×
29.05.2019
219.017.62db

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КИСЛОРОДНОГО КОЭФФИЦИЕНТА В ДИОКСИДЕ УРАНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области изготовления ядерного топлива в виде диоксида урана и может быть использовано для определения атомного кислородного коэффициента в диоксиде урана. Способ включает заполнение измерительного цилиндра 1% водным раствором хлористого натрия. Высчитывают массу навески диоксида урана. Затем добавляют в реактор 95-97% ортофосфорную кислоту, нагревают реактор и выдерживают при постоянном кипении ортофосфорной кислоты до полного растворения навески диоксида урана. Охлаждают реактор до комнатной температуры, замеряют значение уровня 1% водного раствора хлористого натрия. Создают избыточное давление. Далее проводят измерение газовой пробы. После того, как уровень 1% водного раствора хлористого натрия поднимется на треть от свободного объема измерительного цилиндра, закрывают кран-дозатор, записывают хроматограмму, определяют значение высоты пика водорода. Кислородный коэффициент рассчитывают по формуле: Изобретение позволяет определить точное значение кислородного коэффициента в диоксиде урана достехиометрического состава в диапазоне от 1,600 до 1,9999. 2 н.п. ф-лы, 4 ил.

Группа изобретений относится к области изготовления ядерного топлива в виде диоксида урана и может быть использовано для определения атомного отношения кислорода к урану (далее - кислородный коэффициент) в диоксиде урана.

Для диоксида урана в зависимости от температуры и химического потенциала кислорода величина кислородного коэффициента может меняться от 1,6 до 2,25. Кислородный коэффициент существенно влияет на физико-химические, теплофизические и механические свойства топлива из диоксида урана - скорость ползучести, диффузию, теплопроводность и т.д. Поэтому определение точного значения кислородного коэффициента имеет большую практическую значимость. Для электрогенерирующих каналов (далее - ЭГК) с термоэмиссионным преобразованием энергии (далее - ТРП) необходимо использовать топливо из диоксида урана с кислородным коэффициентом (КК) достехиометрического состава (КК<2) для обеспечения работоспособности ЭГК с ТРП в целом.

Наиболее часто применимым в атомной промышленности в качестве топлива из диоксида урана является диоксид урана сверхстехиометрического состава. Проблема получения и последующего определения кислородного коэффициента диоксида урана достехиометрического состава появилась с изобретением электрогенерирующих каналов с термоэмиссионным преобразованием энергии. Методы определения кислородного коэффициента с достехиометрическим составом в открытых публикациях отсутствуют.

Существует методика полярографического измерения кислородного коэффициента по ОСТ 95 820-2006. Стандарт распространяется на порошки, гранулы и таблетки, изготовленные из диоксида урана сверхстехиометрического состава. Метод основан на определении в анализируемой пробе содержания шестивалентного урана. Методика позволяет определять кислородный коэффициент в диапазоне от 2,000 до 2,200.

Задача и достигаемый при использовании группы изобретений технический результат - определения точного значения кислородного коэффициента в диоксиде урана достехиометрического состава в диапазоне от 1,600 до 1,9999, необходимого для топлива, используемого для электрогенерирующих каналов (далее - ЭГК) с термоэмиссионным преобразованием энергии (далее - ТРП) для обеспечения работоспособности ЭГК с ТРП в целом.

В способе определения кислородного коэффициента диоксида урана навеску диоксида урана растворяют в концентрированной ортофосфорной кислоте в устройстве для определения кислородного коэффициента в диоксиде урана и по количеству выделившегося в ходе растворения водорода определяют кислородный коэффициент в области достехиометрии (КК<2). Изобретение позволяет определить кислородный коэффициент в диапазоне от 1,600 до 1,9999. Время одного измерения составляет от 1,5 до 2 ч.

Достехиометрия в диоксиде урана (UO2-x, где х - степень достехиометрии) обеспечивается наличием металлической фазы урана (U0) и урана трехвалентного (U (III)). Растворение диоксида урана в ортофосфорной кислоте происходит с выделением водорода:

Количество выделившегося водорода эквивалентно степени достехиометрии - х.

