×
24.05.2019
219.017.5fa5

Результат интеллектуальной деятельности: МЕМБРАНА МЕДЬСЕЛЕКТИВНОГО ЭЛЕКТРОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к ионометрии, потенциометрическим методам анализа и контроля концентрации ионов в водных растворах и может быть использовано в химической, металлургической промышленности, в оптической химии, при научных исследованиях в качестве чувствительного элемента ионоселективного электрода для количественного определения концентрации ионов меди в водных растворах. Изобретение позволяет получить химически устойчивую высокоселективную медьселективную мембрану для количественного определения содержания меди в объектах окружающей среды. Сущность изобретения: мембрана медьселективного электрода содержит в качестве электродоактивного вещества амберлит JRA-400 - цинкон (АМБ-ЦН), в качестве пластификатора - диоктилфталеат (ДОФ), и поливинилхлорид, при этом имеет следующее соотношение компонентов, мас.%: электродоактивный компонент (АМБ-ЦН) 2,5-3,41; пластификатор (ДОФ) 69-79; поливинилхлорид 24,39. 1 з.п. ф-лы, 3 ил., 4 табл.

Изобретение относится к ионометрии, потенциометрическим методам анализа и контроля концентрации ионов в водных растворах и может быть использовано в химической, металлургической промышленности, в оптической химии, при научных исследованиях в качестве чувствительного элемента ионоселективного электрода (химических сенсоров) для количественного определения концентрации ионов меди в водных растворах. Изобретение направлено на создание состава мембраны ионоселективного электрода (ИСЭ), позволяющего изыскать материалы, предназначенные для использования в качестве чувствительного элемента ионоселективного электрода (химического сенсора) для количественного определения концентрации ионов меди в водных растворах.

Электроды с твердой мембраной, чувствительные к ионам меди (II), впервые получены Россом. (1)

У этих электродов в результате работы происходили заметные изменения поверхностного слоя. Фирма «Orion» выпускают медьселективные электроды. Но они имеют свои недостатки: исследуемый раствор не должен содержать ионы: Cl-, Fe3+, Cd2+, мешающие определению микроколичества S2-, Ag+, Hg2+.

Чехословацкая фирма «Crutur» изготавливала Cu2+ - селективные электроды с мембраной из медного порошка с внедренным CuS, а также с мембраной из силиконового каучука с внедренным Cu2S (2).

Недостаток - низкие коэффициенты селективности в присутствии переходных металлов.

Наиболее близким к предлагаемому изобретению (прототипом) является (3).

Состав мембран ионоселективного электрода для определения ионов свинца, включающий электродоактивный компонент, пластификатор, поливинилхлорид и липофильную добавку, содержит в качестве электродоактивного компонента - диамиды дипиколиновой (2,6-пиридиндикарбоновой) кислоты, в качестве пластификатора - диоктил себацинат (ДОС), в качестве липофильной добавки - хлорированный дикарболлид кобальта (ХДК), при этом состав имеет следующее соотношение компонентов, мас.%: электродоактивный компонент - 1,0-3,0; пластификатор (ДОС) - 60,0-75,0; липофильная добавка (ХДК) - 0,1-0,5; поливинилхлорид - остальное.

Кроме того, в качестве электродоактивного компонента могут быть использованы различные диамиды дипиколиновой (2,6-пиридиндикарбоновой) кислоты.

Существенным недостатком вышеперечисленных сенсоров является низкая механическая прочность, малый срок службы (несколько недель) и недостаточно высокая селективность, в частности, в присутствии сопутствующих переходных металлов; невысокая химическая устойчивость и невозможность работать в широком интервале pH.

Задача предлагаемого изобретения расширение ряда ионоселективных электродов (химических сенсоров) и использование новых твердых фаз в анализе объектов окружающей среды.

Технический результат в создании медьселективной мембраны, необходимой для количественного определения содержания меди в объектах окружающей среды.

Указанный технический результат в присутствии переходных металлов достигается тем, что в состав мембраны ионоселективного электрода для определения меди входит твердая фаза амберлит JRA-400 - цинкон (АМБ-ЦН), которую получили путем иммобилизации селективного органического реагента 5-(2'-карбоксифенил)-1(2"-гидрокси-5'-сульфо-3'-фенилформазан), известного под названием цинкон, на сильноосновной анионит с полистирольной основой (JRA-400).

