала, используя схему некогерентной модуляции, и выводит символ передачи в блок 130 ОБПФ. Некогерентный модулятор 120 может использовать предопределенную схему модуляции, например схему ортогональной модуляции.

Блок 130 ОБПФ выполняет ОБПФ над символом передачи, выведенным из некогерентного модулятора 120, и передает символ передачи, обработанный по процедуре ОБПФ.

Фиг.4 иллюстрирует приемник для приема информации быстрой обратной связи восходящей линии связи в системе связи OFDMA согласно варианту осуществления настоящего изобретения. Согласно фиг.4 приемник 200 включает в себя блок 230 быстрого преобразования Фурье (БПФ) для выполнения БПФ над принятым сигналом временной области, чтобы преобразовать принятый сигнал временной области в принятый сигнал частотной области, некогерентный модулятор 220 для демодуляции принятого сигнала частотной области и декодер 210 канала для декодирования битов данных для информации быстрой обратной связи восходящей линии связи из демодулированного принятого символа.

После приема принятого сигнала из передатчика 100 блок 230 БПФ выполняет БПФ над принятым сигналом и выводит принятый символ в некогерентный демодулятор 220. Некогерентный демодулятор 220 принимает принятый символ, выведенный из блока 230 БПФ, рассчитывает его значение мягкого решения, используя схему некогерентной демодуляции, и выводит значение мягкого решения в декодер 210 канала. Декодер 210 канала принимает значение мягкого решения из некогерентного демодулятора 220, определяет, какая кодовая комбинация передавалась из передатчика 100, и выводит соответствующие биты данных. Декодер 210 канала может включать в себя бинарный декодер канала и М-й декодер канала согласно входным битам.

Новый способ передачи информации быстрой обратной связи восходящей линии связи, предложенный в настоящем изобретении, описан ниже для случая, в котором шесть кластеров поднесущих 3×3 в частотно-временных областях выделены в восходящей линии связи системы связи OFDMA.

Фиг.5 иллюстрирует частотно-временные ресурсы для случая, когда шесть кластеров поднесущих 3×3 выделены каналу быстрой обратной связи для передачи информации быстрой обратной связи восходящей линии связи в системе связи OFDMA согласно варианту осуществления настоящего изобретения. Фиг.6 иллюстрирует пример кодовых комбинаций, выделенных кластерам поднесущих 3×3 в системе связи OFDMA, согласно варианту осуществления настоящего изобретения. Более конкретно, фиг.5 иллюстрирует частотно-временные ресурсы, выделенные для передачи информации быстрой обратной связи восходящей линии связи, согласно шаблону, который должен использоваться для M-й модуляции PSK, при этом количество информационных битов данных равно 4, и используется 8-й кодер канала.

Ниже со ссылкой на фиг.5-7 приведено описание способа передачи 4-битных данных информации в качестве информации быстрой обратной связи. Далее со ссылкой на фиг.5, 8 и 9 приведено описание способа для передачи 5-битных и 6-битных данных информации в качестве информации быстрой обратной связи согласно варианту осуществления настоящего изобретения.

Согласно фиг.5 биты данных для информации быстрой обратной связи восходящей линии связи, которая должна быть передана, вводятся в некогерентный модулятор через кодер канала. Предполагается, что количество информационных битов данных равно 4, и используется 8-ный кодер канала. Некогерентный модулятор модулирует сигнал передачи с использованием схемы ортогональной модуляции. Символы модуляции, выведенные из некогерентного модулятора, подвергаются обработке по процедуре ОБПФ в блоке ОБПФ и передаются. Ниже подробно описана вышеизложенная последовательность операций передачи информационных битов данных со ссылкой на фиг.6.

Фиг.6 иллюстрирует шестнадцать возможных кодовых комбинаций, выводимых из 8-го кодера канала. После приема информационных битов данных 8-й кодер канала выводит одну из шестнадцати возможных кодовых комбинаций, проиллюстрированных на фиг.6, в некогерентный модулятор. 8-й кодер канала обеспечивает максимизацию минимального расстояния Хэмминга между кодовыми комбинациями для заданного количества кодовых комбинаций и для заданной длины. «Расстояние Хэмминга» относится к количеству отдельных битов из числа соответствующих битов между двумя кодовыми комбинациями. «Минимальное расстояние Хэмминга» соответствует минимальному из всех расстояний Хэмминга.

