×
24.05.2019
219.017.605f

СПОСОБ ПОЛУЧЕНИЯ ТЕРМИЧЕСКИ СТАБИЛЬНОГО КАТАЛИЗАТОРА ПОЛНОГО ОКИСЛЕНИЯ УГЛЕВОДОРОДОВ И МОНООКИСИ УГЛЕРОДА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области каталитической химии, а именно к катализаторам для глубокого окисления углеводородов и СО до углекислого газа и воды и способам их приготовления. Описан способ получения термически стабильного катализатора полного окисления углеводородов и моноокиси углерода на основе диоксида олова общей формулы MeO·xSnO, если Me=Zn; Cu; Mn; Co; Ni; Pb; Cd, или MeO·xSnO, если Me=Fe; Ce; La; Cr, где x=1-5 для двухвалетных металлов, и х=2-10 для трехвалентных металлов, при этом катализатор получают внесением в α-Sn(OH) легкоразлагаемых солей металлов - нитратов, ацетатов, или совместным соосаждением раствора, содержащего SnCl и соль Me - нитраты, хлориды, ацетаты, сульфаты, раствором аммиака или щелочи. Технический результат - повышение активности катализатора при эксплуатации при повышенных температурах. 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к области каталитической химии, а именно к катализаторам для глубокого окисления углеводородов и СО до углекислого газа и воды и способам их приготовления. Высокая активность и селективность в окислении соединений углерода решает ряд экологических проблем: уничтожение вредных выбросов в атмосферу примесей углеводородов и окиси углерода в отходящих газах химических производств, автотранспорта и каталитическое сжигание углеводородного топлива при решении энергетических задач.

Известны катализаторы для глубокого окисления углеводородов [Т.Г.Алхазов, Л.Я.Марголис, "Глубокое каталитическое окисление органических веществ", с.54-58, М., 1985 г.]. В работе приведена комплексная оценка катализаторов шпинельной структуры, показано, что они отличаются от других оксидов легкостью перестройки структуры, наличием в ней дефектов - эти свойства и приводят к повышенной активности шпинелей в окислительных реакциях.

Недостатком известных катализаторов является то, что при высокой активности они обладают недостаточной термической стойкостью, термически стойкие катализаторы глубокого окисления обладают низкой каталитической активностью при низких температурах.

Известен катализатор для очистки газов ДВС, а также дымовых и отходящих газов тепловых установок и промышленных производств (Патент РФ 92001525 от 1993.10.19, B01O 23/80, B01D 53/94). Предлагаемое изобретение относится к катализаторам для окисления окиси углерода, азота, соединений серы, а также легких углеводородов и может быть применено для снижения токсичности выхлопных газов ДВС и дымовых и отходящих газов тепловых установок и промышленных производств. Предлагаемый катализатор представляет собой Fe, Ni, Co- или Fe, Ni, Zn-содержащие шпинели, сравнительно недорог, легко регенерируется, проявляет большую активность при окислении окислов углерода, азота, серы, а также легких углеводородов, обеспечивая тем самым высокую степень очистки отходящих газов. Недостатком известного катализатора является недостаточная термическая стабильность при температурах реакции по причине уноса активного компонента из структуры катализатора.

Наиболее близким к предлагаемому по технической сущности и достигаемому эффекту является катализатор для глубокого окисления углеводородов и окиси углерода, содержащий окись кобальта или марганца 0.5-10.0 мас., окись железа 31.5-34.8 и двуокись олова - остальное [А.с. СССР №1007718, Катализатор для глубокого окисления углеводородов и окиси углерода. В.В.Беренцвейг, А.П.Руденко, О.Ф.Сапрыкина]. К недостаткам известного катализатора следует отнести: недостаточную активность при низких температурах; многостадийность в приготовлении и недостаточную термическую стойкость.

Цель изобретения - упрощение способа приготовления катализатора, повышение термической стойкости, повышение активности при работе в эквимолекулярных смесях углеводород - кислород (концентрация кислорода минимальна по стехиометрии для полного окисления углеводорода).