Для области сверхстехиометрии (КК>2) предлагаемый способ определения кислородного коэффициента неприменим из-за наличия урана шестивалентного, который при растворении в ортофосфорной кислоте не меняет валентности, выделения водорода не происходит.

Технический результат достигается тем, что способ определения кислородного коэффициента в диоксиде урана включает заполнение измерительного цилиндра (6) через уравнительную склянку (13) 1 % водным раствором хлористого натрия не более 40-60 % от объема измерительного цилиндра (6), реактор (1) ставят в стеклянный стакан, вставляют в реактор воронку, взвешивают, добавляют диоксид урана, повторно взвешивают в реакторе во избежание окисления навески диоксида урана. Высчитывают массу навески диоксида урана, затем добавляют в реактор (1) 95-97 % ортофосфорную кислоту, исходя из следующего соотношения: на 0,1 г навески диоксида урана от 1,5 до 3 см3 95-97 % ортофосфорной кислоты. На реактор (1) одевают крышку реактора (2) и нагревают реактор, выдерживают при постоянном кипении ортофосфорной кислоты до полного растворения навески диоксида урана, после чего охлаждают реактор (1) до комнатной температуры, замеряют и записывают значение уровня 1 % водного раствора хлористого натрия по шкале измерительного цилиндра (6) перед началом измерений. Соединяют узел пробоотбора (8) и газовый хроматограф (10) кран-дозатором (9). Поднимают вверх уравнительную склянку (13), обеспечивая создание избыточного давления. Далее проводят измерение газовой пробы, поворачивая ручку кран-дозатора (9) в положение, при котором происходит подача газовой пробы на хроматограф (10). После того, как уровень 1 % водного раствора хлористого натрия поднимется на треть от свободного объема измерительного цилиндра (6), закрывают кран-дозатор (9), записывают хроматограмму, определяют значение высоты пика водорода, повторяют измерения еще два раза. Получают три хроматограммы. Из трех полученных значений высот пиков водорода вычисляют среднее значение, далее кислородный коэффициент рассчитывают по формуле:

где 2 - кислородный коэффициент в стехиометрическом диоксиде урана;

0,00012 - коэффициент, учитывающий связь между количеством выделившегося водорода при растворении навески диоксида урана и массой диоксида урана, г/(%⋅см3), рассчитан экспериментально;

hcp - среднее значение высоты пика водорода по данным трех хроматограмм пробы, мв;

С - объемная доля водорода в газовой поверочной смеси водород-аргон, % об.;

Н - высота пика водорода на хроматограмме газовой поверочной смеси водород - аргон, мв;

Vгс - объем анализируемой газовой смеси, см3;

Vк - объем ортофосфорной кислоты, см3;

m - масса навески диоксида урана, г.

Объем газовой анализируемой смеси Vгс (см3) вычисляляют по формуле:

где V1 - объем 1 % водного раствора хлористого натрия, затраченного на заполнение уравнительной склянки и измерительного цилиндра до нулевой отметки шкалы измерительного цилиндра, см3;

V2 - объем 1 % водного раствора хлористого натрия, затраченного на заполнение уравнительной склянки и измерительного цилиндра до максимальной отметки шкалы измерительного цилиндра, см3;

1 - значение уровня 1 % водного раствора хлористого натрия по шкале измерительного цилиндра на нулевой отметке, мм;

2 - значение уровня 1 % водного раствора хлористого натрия по шкале измерительного цилиндра на максимальной отметке, мм;

- значение уровня 1 % водного раствора хлористого натрия по шкале измерительного цилиндра перед началом измерений, мм.

Целесообразно для растворения использовать концентрированную ортофосфорную кислоту 95-97 % для сокращения времени растворения диоксида урана и, соответственно, сокращения времени определения КК.

Предлагаемая конструкция устройства позволяет реализовать заявляемый способ.