В этом способе передачи минимальное расстояние Хэмминга, которое является главным фактором, влияющим на характеристику вероятности ошибки кодовой комбинации, равно пяти. То есть, например, для кодовой комбинации '0' из числа шестнадцати возможных кодовых комбинаций шаблоном кодовой комбинации A0, Al, A2, A3, A4 и A5 для кластера поднесущих является '000000', а для кодовой комбинации '8', шаблоном кодовой комбинации A0, Al, A2, A3, A4, и A5 для кластера поднесущих становится '012345'. В результате минимальное расстояние Хэмминга между двумя кодовыми комбинациями '0' и '8' равно пяти. Оно указывает, что минимальное расстояние Хэмминга между двумя кодовыми комбинациями является большим или равным пяти для всех пар возможных кодовых комбинаций.

Некогерентный модулятор использует схему ортогональной модуляции для кодовой комбинации, выводимой из 8-го кодера канала. То есть некогерентный модулятор модулирует информационные биты данных, кодированные 8-м кодером канала, используя схему ортогональной модуляции. Символ передачи для шаблона, который должен использоваться для модуляции, проиллюстрирован на фиг.7.

Согласно фиг.7 символ передачи включает в себя набор ортогональных векторов и непосредственно отображается на кластер поднесущих. Ортогональные векторы, которые должны использоваться для ортогональной модуляции, представлены, например, посредством P0, P1, P2 и P3, а символы ортогональной модуляции, каждый из которых включает в себя символы модуляции QPSK, могут быть рассчитаны согласно равенству (1)

(1)

Восемь краевых поднесущих кластера поднесущих 3×3 передают символы, проиллюстрированные на фиг.7, а оставшаяся одна центральная поднесущая передает символ пилот-сигнала. Символ пилот-сигнала может выбираться произвольно. Значения символов передачи устанавливаются в качестве ортогональных векторов для соответствующего векторного индекса.

Более конкретно, если заданы 4-битные данные информации для передачи, то передатчик определяет кодовые комбинации A0, A1, A2, A3, A4 и A5 согласно фиг.6. После этого передатчик выделяет ортогональный вектор, соответствующий А0, первому кластеру поднесущих 3×3 и ортогональный вектор, соответствующий А1, второму кластеру поднесущих 3×3 перед передачей. Соответственно, передатчик выделяет ортогональный вектор, соответствующий А5, шестому кластеру поднесущих 3×3, последнему кластеру поднесущих, и передает ортогональные векторы способом, проиллюстрированным на фиг.7.

Из фиг.7 следует, что P0, P1, P2, P3, P0, P1, P2 и P3 устанавливаются для значений символа передачи, соответствующих векторному индексу 0; P0, P0, P0, P0, P0, P0, P0 и P0 устанавливаются для значений символа передачи, соответствующих векторному индексу 4; и P0, P2, P2, P0, P2, P0, P0 и P2 устанавливаются для значений символа передачи, соответствующих векторному индексу 7.

После приема сигнала передачи, переданного из передатчика, приемник выполняет БПФ над принятым сигналом посредством блока БПФ. Затем некогерентный демодулятор в приемнике рассчитывает квадрат абсолютного значения корреляции для восьми возможных ортогональных векторов для каждого из шести кластеров поднесущих 3×3. После этого М-й декодер канала в приемнике рассчитывает сумму квадратов абсолютных значений корреляции ортогональных векторов, соответствующих всем из шестнадцати возможных кодовых комбинаций, а затем определяет, что информационные биты данных, соответствующие кодовой комбинации, имеющей максимальное значение среди кодовых комбинаций, были переданы передатчиком.

Основной способ передачи информации быстрой обратной связи восходящей линии связи, как описано выше, передает 4-битную информацию с использованием одного подканала восходящей линии связи. Однако использование четырех бит не может гарантировать достаточную точность для передачи полного SNR и может передавать дифференциальные SNR по полосам только для четырех полос. Кроме того, передаче 4-битной информации свойственна недостаточная операционная гибкость, так что трудно свободно выделять кодовые комбинации для передачи другой информации, так как имеется не более шестнадцати кодовых комбинаций.

Для решения вышеприведенных проблем настоящее изобретение использует способ передачи 5-битной и 6-битной информации для передачи информации быстрой обратной связи восходящей линии связи, тем самым повышая точность передачи информации и операционную гибкость.

Ниже приведено описание способа передачи информации быстрой обратной связи восходящей линии связи согласно варианту осуществления настоящего изобретения. Согласно фиг.5 частотно-временные ресурсы выделяются, когда шесть кластеров поднесущих 3×3 в частотно-временных областях выделяются каналу передачи быстрой обратной связи. Здесь количество информационных битов данных равно пяти и используется 8-й кодер канала.