Для достижения поставленной цели предложен способ получения термически стабильного катализатора полного окисления углеводородов и моноокиси углерода на основе диоксида олова общей формулы MeO·xSnO2, если Me=Zn2+; Cu2+ Mn2+; Co2+ Ni2+ Pb2+; Cd2+ или Me2O3·xSnO2, если Me2=Fe3+; Ce3+; La3+; Cr3+, где x=1-5 для двухвалентных металлов и х=2-10 для трехвалентных металлов. В отличие от прототипа катализатор получают внесением в α-Sn(OH)4 легкоразлагаемых солей металлов (нитраты, ацетаты) или совместным соосождением раствора, содержащего SnCl4 и соль Me (нитраты, хлориды, ацетаты, сульфаты), раствором аммиака или щелочи.

Образование соединений олова и вносимого металла на стадии выпаривания, сушки и прокаливания, распределенных в термически стабильной матрице SnO2, позволяют получить активные при низкой температуре термически стойкие катализаторы глубокого окисления, эффективно работающие в стехиометрических углеводород-кислород смесях, а также получить эффект термоактивации - повышения активности катализатора при эксплуатации при повышенных температурах.

Каталитические свойства катализаторов исследовали в проточной, проточно-циркуляционной каталитической установке с неподвижным слоем катализатора в интервале температур 100-850°С (при определении активности T=200-300°С). Анализ продуктов хроматографический: цвет - 100 с детектором ионизации пламени, ЛХМ-80 детектор - катарометр. Объемная скорость подачи смеси 20000 ч-1, концентрация углеводорода (пропана, бутана) 1.0 об.%, содержание кислорода стехиометрическое, коэффициент избытка α=1.1, остальное азот. Для определения активности катализаторов в окислении CO использовалась смесь 1 об.% CO и 0.6 об.% O2 в азоте. Для определения активности катализаторов в окислении СН4 использовалась смесь 1 об.% метана в воздухе. Термическая устойчивость образцов определялась сравнением активности систем, выдержанных в токе реакционной смеси при T=600°С в течение 100 минут и при T=800°С - 100 минут. Альфа гидрооксид олова (IV) получали из растворенного в мл воды грамм SnCl4·5H2O осаждением 10% раствором аммиака до pH=10, отмывали водой от хлорид-ионов и отфильтрововали или центрифугировали.

Изобретение иллюстрируется следующими примерами:

Пример 1. Для приготовления катализатора необходимо в суспензию, содержащую 0.02 моль α-Sn(OH)4, внести 6.5 миллилитров раствора Zn(NO3)2 молярной концентрации C=3.0 моль/л, из расчета атомного соотношения Sn:Zn=1:1. Затем раствор упаривают при перемешивании, после каталитическую массу просушивают при T=200°С 3 часа и прокаливают на воздухе при 600°С в течение 3 часов. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 2. Для приготовления катализатора необходимо в суспензию, содержащую 0.02 моль α-Sn(OH)4, внести 7.4 миллилитра раствора Co(NO3)2 молярной концентрации C=2.7 моль/л, из расчета атомного соотношения Sn:Co=1:1. Затем раствор упаривают при перемешивании, после каталитическую массу просушивают при T=200°С 3 часа и прокаливают на воздухе при 600°С в течение 3 часов. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 3. Для приготовления катализатора необходимо в суспензию, содержащую 0.02 моль α-Sn(OH)4, внести 3.7 миллилитра раствора Co(NO3)2 молярной концентрации С=2.7 моль/л, из расчета атомного соотношения Sn:Co=2. Затем раствор упаривают при перемешивании, после каталитическую массу просушивают при T=200°С 3 часа и прокаливают на воздухе при 600°С в течение 3 часов. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 4. Для приготовления катализатора необходимо в суспензию, содержащую 0.02 моль α-Sn(OH)4, внести 2.5 миллилитра раствора Co(NO3)2 молярной концентрации C=2.7 моль/л, из расчета атомного соотношения Sn:Co=3. Затем раствор упаривают при перемешивании, после каталитическую массу просушивают при T=200°С 3 часа и прокаливают на воздухе при 600 С в течение 3 часов. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 5. Для приготовления катализатора необходимо в суспензию, содержащую 0.02 моль α-Sn(OH)4, внести 20 миллилитров раствора Co(NO3)2 молярной концентрации C=1.0 моль/л, из расчета атомного соотношения Sn:Co=5. Затем раствор упаривают при перемешивании, после каталитическую массу просушивают при T=200°С 3 часа и прокаливают на воздухе при 600°С в течение 3 часов. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 6. Для приготовления катализатора необходимо в суспензию, содержащую 0.1 моль α-Sn(OH)4, внести 27 миллилитров раствора Mn(NO3)2 молярной концентрации С=3.7 моль/л, из расчета атомного соотношения Sn:Mn=1. Затем раствор упаривают при перемешивании, после каталитическую массу просушивают при T=200°С 3 часа и прокаливают на воздухе при 600°С в течение 3 часов. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 7. Для приготовления катализатора необходимо в суспензию, содержащую 0.02 моль α-Sn(OH)4, внести 13.5 миллилитров раствора Mn(NO3)2 молярной концентрации C=3.7 моль/л, из расчета атомного соотношения Sn:Mn=2. Затем раствор упаривают при перемешивании, после каталитическую массу просушивают при T=200°С 3 часа и прокаливают на воздухе при 600°С в течение 3 часов. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 8. Для приготовления катализатора необходимо в суспензию, содержащую 0.02 моль α-Sn(OH)4, внести 11.1 миллилитра раствора Mn(NO3)2 молярной концентрации C=3.0 моль/л, из расчета атомного соотношения Sn:Mn=3. Затем раствор упаривают при перемешивании, после каталитическую массу просушивают при T=200°С 3 часа и прокаливают на воздухе при 600°С в течение 3 часов. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 9. Для приготовления катализатора необходимо в суспензию, содержащую 0.02 моль α-Sn(OH)4, внести 6.7 миллилитров раствора Mn(NO3)2 молярной концентрации C=3.0 моль/л, из расчета атомного соотношения Sn:Mn=5. Затем раствор упаривают при перемешивании, после каталитическую массу просушивают при T=200°С 3 часа и прокаливают на воздухе при 600°С в течение 3 часов. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 10. Для приготовления катализатора необходимо в суспензию, содержащую 0.02 моль α-Sn(OH)4, внести 7.4 миллилитра раствора Cu(NO3)2 молярной концентрации C=2.7 моль/л, из расчета атомного соотношения Sn:Cu=1:1. Затем раствор упаривают при перемешивании, после каталитическую массу просушивают при T=200°С 3 часа и прокаливают на воздухе при 600°С в течение 3 часов. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 11. Для приготовления катализатора в 20.0 мл раствора, содержащего SnCl4 C=3.0 моль/л и Ce(NO3)3 C=3.0 моль/л, приливается 25% раствор аммиака до рН=10. Осадок отфильтровывается, для формирования катализатора просушивается при T=200°С 3 часа и прокаливается на воздухе при 600°С в течение 3 часов. Соотношение в катализаторе Sn:Ce=1. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 12. Для приготовления катализатора необходимо в суспензию, содержащую 0.02 моль α-Sn(OH)4, внести 3.3 миллилитра раствора Ce(NO3)3 молярной концентрации C=3.0 моль/л, из расчета атомного соотношения Sn:Ce=2. Затем раствор упаривают при перемешивании, после каталитическую массу просушивают при T=200°С 3 часа и прокаливают на воздухе при 600°С в течение 3 часов. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 13. Для приготовления катализатора в 25.0 мл раствора, содержащего SnCl4 C=3.0 моль/л и Ce(NO3)3 C=0.6 моль/л, приливается 25% раствор аммиака до рН=10. Осадок отфильтровывается, для формирования катализатора просушивается при T=200°С 3 часа и прокаливается на воздухе при 600°С в течение 3 часов. Соотношение в катализаторе Sn:Ce=5. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 14. Для приготовления катализатора в 20.0 мл раствора, содержащего SnCl4 C=3.0 моль/л и Mn(NO3)2 С=3.0 моль/л, приливается 25% раствор аммиака до pH=10. Осадок отфильтровывается, для формирования катализатора просушивается при T=200°С 3 часа и прокаливается на воздухе при 600°С в течение 3 часов. Соотношение в катализаторе Sn:Mn=1. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 15. Для приготовления катализатора в 20.0 мл раствора, содержащего SnCl4 C=1.0 моль/л и CrCl3 C=1.0 моль/л, приливается 25% раствор аммиака при рН=10. Осадок отфильтровывается, для формирования катализатора просушивается при T=200°С 3 часа и прокаливается на воздухе при 600°С в течение 3 часов. Соотношение в катализаторе Sn:Cr=1. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 16. Для приготовления катализатора в 20.0 мл раствора, содержащего SnCl4 C=1.0 моль/л и Pb(NO3)2 С=0.5 моль/л, приливается 25% раствор аммиака при pH=10. Осадок отфильтровывается, для формирования катализатора просушивается при T=200°С 3 часа и прокаливается на воздухе при 600°С в течение 3 часов. Соотношение в катализаторе Sn:Pb=2. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 17. Для приготовления катализатора необходимо в суспензию, содержащую 0.02 моль α-Sn(OH)4, внести 3.3 миллилитра Cd(NO3)2 молярной концентрации С=3.0 моль/л, из расчета атомного соотношения Sn:Cd=2. Затем раствор упаривают при перемешивании, после каталитическую массу просушивают при T=200°С 3 часа и прокаливают на воздухе при 600°С в течение 3 часов. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 18. Для приготовления катализатора необходимо в суспензию, содержащую 0.02 моль α-Sn(OH)4, внести 10.0 миллилитров раствора Ni(NO3)2 молярной концентрации С=1.0 моль/л, из расчета атомного соотношения Sn:Ni=2. Затем раствор упаривают при перемешивании, после каталитическую массу просушивают при T=200°С 3 часа и прокаливают на воздухе при 600°С в течение 3 часов. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 19. Для приготовления катализатора в 20.0 мл раствора, содержащего SnCl4 C=1.0 моль/л и FeCl3 С=0.5 моль/л, приливается 25% раствор аммиака при рН=10. Осадок центрифугируется и отмывается от хлорид-иона. Для формирования катализатора просушивается при T=200°С 3 часа и прокаливается на воздухе при 600°С в течение 3 часов. Соотношение в катализаторе Sn:Fe=2. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800 С 100 мин, представлена в таблице.