Сущность изобретения поясняется чертежами, где на фиг. 1 показан общий вид устройства. На фиг. 2-4 представлены хроматограммы, полученные в результате эксперимента.

Заявленный способ определения кислородного коэффициента в диоксиде урана реализуется с помощью устройства для определения кислородного коэффициента в диоксиде урана, которое включает в себя реактор (1), в котором происходит растворение навески диоксида урана в ортофосфорной кислоте. На реактор крепится крышка реактора (2), имеющая верхний и боковой отводы. Верхний отвод крышки реактора (3) соединяется с помощью резиновой трубки (4) с верхним отводом (5) измерительного цилиндра (6), боковой отвод (7) крышки реактора соединяется с узлом пробоотбора (8), состоящего из металлической трубки с резьбой, резиновой пластины и накидной гайки. Узел пробоотбора (8) с помощью кран-дозатора (9) соединяется с газовым хроматографом (10). Нижний отвод измерительного цилиндра (11) соединяется с помощью резиновой трубки (4) с нижним отводом (12) уравнительной склянки (13), имеющей цилиндрическую форму со свободным отверстием в верхней части. Нагрев реактора осуществляется с помощью нагревательного устройства (14).

В качестве нагревательного устройства можно использовать колбонагреватель.

Примеры конкретного осуществления способа определения кислородного коэффициента.

Пример 1.

В уравнительную склянку (13), вставляют воронку, наливают 55 см3 1 % водного раствора хлористого натрия. Такой объем жидкости занял около половины объемов измерительного цилиндра (6) и сообщающейся с ней уравнительной склянки (13). Реактор (1) ставят в стеклянный стакан, вставляют в реактор воронку, взвешивают, добавляют 0,2 г диоксида урана, отмеряют пипеткой 3,0 см3 96 % ортофосфорной кислоты, добавляют ортофосфорную кислоту в реактор (1). Ректор (1) соединяют с крышкой реактора (2), крепят на штативе (15), пододвигают к реактору колбонагреватель (14). Нагревают реактор (1), включив нагрев колбонагревателя (14), который нагревают до температуры 210 °С, обеспечивая постоянное кипение ортофосфорной кислоты. Выдерживают 1 час до полного растворения навески диоксида урана. Выключают колбонагреватель (14). Через 30 мин реактор охладился до комнатной температуры. После чего замеряют и записывают значение уровня 1 % водного раствора хлористого натрия по шкале измерительного цилиндра (6). Соединяют узел пробоотбора (8) и газовый хроматограф (10) кран-дозатором (9). Поднимают уравнительную склянку (13) на высоту 15 см вверх, крепят на штативе (15). Поворачивают ручку кран-дозатора (9) в положение, при котором происходит подача газовой пробы на газовый хроматограф (10). После поднятия уровня 1 % водного раствора хлористого натрия в измерительном цилиндре (6) на 15 делений выше значения закрывают кран-дозатор(9). Для измерения используют газовый хроматограф Кристаллюкс 4000-М с программой обработки хроматографических данных NetChrom v 2.1. Записывают хроматограмму. Определяют значение высоты пика водорода. Повторяют измерение еще 2 раза. При этом уровень раствора хлористого натрия в измерительном цилиндре (6) каждый раз поднимается на 15 делений выше предыдущего значения. Таким образом, записывают три хроматограммы, вычисляют среднее значение высоты пика водорода:

hcp = (9,3+10,2 +11,2)/3=10,2 (мв)

На фиг. 2 представлены 3 хроматограммы, полученные в результате эксперимента.