Фиг.8 иллюстрирует тридцать две возможных кодовых комбинаций, выводимых из 8-го кодера канала, согласно варианту осуществления настоящего изобретения. Согласно фиг.8 после приема информационных битов данных 8-й кодер канала выводит одну из тридцати двух возможных кодовых комбинаций в некогерентный модулятор. 8-й кодер канала обеспечивает максимизацию минимального расстояния Хэмминга между кодовыми комбинациями для заданного количества кодовых комбинаций и для заданной длины. Из фиг.8 следует, что первые шестнадцать кодовых комбинаций идентичны кодовым комбинациям по фиг.6 для передачи 4-битной информации, а следующие шестнадцать кодовых комбинаций являются вновь добавленными.

Хотя количество кодовых комбинаций удвоено, минимальное расстояние Хэмминга, которое является главным фактором, влияющим на характеристику вероятности ошибки кодовой комбинации, по-прежнему равно пяти. То есть, например, для кодовой комбинации '16' из числа тридцати двух возможных кодовых комбинаций шаблоном кодовой комбинации A0, A1, A2, A3, A4 и A5 для кластера поднесущих является '472516', а для кодовой комбинации '24' шаблоном кодовой комбинации A0, A1, A2, A3, A4, и A5 для кластера поднесущих становится '460257'. В результате минимальное расстояние Хэмминга между двумя кодовыми комбинациями '16' и '24' равно пяти; это указывает, что минимальное расстояние Хэмминга между двумя кодовыми комбинациями больше или равно пяти для всех пар возможных кодовых комбинаций.

Некогерентный модулятор использует схему ортогональной модуляции для кодовой комбинации, выводимой из 8-го кодера канала, а ортогональные векторы, которые должны использоваться для ортогональной модуляции, проиллюстрированы на фиг.7. То есть ортогональные векторы по фиг.7, например, P0, P1, P2 и P3, каждый из которых включает в себя символы модуляции QPSK, могут быть рассчитаны согласно равенству (1).

Восемь краевых поднесущих кластера поднесущих 3×3 передают символы, проиллюстрированные на фиг.7, а оставшаяся одна центральная поднесущая передает символ пилот-сигнала. Символ пилот-сигнала может быть выбран произвольно.

Более конкретно, если заданы 5-битные данные информации для передачи, то передатчик определяет кодовые комбинации A0, A1, A2, A3, A4 и A5 согласно фиг.8. После этого передатчик выделяет ортогональный вектор, соответствующий А0, первому кластеру поднесущих 3×3, и ортогональный вектор, соответствующий А1, второму кластеру поднесущих 3×3 перед передачей. Соответственно, передатчик выделяет ортогональный вектор, соответствующий А5, шестому кластеру поднесущих 3×3, последнему кластеру поднесущих и передает ортогональные вектора способом, проиллюстрированным на фиг.7.

После приема сигнала передачи, переданного из передатчика, приемник выполняет БПФ над принятым сигналом посредством блока БПФ. Затем некогерентный демодулятор в приемнике рассчитывает квадрат абсолютного значения корреляции для восьми возможных ортогональных векторов для каждого из шести кластеров поднесущих 3×3. После этого М-й декодер канала в приемнике рассчитывает сумму квадратов абсолютных значений корреляции ортогональных векторов, соответствующих всем из тридцати двух возможных кодовых комбинаций, а затем определяет, что информационные биты данных, соответствующие кодовому слову, имеющему максимальное значение среди кодовых комбинаций, были переданы передатчиком.

В качестве частотно-временных ресурсов шесть кластеров поднесущих 3×3 выделяются каналу передачи быстрой обратной связи согласно варианту осуществления настоящего изобретения, как проиллюстрировано на фиг.5. Здесь количество информационных битов данных равно шести и используется 8-й кодер канала.

Фиг.9 иллюстрирует шестьдесят четыре возможных кодовых комбинации, выводимых из 8-го кодера канала, согласно еще одному варианту осуществления настоящего изобретения. Согласно фиг.9 после приема битов информационных данных 8-й кодер канала выводит одну из шестидесяти четырех возможных кодовых комбинаций в некогерентный модулятор. 8-й кодер канала обеспечивает максимилизацию минимального расстояния Хэмминга между кодовыми комбинациями для заданного количества кодовых комбинаций и для заданной длины.

Из фиг.9 следует, что количество кодовых комбинаций увеличено в 4 раза по сравнению с количеством кодовых комбинаций по фиг.6 для передачи 4-битной информации.