Пример 20. Для приготовления катализатора необходимо в суспензию, содержащую 0.02 моль α-Sn(OH)4, внести 6.7 миллилитра раствора La(NO3)3 С=1.0 моль/л, из расчета атомного соотношения Sn:La=3. Затем раствор упаривают при перемешивании, после каталитическую массу просушивают при T=200°С 3 часа и прокаливают на воздухе при 600°С в течение 3 часов. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Пример 21. Для приготовления катализатора необходимо в суспензию, содержащую 0.02 моль α-Sn(OH)4, внести 6.5 миллилитров раствора Zn(CH3COO)2 молярной концентрации 0=3.0 моль/л, из расчета атомного соотношения Sn:Zn=1:1. Затем раствор упаривают при перемешивании, после каталитическую массу просушивают при T=200°С 3 часа и прокаливают на воздухе при 600°С в течение 3 часов. Каталитическая активность в окислении углеводородов катализатора, прокаленного на воздухе при T=600°С, проработавшего в реакционной смеси при T=600°С 100 мин и при T=800°С 100 мин, представлена в таблице.

Термическая стойкость катализатора определялась сравнением каталитической активности после работы катализатора при температурах 600°С и 800°С. В таблице (для примеров №10, 19, 21) звездочками отмечена скорость окисления СО при температуре 150°С. Для примера №16 звездочками отмечена скорость окисления метана при температуре 400°С.