В результате эксперимента получают следующие данные:

= 45 мм; hcp = 10,2 мв

V1 = 21,6 см3; 1, = 0; V2 = 60,6 см3; 2 = 100 мм

Vгс = 21,6+45*(60,6-21,6)/100 = 39,15 (см3)

Параметры поверочной газовой смеси: С=1,01 %, Н=209,3 мв

Масса навески диоксида урана m = 0,2 г

Объем ортофосфорной кислоты Vк = 3,0 см3

КК = 2-0,00012*10,2*1,01*(39,15-3,0)/(209,3*0,2)=1,9989

Пример 2

В уравнительную склянку (13), вставляют воронку, наливают 60 см3 1 % водного раствора хлористого натрия. Такой объем жидкости занял около половины объемов измерительного цилиндра (6) и сообщающейся с ней уравнительной склянки (13). Реактор (1) ставят в стеклянный стакан, вставляют в реактор воронку, взвешивают, добавляют 0,3 г диоксида урана, отмеряют пипеткой 9,0 см3 96 % ортофосфорной кислоты, добавляют ортофосфорную кислоту в реактор (1). Ректор (1) соединяют с крышкой реактора (2), крепят на штативе (15), пододвигают к реактору колбонагреватель (14). Нагревают реактор (1), включив нагрев колбонагревателя (14), который нагревают до температуры 240 °С, обеспечивая постоянное кипение ортофосфорной кислоты. Выдерживают 1,5 часа до полного растворения навески диоксида урана. Выключают колбонагреватель (14). Через 30 мин реактор охладился до комнатной температуры. После чего замеряют и записывают значение уровня 1 % водного раствора хлористого натрия по шкале измерительного цилиндра (6). Соединяют узел пробоотбора (8) и газовый хроматограф (10) кран-дозатором (9). Поднимают уравнительную склянку (13) на высоту 15 см вверх, крепят на штативе (15). Поворачивают ручку кран-дозатора (9) в положение, при котором происходит подача газовой пробы на газовый хроматограф (10). После поднятия уровня 1 % водного раствора хлористого натрия в измерительном цилиндре (6) на 16 делений выше значения закрывают кран-дозатор (9). Для измерения используют газовый хроматограф Кристаллюкс 4000-М с программой обработки хроматографических данных NetChrom v 2.1. Записывают хроматограмму. Определяют значение высоты пика водорода. Повторяют измерение еще 2 раза. При этом уровень раствора хлористого натрия в измерительном цилиндре (6) каждый раз поднимается на 16 делений выше предыдущего значения. Таким образом, записывают три хроматограммы, вычисляют среднее значение высоты пика водорода:

hcp = (9,8+10,0+10,5) /3 = 10,1 (мв)

На фиг. 3 представлены 3 хроматограммы, полученные в результате эксперимента.

В результате эксперимента получают следующие данные: = 35 мм; hcp = 10,1 мв

V1 = 21,6 см3; V2 = 60,6 см3; 1, = 0, 2 = 100 мм;

Vгс = 21,6+35*(60,6-21,6)/100=35,25 (см3)