Хотя количество кодовых комбинаций увеличено в четыре раза, минимальное расстояние Хэмминга, которое является главным фактором, влияющим на характеристику вероятности ошибки кодовой комбинации, по-прежнему равно пяти. То есть, например, для кодовой комбинации '32' из числа шестидесяти четырех возможных кодовых комбинаций шаблоном кодовой комбинации A0, A1, A2, A3, A4 и A5 для кластера поднесущих является '675124', а для кодовой комбинации '41' шаблоном кодовой комбинации A0, A1, A2, A3, A4 и A5 для кластера поднесущих становится '640352'. В результате минимальное расстояние Хэмминга между двумя кодовыми комбинациями '32' и '41' равно пяти; это указывает, что минимальное расстояние Хэмминга между двумя кодовыми комбинациями является большим или равным пяти для всех пар возможных кодовых комбинаций.

В качестве альтернативы этот способ передачи также может передавать пять бит с использованием только первых тридцати двух кодовых комбинаций из шестидесяти четырех кодовых комбинаций.

Некогерентный модулятор использует схему ортогональной модуляции для кодовой комбинации, выведенной из 8-го кодера канала, а ортогональные векторы, которые должны использоваться для ортогональной модуляции, проиллюстрированы на фиг.7. То есть ортогональные векторы по фиг.7, например, P0, P1, P2 и P3, каждый из которых состоит из символов модуляции QPSK, могут быть рассчитаны согласно равенству (1).

Восемь краевых поднесущих кластера поднесущих 3×3 передают символы, проиллюстрированные на фиг.7, а оставшаяся одна центральная поднесущая передает символ пилот-сигнала. Символ пилот-сигнала может быть выбран произвольно.

Более конкретно, если заданы 6-битные данные информации для передачи, то передатчик определяет кодовые комбинации A0, A1, A2, A3, A4 и A5, которые должны выделяться шести кластерам поднесущих и передаваться посредством кодовых комбинаций, проиллюстрированных на фиг.9. После этого передатчик выделяет ортогональный вектор, соответствующий А0, первому кластеру поднесущих 3×3, и ортогональный вектор, соответствующий А1, второму кластеру поднесущих 3×3, перед передачей. Подобным образом передатчик выделяет ортогональный вектор, соответствующий А5, шестому кластеру поднесущих 3×3, последнему кластеру поднесущих, и передает ортогональные векторы способом, проиллюстрированным на фиг.7.

После приема сигнала передачи, переданного из передатчика, приемник выполняет БПФ над принятым сигналом посредством блока БПФ. Затем некогерентный демодулятор в приемнике рассчитывает квадрат абсолютного значения корреляции для восьми возможных ортогональных векторов для каждого из шести кластеров поднесущих 3×3. После этого М-й декодер канала в приемнике рассчитывает сумму квадратов абсолютных значений корреляции ортогональных векторов, соответствующих всем из шестидесяти четырех возможных кодовых комбинаций, и определяет, что информационные биты данных, соответствующие кодовому слову, имеющему максимальное значение среди кодовых комбинаций, были переданы передатчиком.

Как следует из вышеизложенного описания, при передаче информации быстрой обратной связи восходящей линии связи с использованием заданных частотно-временных ресурсов заявленный способ передачи увеличивает количество информационных битов данных передачи до пяти или шести, предоставляя возможность передавать точную информацию и управлять системой более стабильно.

Хотя настоящее изобретение было показано и описано со ссылкой на определенные предпочтительные варианты его осуществления, специалистам в данной области техники будет понятно, что в нем могут быть сделаны различные изменения по форме и содержанию, без отклонения от сущности и объема настоящего изобретения, которые определены прилагаемой формулой изобретения.