Катализатор, полученный заявленным способом, является активным при низкой температуре, термически стойким в реакции глубокого окисления, который эффективно работает в стехиометрических углеводород-кислород смесях. А также позволяет получить эффект термоактивации - повышения активности катализатора при эксплуатации при повышенных температурах.

Каталитические свойства систем, определенные по температуре 50% превращения пропана (T50% (пропан)), по температуре 90% превращения пропана - T90% (пропан) и скорости глубокого окисления бутана - Wc4н10, моль/с·г·108.
Катализатор T50% (пропан) T90% (пропан) Wc4н10, моль/с·г·108 Sуд, м2
1 ZnSnOx или ZnO·SnO2 400 450 1.15 23.0
ZnSnOx (600°C) 400 460 0.82 30.0
ZnSnOx (800°C) 400 470 0.02 30.0
2 CoSnOx или CoO·SnO2 235 310 145.0 25.1
CoSnOx (600°C) 330 390 16.4 16.9
CoSnOx (800°C) 435 530 15.1 8.3
3 CoSn2Ox или CoO·2SnO2 325 400 25.1 16.2
CoSn2Ox (600°C) 280 350 44.1 12.1
CoSn2Ox (800°C) 270 345 62.4 6.5
4 CoSn3Ox или CoO·3SnO2 345 400 18.5 18.6
CoSn3Ox (600°C) 280 350 23.8 12.1
CoSn3Ox (800°C) 265 330 7.03 7.2
5 CoSn5Ox или CoO·5SnO2 360 430 8.68 19.0
CoSn5Ox (600°C) 300 390 20.4 12.6
CoSn5Ox (800°C) 310 430 37.7 8.4
6 MnSnOx или MnO·SnOx 330 360 10.4 6.8
MnSnOx (600°C) 290 360 19.2 8.0
MnSnOx (800°C) 310 380 21.3 8.0
7 MnSn2Ox или MnO·2SnOx 370 420 10.7 12.0
MnSn2Ox (600°C) 310 370 24.7 13.8
MnSn2Ox (800°C) 350 460 16.4 7.2
8 MnSn3Ox или MnO·3SnOx 350 395 10.6 21.2
MnSn3Ox (600°C) 290 355 35.0 19.2
MnSn3Ox (800°С) 330 400 21.0 8.7
9 MnSn5Ox или MnO·5SnOx 360 395 5.05 18.0
MnSn5Ox (600°C) 290 350 4.3 18.7
MnSn5Ox (800°C) 320 390 0.11 6.9
10 CuSnOx или CuO·SnOx 350 400 3.14/48.4* 18.6
CuSnOx (600°C) 390 445 0.31/42.1 15.8
CuSnOx (800°C) 515 560 0.16/30.8* 7.7
11 CeSnOx или Ce2O3·2SnOx 450 485 5.3 24.0
CeSnOx (600°C) 420 470 88.8 24.0
CeSnOx (800°C) 420 500 70.8 16.2
12 CeSn2Ox или Ce2O3·4SnOx 460 497 1.2 18.5
CeSn2Ox (600°C) 450 500 5.02 18.4
CeSn2Ox (800°C) 455 503 4.1 14.8
13 CeSn5Ox или Ce2O3·10SnOx 425 475 2.5 17.8
CeSn5Ox (600°C) 425 475 7.02 17.6
CeSn5Ox (800°C) 435 500 18.0 11.6
14 MnSnOx или MnO·SnOx 320 360 11.2 7.8
MnSnOx (600°C) 300 360 19.5 8.4
MnSnOx (800°C) 310 380 18.3 8.0
15 CrSnOx или Cr2O3·2 SnOx 340 350 24.7 24.9
CrSnOx (600°C) 340 360 19.4 18.2
CrSnOx (800°C) 310 380 16.4 16.5
16 PbSnOx или PbO·SnOx 360 395 9.4/0.5** 13.2
PbSnOx (600°C) 390 405 32.2/6.4** 13.0
PbSnOx (800°C) 330 400 33.1/6.6** 12.5
17 CdSnOx или CdO·SnOx 400 480 1.22 24.5
CdSnOx (600°C) 400 480 1.18 24.0
CdSnOx (800°C) 405 485 1.1 24.0
18 NiSnOx или NiO·SnOx 330 385 4.15 17.0
NiSnOx (600°C) 350 390 3.3 17.5
NiSnOx (800°C) 350 390 3.11 16.9
19 FeSnOx или Fe2O3·2 SnOx 315 380 4.95/8.13* 32.5
FeSnOx (600°C) 315 380 4.55/8.05* 32.1
FeSnOx (800°C) 323 385 4.1/8.02* 28.6
20 LaSnOx или La2O3·2 SnOx 430 495 7.3 14.2
LaSnOx (600°C) 412 460 88.8 14.2
LaSnOx (800°C) 420 490 72.4 14.0
21 ZnSnOx или ZnO·SnOx 410 460 0.9/2.55* 20.3
ZnSnOx (600°C) 410 460 0.8/2.24* 29.4
ZnSnOx (800°C) 415 485 0.03/0.448 27.7