Параметры поверочной газовой смеси: С = 1,01 %, Н = 209,3 мв

Масса навески диоксида урана m = 0,3 г

Объем ортофосфорной кислоты Vк = 9,0 см3

КК = 2-0,00012*10,1*1,01 *(35,25-9,0)/(209,3*0,3) = 1,9995

Пример 3

В уравнительную склянку (13), вставляют воронку, наливают 61 см3 1 % водного раствора хлористого натрия. Такой объем жидкости занял около половины объемов измерительного цилиндра (6) и сообщающейся с ней уравнительной склянки (13). Реактор (1) ставят в стеклянный стакан, вставляют в реактор воронку, взвешивают, добавляют 0,1 г диоксида урана, отмеряют пипеткой 2,0 см 96 % ортофосфорной кислоты, добавляют ортофосфорную кислоту в реактор (1). Ректор (1) соединяют с крышкой реактора (2), крепят на штативе (15), пододвигают к реактору колбонагреватель (14). Нагревают реактор (1), включив нагрев колбонагревателя (14), который нагревают до температуры 230 °С, обеспечивая постоянное кипение ортофосфорной кислоты. Выдерживают 1,2 часа до полного растворения навески диоксида урана. Выключают колбонагреватель (14). Через 30 мин реактор охладился до комнатной температуры. После чего замеряют и записывают значение уровня 1 % водного раствора хлористого натрия по шкале измерительного цилиндра (6). Соединяют узел пробоотбора (8) и газовый хроматограф (10) кран-дозатором (9). Поднимают уравнительную склянку (13) на высоту 15 см вверх, крепят на штативе (15). Поворачивают ручку кран-дозатора (9) в положение, при котором происходит подача газовой пробы на газовый хроматограф (10). После поднятия уровня 1 % водного раствора хлористого натрия в измерительном цилиндре (6) на 15 делений выше значения закрывают кран-дозатор (9). Для измерения используют газовый хроматограф Кристаллюкс 4000-М с программой обработки хроматографических данных NetChrom v 2.1. Записывают хроматограмму. Определяют значение высоты пика водорода. Повторяют измерение еще 2 раза. При этом уровень раствора хлористого натрия в измерительном цилиндре (6) каждый раз поднимается на 15 делений выше предыдущего значения. Таким образом, записывают три хроматограммы, вычисляют среднее значение высоты пика водорода:

hcp = (1548+1550+1544)/3 = 1547,3 (мв)

На фиг. 4 представлены 3 хроматограммы, полученные в результате эксперимента.

В результате эксперимента получают следующие данные:

= 55 мм; 1 = 0, 2 = 100 мм, hcp = 1547,3 мв

V1 = 21,6 см3; V2 = 60,6 см3;

Vгс = 21,6+55*(60,6-21,6)/100 = 43,05 (см3)

Параметры поверочной газовой смеси: С = 4,01 %, Н = 836,3 мв

Масса навески диоксида урана m = 0,1 г

Объем ортофосфорной кислоты Vк = 2,0 см3

КК = 2-0,00012*1547,3*4,01*(43,05-2)/(836,3*0,1) = 1,6345

Предложенные способ и устройство позволяют определить точное значение кислородного коэффициента в диоксиде урана достехиометрического состава в диапазоне от 1,600 до 1,9999, необходимого для топлива, используемого для электрогенерирующих каналов (далее - ЭГК) с термоэмиссионным преобразованием энергии (далее - ТРП) для обеспечения работоспособности ЭГК с ТРП в целом.

Источник поступления информации: Роспатент

Showing 71-78 of 78 items.
20.05.2019
№219.017.5c97

Способ получения тетрафторида урана

Изобретение относится к химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом, который может применяться в производстве гексафторида урана или металлического урана. Способ включает смешивание порошков диоксида урана с бифторидом аммония,...
Тип: Изобретение
Номер охранного документа: 0002687935
Дата охранного документа: 16.05.2019
04.06.2019
№219.017.736c

Способ нанесения многослойного покрытия на оптические подложки и установка для осуществления способа

Способ включает напыление путем электронно-лучевого испарения материала покрытия в вакууме и осаждения паров на поверхности подложки при вращении подложек механизмом с планетарной передачей. Осуществляют прямой оптический контроль путем измерения спектра пропускания покрытия на каждом обороте...
Тип: Изобретение
Номер охранного документа: 0002690232
Дата охранного документа: 31.05.2019
06.06.2019
№219.017.7438

Способ получения таблетированного пористого диоксида урана

Изобретение относится к области ядерной энергетики и может быть использовано для получения таблеток диоксида урана топливных сердечников высокотемпературных вентилируемых тепловыделяющих элементов (ТВЭЛОВ) преимущественно термоэмиссионных реакторов-преобразователей (ТРП) встроенного варианта....
Тип: Изобретение
Номер охранного документа: 0002690492
Дата охранного документа: 04.06.2019
09.10.2019
№219.017.d36f

Конструкционный материал на основе молибдена и/или вольфрама или их сплавов с защитным жаростойким покрытием и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к материалам, предназначенным для работы в окислительной среде при высоких температурах, которые могут использоваться в качестве конструкционного материала для ответственных деталей, работающих при высокой температуре в приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002702254
Дата охранного документа: 07.10.2019
14.11.2019
№219.017.e16a