113300000006.tiftifdrawing96113500000007.tiftifdrawing97114000000008.tiftifdrawing98113800000009.tiftifdrawing99ВекторныйиндексМодуляцияподнесущейпокодовойкомбинацииподнесущая0,поднесущая1,...,поднесущая70Р0,Р1,Р2,Р3,Р0,Р1,Р2,Р31Р0,Р3,Р2,Р1,Р0,Р3,Р2,Р12Р0,Р0,Р1,Р1,Р2,Р2,Р3,Р33Р0,Р0,Р3,Р3,Р2,Р2,Р1,Р14Р0,Р0,Р0,Р0,Р0,Р0,Р0,Р05Р0,Р2,Р0,Р2,Р0,Р2,Р0,Р26Р0,Р2,Р0,Р2,Р2,Р0,Р2,Р07Р0,Р2,Р2,Р0,Р2,Р0,Р0,Р2c0c1211all1101Кодоваякомбинация0123456789101112131415А00123456701234567А10123456712345670А20123456723456701A30123456734567012А40123456745670123А50123456756701234Кодоваякомбинация16171819202122232425262728293031А04567012345670123А17012345667012345А22345670101234567A35670123423456701А41234567056701234А56701234570123456c0c1c2c3c4c5c6c7c8c9c10c11c12c13c14c15c161711all3105Кодоваякомбинация0123456789101112131415А00123456723016745А10123456745670123А20123456732107654A30123456767452301А40123456776543210А50123456754761032Кодоваякомбинация16171819202122232425262728293031А04567012332107654А13210765467452301А26745230176543210A37654321054761032А45476103210325476А51032547623016745Кодоваякомбинация32333435363738394041424344454647А06745230176543210А17654321054761032А25476103210325476A31032547623016745А42301674545670123А54567012332107654Кодоваякомбинация48495051525354555657585960616263А05476103210325476А11032547623016745А22301674545670123A34567012332107654А43210765467452301А56745230176543210c0c1c2c3c4c5c6c7c8c9c10c11c12c13c14c15c161711all5107Кодоваякомбинация0123456789101112131415А00123456701234567А10123456712345670А20123456723456701A30123456734567012А40123456745670123А50123456756701234Кодоваякомбинация16171819202122232425262728293031А04567012345670123А17012345667012345А22345670101234567A35670123423456701А41234567056701234А56701234570123456c0c1c2c3c4c5c6c7c8c9c10c11c12c13c14c15c161711all7113113300000006.tiftifdrawing118113500000007.tiftifdrawing119114000000008.tiftifdrawing120113800000009.tiftifdrawing121ВекторныйиндексМодуляцияподнесущейпокодовойкомбинацииподнесущая0,поднесущая1,...,поднесущая70Р0,Р1,Р2,Р3,Р0,Р1,Р2,Р31Р0,Р3,Р2,Р1,Р0,Р3,Р2,Р17Р0,Р0,Р1,Р1,Р2,Р2,Р3,Р33Р0,Р0,Р3,Р3,Р2,Р2,Р1,Р14Р0,Р0,Р0,Р0,Р0,Р0,Р0,Р05Р0,Р2,Р0,Р2,Р0,Р2,Р0,Р26Р0,Р2,Р0,Р2,Р2,Р0,Р2,РО7Р0,Р2,Р2,Р0,Р2,Р0,Р0,Р2c0c1211all9123Кодоваякомбинация0123456789101112131415А00123456723016745А10123456745670123А20123456732107654A30123456767452301А40123456776543210А50123456754761032Кодоваякомбинация16171819202122232425262728293031А04567012332107654А13210765467452301А26745230176543210A37654321054761032А45476103210325476А51032547623016745Кодоваякомбинация32333435363738394041424344454647А06745230176543210А17654321054761032А25476103210325476A31032547623016745А42301674545670123А54567012332107654Кодоваякомбинация48495051525354555657585960616263А05476103210325476А11032547623016745А22301674545670123A34567012332107654А43210765467452301А56745230176543210c0c1c2c3c4c5c6c7c8c9c10c11c12c13c14c15c161711all11126Кодоваякомбинация0123456789101112131415А00123456701234567A10123456712345670А20123456723456701A30123456734567012А40123456745670123А50123456756701234Кодоваякомбинация16171819202122232425262728293031А04567012345670123A17012345667012345А22345670101234567A35670123423456701А41234567056701234А56701234570123456c0c1c2c3c4c5c6c7c8c9c10c11c12c13c14c15c161711all13132Кодоваякомбинация0123456789101112131415А00123456723016745A10123456745670123А20123456732107654A30123456767452301А40123456776543210А50123456754761032Кодоваякомбинация16171819202122232425262728293031А04567012332107654A13210765467452301А26745230176543210A37654321054761032А45476103210325476А51032547623016745Кодоваякомбинация32333435363738394041424344454647А06745230176543210А17654321054761032А25476103210325476A31032547623016745А42301674545670123А54567012332107654Кодоваякомбинация48495051525354555657585960616263А05476103210325476А11032547623016745А22301674545670123A34567012332107654А43210765467452301А56745230176543210c0c1c2c3c4c5c6c7c8c9c10c11c12c13c14c15c161711all151341.