Способ получения термически стабильного катализатора полного окисления углеводородов и моноокиси углерода на основе диоксида олова общей формулы MeO·xSnO, если Me=Zn; Cu; Mn; Co; Ni; Pb; Cd, или МеО·хSnО, если Ме=Fe; Се; La; Cr, где х=1-5 для двухвалентных металлов, и х=2-10 для трехвалентных металлов, отличающийся тем, что катализатор получают внесением в α-Sn(OH) легкоразлагаемых солей металлов - нитратов, ацетатов, или совместным соосаждением раствора, содержащего SnCl и соль Me - нитраты, хлориды, ацетаты, сульфаты, раствором аммиака или щелочи.
Источник поступления информации: Роспатент

Showing 1-3 of 3 items.
08.03.2019
№219.016.d564

Состав для получения тонкой пленки на основе системы двойных оксидов циркония и титана

Изобретение может быть использовано в электронной технике, светотехнической и строительной промышленности. Состав получают приготовлением пленкообразующего раствора на основе 96 мас.% этилового спирта, 6,68-10,02 мас.% кристаллогидрата оксохлорида циркония и 3,34-5,01 мас.% тетраэтоксититана....
Тип: Изобретение
Номер охранного документа: 0002404923
Дата охранного документа: 27.11.2010
04.04.2019
№219.016.fc6c

Фотоактивированная композиция для травления пленок диоксида кремния

Изобретение относится к области производства интегральных микросхем и других электронных устройств, использующих планарную технологию их изготовления, основанную на фотолитографических процессах. Техническая задача - разработка фотоактивированной композиции для травления пленок диоксида кремния...
Тип: Изобретение
Номер охранного документа: 0002330049
Дата охранного документа: 27.07.2008
19.04.2019
№219.017.330c

Способ получения 2,4,6,8-тетраазабицикло[3.3.0]октан-3,7-диона

Изобретение относится к способу получения 2,4,6,8-тетраазабицикло[3.3.0]октан-3,7-диона (гликолурила), реакцию ведут при 80°С, в течение 60 мин, причем используют концентрированную серную кислоту в водной среде и реагенты берут в следующих мольных соотношениях: глиоксаль 2,0; мочевина 4,0;...
Тип: Изобретение
Номер охранного документа: 0002439072
Дата охранного документа: 10.01.2012
Showing 1-10 of 41 items.
10.07.2013
№216.012.53e9

Способ получения планарного волновода оксида цинка в ниобате лития

Изобретение может быть использовано области интегральной и нелинейной оптики. Способ создания планарного волновода оксида цинка на ниобате лития включает приготовление пленкообразующего раствора с последующим выдерживанием его в течение 1 суток при комнатной температуре, нанесение раствора на...
Тип: Изобретение
Номер охранного документа: 0002487084
Дата охранного документа: 10.07.2013
27.07.2013
№216.012.5994