Способ рафинирования чернового урана

Изобретение относится к металлургии и атомной технике и может быть использовано для пирометаллургического рафинирования чернового урана, полученного кальциетермическим восстановлением тетрафторида урана. Рафинирование чернового урана, полученного кальциетермическим методом, включает...
Тип: Изобретение
Номер охранного документа: 0002705845
Дата охранного документа: 12.11.2019
09.02.2020
№220.018.014f

Способ переработки уран-молибденовой композиции

Изобретение относится к области металлургии и технологии урана, в частности к способу переработки уран-молибденовой композиции. Способ переработки уран-молибденовой композиции включает ее окисление и прокаливание в воздушной среде с последующим отделением молибдена от урансодержащего твердого...
Тип: Изобретение
Номер охранного документа: 0002713745
Дата охранного документа: 07.02.2020
12.02.2020
№220.018.018d

Способ эксплуатации двухрежимного термоэмиссионного реактора-преобразователя для ядерной энергетической установки

Изобретение относится к способу эксплуатации термоэмиссионного реактора-преобразователя (ТРП) с эмиттерными оболочками ЭГК из упрочненного монокристаллического сплава на основе молибдена, включающий эксплуатацию ТРП на форсированном режиме при постоянной тепловой мощности с последующим выводом...
Тип: Изобретение
Номер охранного документа: 0002713878
Дата охранного документа: 10.02.2020
12.04.2023
№223.018.45cb

Способ наведения лазерных пучков и устройство для его осуществления

Группа изобретений относится к области лазерной локации и лазерной связи в открытом пространстве. Способ наведения лазерных пучков заключается в том, что при помощи источника лазерного излучения формируют лазерный пучок, который разделяют на две части, при этом первый парциальный пучок посылают...
Тип: Изобретение
Номер охранного документа: 0002744040
Дата охранного документа: 02.03.2021
Showing 1-4 of 4 items.
20.11.2015
№216.013.914d

Способ получения таблетированного модельного ядерного топлива на основе диоксида урана

Изобретение относится к ядерной энергетике, а именно к получению модельного ядерного топлива на основе диоксида урана, включающего имитаторы продуктов деления (ИПД). Способ получения таблетированного модельного ядерного топлива включает подготовку и сухое смешивание порошков диоксида урана и...
Тип: Изобретение
Номер охранного документа: 0002568813
Дата охранного документа: 20.11.2015
10.03.2016
№216.014.cc3e

Способ получения таблетированного диоксида урана

Изобретение относится к области ядерной техники и может быть использовано при получении таблеток из диоксида урана для высокотемпературных вентилируемых твэлов преимущественно термоэмиссионных реакторов-преобразователей (ТРП) встроенного типа. Способ получения таблетированного диоксида урана...
Тип: Изобретение
Номер охранного документа: 0002577272
Дата охранного документа: 10.03.2016
04.06.2019
№219.017.734b

Способ получения таблетированного пористого диоксида урана

Изобретение относится к области ядерной энергетики и может быть использовано для получения таблеток диоксида урана топливных сердечников высокотемпературных вентилируемых тепловыделяющих элементов (ТВЭЛОВ) преимущественно термоэмиссионных реакторов-преобразователей (ТРП) встроенного варианта....
Тип: Изобретение
Номер охранного документа: 0002690155
Дата охранного документа: 31.05.2019
06.06.2019
№219.017.7438

Способ получения таблетированного пористого диоксида урана

Изобретение относится к области ядерной энергетики и может быть использовано для получения таблеток диоксида урана топливных сердечников высокотемпературных вентилируемых тепловыделяющих элементов (ТВЭЛОВ) преимущественно термоэмиссионных реакторов-преобразователей (ТРП) встроенного варианта....
Тип: Изобретение
Номер охранного документа: 0002690492
Дата охранного документа: 04.06.2019
+ добавить свой РИД