Способпередачиинформациибыстройобратнойсвязивосходящейлиниисвязисиспользованиемканалабыстройобратнойсвязивсистемесвязи,использующейсхемумножественногодоступасортогональнымчастотнымразделениемканалов(OFDMA),причемспособсодержитэтапы,накоторыхформируютинформациюбыстройобратнойсвязивосходящейлиниисвязи,котораядолжнабытьпередана;выводяткодовыекомбинации,сформированныетакимобразом,чтобыминимальноерасстояниеХэммингамеждукодовымикомбинациямибыломаксимизированосогласноинформациибыстройобратнойсвязивосходящейлиниисвязи;выполняютортогональнуюмодуляциюнадсимволамипередачи,соответствующимикодовымкомбинациям;назначаютортогональномодулированныесимволыпередачинакластерподнесущих;выполняютобратноебыстроепреобразованиеФурье(ОБПФ)надсигналомпередачи,имеющимвраспоряжениикластерподнесущей;ипередаютсигналпередачи,обработанныйпопроцедуреОБПФ.12.Способпоп.1,вкоторомсимволпередачивключаетвсебянаборортогональныхвекторов,которыедолжныиспользоватьсядляортогональноймодуляцииипредставлены,например,посредствомР0,P1,P2иР3,асимволыортогональноймодуляции,каждыйизкоторыхвключаетвсебясимволымодуляцииQPSK,могутбытьвычисленысогласноравенству:23.Способпоп.2,вкоторомнаборортогональныхвекторовпредставленсогласно:34.Способпоп.1,вкоторомпятьинформационныхбитовданныхиспользуютдляинформациибыстройобратнойсвязивосходящейлиниисвязисогласношаблону,используемомудляортогональноймодуляции.45.Способпоп.1,вкоторомшестьинформационныхбитовданныхиспользуютдляинформациибыстройобратнойсвязивосходящейлиниисвязисогласношаблону,используемомудляортогональноймодуляции.56.Способпоп.1,вкоторомкаждаяизкодовыхкомбинацийвключаетвсебяпятьинформационныхбитовданных,какопределеносогласно:67.Способпоп.1,вкоторомкаждоеизкодовыхкомбинацийвключаетвсебяшестьинформационныхбитовданных,какопределеносогласно:78.Способпоп.1,вкоторомэтапвыполненияортогональноймодуляциисодержитэтапы,накоторыхпослеприемаинформационныхбитовданных,имеющихпредопределенныйразмердляинформациибыстройобратнойсвязивосходящейлиниисвязи,определяюткодовыекомбинациисогласнопредопределенномушаблонумодуляции;осуществляютортогональнуюмодуляциюсимволовпередачи,соответствующихопределеннымкодовымкомбинациям;иназначаютортогональномодулированныесимволыпередачиисимволпилот-сигналанакластерподнесущих.89.Способпередачиинформациибыстройобратнойсвязивосходящейлиниисвязи,котораядолжнабытьиспользованадляканалабыстройобратнойсвязи,всистемесвязи,использующейсхемуOFDMA,причемспособсодержитэтапы,накоторыхпринимаютпятьинформационныхбитовданныхдляинформациибыстройобратнойсвязивосходящейлиниисвязи;выводяткодовыекомбинации,соответствующиеинформационнымбитамданных;выполняютортогональнуюмодуляциюнадсимволамидлясоответствующейкодовойкомбинациипринятыхинформационныхбитовданных;выводятсимволыпередачи;выполняютОБПФнадсигналомпередачи,имеющимвраспоряжениикластерыподнесущих,накаждыйизкоторыхназначеныортогональномодулированныесимволыпередачиисимволпилот-сигнала;ипередаютсигналпередачи,обработанныйпопроцедуреОБПФ.910.Способпоп.9,вкоторомкодовыекомбинациисформированытакимобразом,чтоминимальноерасстояниеХэммингамеждукодовымикомбинациямимаксимизировано.1011.Способпоп.9,вкоторомпятьинформационныхбитовданныхиспользуютсядляинформациибыстройобратнойсвязивосходящейлиниисвязисогласношаблону,используемомудляортогональноймодуляции.1112.Способпоп.9,вкоторомкаждаяизкодовыхкомбинацийвключаетвсебяпятьинформационныхбитовданных,какопределеносогласно:1213.Способпоп.9,вкоторомэтапвыполненияортогональноймодуляциисодержитэтапы,накоторыхпослеприемапятиинформационныхбитовданныхопределяюткодовыекомбинациисогласнопредопределенномушаблонумодуляции;осуществляютортогональнуюмодуляциюсимволовпередачи,соответствующихопределеннымкодовымкомбинациям;иназначаютортогональномодулированныесимволыпередачиисимволпилот-сигналанакластерподнесущих.1314.