Устройство для получения углерода и водорода из углеводородного газа

Изобретение может быть использовано при разработке газоконденсатных месторождений и утилизации углеводородного газа. Устройство для получения углерода и водорода содержит прямоугольный волновод (1), в котором поперек его широких стенок помещен проточный реактор (2). Проточный реактор (2)...
Тип: Изобретение
Номер охранного документа: 0002488553
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.59cc

Клеевая композиция

Изобретение относится к клеям на основе водной дисперсии винилацетатного полимера и может быть использовано в строительной, мебельной, текстильной, полиграфической промышленности, а также в других отраслях промышленности. Клеевая композиция включает водную дисперсию винилацетатного полимера,...
Тип: Изобретение
Номер охранного документа: 0002488609
Дата охранного документа: 27.07.2013
20.08.2013
№216.012.5f7a

Способ получения высокопористого покрытия на основе двойных оксидов кремния и никеля

Изобретение относится к технологии получения тонкопленочных материалов на основе систем двойных оксидов, применяемых в быстро развивающихся областях электронной техники и светотехнической промышленности, производстве материалов катализаторов, в качестве функционально-чувствительных,...
Тип: Изобретение
Номер охранного документа: 0002490074
Дата охранного документа: 20.08.2013
27.10.2013
№216.012.794a

Способ получения высокопористого покрытия на основе двойных оксидов кремния и марганца

Изобретение относится к технологии получения высокопористых покрытий на основе систем двойных оксидов, применяемых в быстро развивающихся областях электронной техники и светотехнической промышленности, производстве материалов катализаторов, в качестве функционально-чувствительных, декоративных,...
Тип: Изобретение
Номер охранного документа: 0002496712
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7d07

Способ получения многослойного покрытия на основе sio-zro-po-cao

Изобретение относится к тонкопленочным стеклокерамическим покрытиям, широко применяемым в материаловедении и медицинском материаловедении, в частности. Способ получения многослойного покрытия на основе SiO-ZrO-PO-CaO включает приготовление пленкообразующего раствора (ПОР) с дальнейшим...
Тип: Изобретение
Номер охранного документа: 0002497680
Дата охранного документа: 10.11.2013
27.12.2013
№216.012.906e

Композиция на основе сложных оксидов циркония, фосфора и кальция для получения покрытия

Изобретение может быть использовано в химической промышленности. Состав для получения тонкой пленки сложных оксидов циркония, фосфора и кальция содержит этиловый спирт, предварительно перегнанный и осушенный до 96 мас.%, оксохлорид циркония, хлорид кальция и ортофосфорную кислоту при следующем...
Тип: Изобретение
Номер охранного документа: 0002502667
Дата охранного документа: 27.12.2013
27.08.2014
№216.012.eeb3

Светоперераспределяющее покрытие

Изобретение может быть использовано для оптических приборов и методов исследования в различных областях науки и техники. Светоперераспределяющее покрытие включает в качестве пленкообразующей основы тетраэтоксисилан, этиловый спирт и соляную кислоту. Пленкообразующий раствор, используемый для...
Тип: Изобретение
Номер охранного документа: 0002526926
Дата охранного документа: 27.08.2014
27.11.2014
№216.013.0b22

Способ получения многослойного покрытия

Изобретение относится к тонкопленочным стеклокерамическим покрытиям, широко применяемым в материаловедении и медицинском материаловедении в частности. Способ получения многослойного покрытия на основе SiO-ZrO-PO-NaO, включающий приготовление пленкообразующего раствора с дальнейшим...
Тип: Изобретение
Номер охранного документа: 0002534258
Дата охранного документа: 27.11.2014
10.01.2015
№216.013.1a77

Способ получения фотокатализатора sno

Изобретение относится к способам получения фотокатализатора на основе полупроводникового оксида олова(II) для разложения азотсодержащих органических загрязнителей воды, которое может найти применение в химической промышленности при очистке сточных вод. Способ включает в себя приготовление...
Тип: Изобретение
Номер охранного документа: 0002538203
Дата охранного документа: 10.01.2015
+ добавить свой РИД