Способпередачиинформациибыстройобратнойсвязивосходящейлиниисвязи,котораядолжныиспользоватьсядляканалабыстройобратнойсвязи,всистемесвязи,использующейсхемуOFDMA,причемспособсодержитэтапы,накоторыхпринимаютшестьинформационныхбитовданныхдляинформациибыстройобратнойсвязивосходящейлиниисвязи;выводяткодовыекомбинации,соответствующиеинформационнымбитамданных;выполняютортогональнуюмодуляциюнадсимволамидлясоответствующейкодовойкомбинациипринятыхинформационныхбитовданных;выводятсимволыпередачиподнесущейивыполняютОБПФнадсигналомпередачи,имеющимвраспоряжениикластерыподнесущих,накаждыйизкоторыхназначеныортогональномодулированныесимволыпередачииконтрольныйсимвол;ипередаютсигналпередачи,обработанныйпопроцедуреОБПФ.1415.Способпоп.14,вкоторомкодовыекомбинациисформированытакимобразом,чтоминимальноерасстояниеХэммингамеждукодовымикомбинациямимаксимизировано.1516.Способпоп.14,вкоторомсимволпередачивключаетвсебянаборортогональныхвекторов,которыедолжныиспользоватьсядляортогональноймодуляцииипредставлены,например,посредствомР0,P1,P2иР3,асимволыортогональноймодуляции,каждыйизкоторыхвключаетвсебясимволымодуляцииQPSK,могутбытьвычисленысогласноравенству:1617.Способпоп.16,вкоторомнаборортогональныхвекторовпредставленпосредством:1718.Способпоп.14,вкоторомшестьинформационныхбитовданныхиспользуютсядляинформациибыстройобратнойсвязивосходящейлиниисвязисогласношаблону,используемомудляортогональноймодуляции.1819.Способпоп.14,вкоторомкаждаяизкодовыхкомбинацийвключаетвсебяшестьинформационныхбитовданных,какопределеносогласно:1920.Способпоп.14,вкоторомэтапвыполненияортогональноймодуляциисодержитэтапы,накоторыхпослеприемашестиинформационныхбитовданныхопределяюткодовыекомбинациисогласнопредопределенномушаблонумодуляции;осуществляютортогональнуюмодуляциюсимволовпередачи,соответствующихопределеннымкодовымкомбинациям;иназначаютортогональномодулированныесимволыпередачиисимволпилот-сигналанакластерподнесущих.2021.Устройстводляпередачиинформациибыстройобратнойсвязивосходящейлиниисвязисиспользованиемканалабыстройобратнойсвязивсистемесвязи,использующейсхемуOFDMA,причемустройствосодержиткодерканаладляформированияинформациибыстройобратнойсвязивосходящейлиниисвязи,котораядолжнабытьпередана,ивыводакодовыхкомбинаций,сформированныхтакимобразом,чтобыминимальноерасстояниеХэммингамеждукодовымикомбинациямибыломаксимизировано,наоснованииинформациисогласнобыстройобратнойсвязивосходящейлиниисвязи;некогерентныймодулятордлявыполненияортогональноймодуляциинадсимволамипередачи,соответствующимикодовымкомбинациям,иназначенияортогональномодулированныхсимволовпередачинакаждыйкластерподнесущих,определенныйвсистемесвязи;иблокОБПФдлявыполненияОБПФнадсигналомпередачи,имеющимвраспоряжениикластерподнесущих,ипередачисигналапередачи,обработанногопопроцедуреОБПФ.2122.Устройствопоп.21,вкоторомкодерканалаиспользуетпятьинформационныхбитовданныхдляинформациибыстройобратнойсвязивосходящейлиниисвязисогласношаблону,используемомудляортогональноймодуляции.2223.Устройствопоп.21,вкоторомкодерканалаиспользуетшестьинформационныхбитовданныхдляинформациибыстройобратнойсвязивосходящейлиниисвязисогласношаблону,используемомудляортогональноймодуляции.2324.Устройствопоп.21,вкоторомкодерканалаиспользуетпятьинформационныхбитовданныхдляинформациибыстройобратнойсвязивосходящейлиниисвязи,какопределеносогласно:2425.Устройствопоп.21,вкоторомкодерканалаиспользуетшестьинформационныхбитовданныхдляинформациибыстройобратнойсвязивосходящейлиниисвязи,какопределеносогласно:2526.Устройствопоп.21,вкоторомпослеприемаинформационныхбитовданных,обладающихпредопределеннымразмером,дляинформациибыстройобратнойсвязивосходящейлиниисвязи,некогерентныймодуляторопределяеткодовыекомбинациисогласнопредопределенномушаблонумодуляциииортогональномодулируетсимволыпередачи,соответствующиеопределеннымкодовымкомбинациям.2627.Устройствопоп.21,вкоторомнекогерентныймодуляторустанавливаетзначениясимволовпередачисогласнопредопределенномушаблонумодуляции,соответствующемувходныминформационнымбитамданных,имеющимпредопределенныйразмер.27
Источник поступления информации: Роспатент

Showing 81-90 of 1,295 items.
10.05.2014
№216.012.bf84

Способ и устройство для кодирования и декодирования изображения с использованием крупной единицы преобразования

Изобретение относится к способу и устройству декодирования изображений посредством преобразования изображения в пиксельной области в коэффициенты в частотной области. Техническим результатом является повышение эффективности кодирования и декодирования изображений за счет установления размера...
Тип: Изобретение
Номер охранного документа: 0002514777
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c01a

Способ и устройство для кодирования видео, и способ и устройство для декодирования видео

Изобретение относится к вычислительной технике. Технический результат заключается в повышении эффективности декодирования видео. Способ декодирования изображения осуществляет извлечение из битового потока информации, которая указывает режим внутреннего предсказания; и выполнение внутреннего...
Тип: Изобретение
Номер охранного документа: 0002514927
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c01c

Способ и устройство для кодирования и декодирования вектора движения

Изобретение относится к вычислительной технике, а именно к кодированию и декодированию вектора движения путем прогнозирования вектора движения текущего блока. Техническим результатом является повышение точности прогнозирования и кодирования вектора движения. Способ кодирования вектора движения...
Тип: Изобретение
Номер охранного документа: 0002514929
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c145

Способ и устройство для кодирования видеоинформации посредством предсказания движения с использованием произвольной области, а также устройство и способ декодирования видеоинформации посредством предсказания движения с использованием произвольной области

Изобретение относится к кодированию и декодированию видеоинформации. Техническим результатом является повышение эффективности кодирования и декодирования изображений за счет того, что элемент кодирования корректируется с учетом характеристик изображения при одновременном увеличении...
Тип: Изобретение
Номер охранного документа: 0002515226
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c1ab

Устройство для фильтрования воды с блоком регулировки уровня воды

Устройство для фильтрования воды снабжено блоком регулировки уровня воды. Устройство содержит входы для внешнего воздуха, через которые втекает воздух, содержащий пыль; блок пылеотделения, который соединен с входами для внешнего воздуха, и который отделяет пыль от втекающего воздуха; выпускные...
Тип: Изобретение
Номер охранного документа: 0002515328
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c445

Устройство и способ для обнаружения точки входа для начальной инициализации электронного расписания услуг (esg) в системе конвергенции широковещательных и мобильных услуг (cbms)

Изобретение относится к системе на основе стандарта конвергенции широковещательных и мобильных услуг (CBMS), и в частности к способу и устройству для выбора электронного расписания услуг (ESG) в CBMS-системе. Техническим результатом является обеспечение возможности обнаружения точки входа для...
Тип: Изобретение
Номер охранного документа: 0002516004
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c532

Эффективный неактивный режим для усовершенствованных беспроводных систем

Изобретение относится к системам связи. Технический результат заключается в ускорении процедуры соединения с сетью. Сеть беспроводной связи содержит совокупность контроллеров поискового вызова, выполненных с возможностью осуществлять связь с совокупностью базовых станций в зоне покрытия сети, в...
Тип: Изобретение
Номер охранного документа: 0002516241
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c5c2

Способ и устройство для передачи сигнала запроса планирования в системе мобильной связи

Изобретение относится к системам связи. Технический результат заключается в повышении эффективности планирования беспроводных ресурсов. Обеспечивается способ и устройство для передачи сигнала запроса планирования терминала в системе мобильной связи. Способ передачи сигнала запроса планирования...
Тип: Изобретение
Номер охранного документа: 0002516385
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c5c4

Способ и устройство для поддержки мобильности в системе мобильного вещания

Изобретение относится к способу и устройству поддержки мобильности в системе мобильного вещания и, в частности, к поддержке мобильности в системе мобильного вещания, которая использует электронный справочник услуг (ESG). Техническим результатом является обеспечение эффективной поддержки...
Тип: Изобретение
Номер охранного документа: 0002516387
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c5fd

Устройство и способ кодирования видео и устройство и способ декодирования видео, основанные на иерархической информации о структуре кодированного блока

Изобретение относится к кодированию и декодированию видео. Техническим результатом является обеспечение эффективного кодирования или декодирования видео контента с высоким разрешением или высоким качеством при помощи информации, указывающей на то, закодирована ли информация о текстуре единицы...
Тип: Изобретение
Номер охранного документа: 0002516444
Дата охранного документа: 20.05.2014
Showing 11-11 of 11 items.
10.07.2019
№219.017.aec2

Система и способ для передачи управляющей информации восходящей линии связи в системе связи ofdma

Изобретение относится к системе и способу для передачи управляющей информации в системе мобильной связи. Техническим результатом является быстрое переключение сотовых ячеек в системе связи и передача различной управляющей информации. Способ передачи управляющей информации восходящей линии связи...
Тип: Изобретение
Номер охранного документа: 0002325760
Дата охранного документа: 27.05.2008
+ добавить свой РИД