Сущность предлагаемого изобретения заключается в том, что состав мембраны ионоселективного электрода для определения ионов меди, включающий электродоактивный компонент, пластификатор, поливинилхлорид, содержит в качестве электродоактивного вещества амберлит JRA-400 - цинкон (АМБ-ЦН), в качестве пластификатора - диоктилфталат (ДОФ), при этом имеет следующее соотношение компонентов, мас.%

Электродоактивный компонент (АМБ-ЦН) 2,5-3,41

Пластификатор (ДОФ) 69-79

Поливинилхлорид 24,39

Помимо этого, указанный результат достигается тем, что используемый электродоактивный компонент содержит формазановые циклы, образующие хелат с медью.

Такой вывод авторы делают на основании полученных результатов исследований, т.е. практически минимального влияния структуры и наличия ФАГ в цинконе на свойства полученного мембранного ионоселективного электрода на основе известных данных твердофазной спектроскопии (4).

Иммобилизация в мембране ионоселективного электрода компонентов (твердых фаз), традиционно используемая в твердофазной спектроскопии приводит к возможности разработки ионоселективного электрода с варьируемым составом и свойствами.

Пример 1

Мембрану ионоселективного электрода готовят растворением выбранных навесок всех исходных веществ: 0,07 г АМБ-ЦН; 0,5 г ПВХ; 1,5 ДОФ.

Для изготовления мембраны (диски по 10 мм в диаметре) в инертный растворитель циклогексанон (ЦТ), объемом 10 мл при постоянном перемешивании добавляют ПВХ, ДОФ и АМБ-ЦН в мас.%: 24,39% (ПВХ), 73,17% (ДОФ) и 3,41% (АМБ-ЦН). Гомогенную смесь выливают в чашку Петри и высушивают при комнатной температуре. Из эластичной пленки вырезают диски, приклеивают (при помощи раствора ПВХ в ЦТ) их к торцам поливинилхлоридных трубок. После высыхания внутрь электрода заливают 0,01 М раствор CuCl2 и погружают в раствор этого же состава, где их рекомендуют хранить между измерениями. Калибровочный график медьмембранного электрода в растворах HCl приведен на фиг.1. Угловой коэффициент электродной функции близок к теоретической в диапазоне концентраций: 1·10-4-1·10-5.

Пример 2

Мембрану ИСЭ синтезируют, как описано выше (пример 1), и для приготовления берут следующее соотношение компонентов в мас.%: АМБ-ЦН - 2,8, ДОФ - 79, ПВХ - ост.

Пример 3

Мембрану ИСЭ синтезируют, как описано выше (пример 1), и для приготовления берут следующее соотношение компонентов в мас.%: АМБ-ЦН - 2,0, ДОФ - 68, ПВХ - остальное.

Все исследуемые электроды, содержащие указанные выше компоненты в заявленном концентрационном интервале, проявляют аналогичную функцию.

Измерения электродных характеристик мембран проводили методом измерения ЭДС гальванического электрода

Зависимость ЭДС такого элемента от изменения ионов, на которые он создавался, определяется известным уравнением:

Е=Е0+(0,059/n)lgCm(Cu)

В табл.1 представлены результаты калибровки ИСЭ в водных растворах CuCl2

Таблица 1
Е, мВ 135 180 230 270 320 325
1·10-5 1·10-2 1·10-3 1·10-4 1·10-5 1·10-6
pCCu 1 2 3 4 5 6

На фиг.1 представлены результаты калибровки ИСЭ в водных растворах хлорида меди (II). Интервал прямолинейности потенциала электрода от активности ионов меди в водных растворах составляет пять порядков. Как видно из фиг.1, индекс крутизны (угловой коэффициент) мВ/pCCu составляет 50 мВ, поскольку идеальная крутизна ионоселективного электрода, созданного на двухзарядный ион, согласно уравнению Нернста, должна составлять примерно 29 мВ, аномальная величина углового коэффициента является следствием наложения электродной функций иона водорода, обусловленных гидролизом иона меди (II). Чтобы подтвердить это предположение и в целях уточнения природной электродной функции мембраны на основе модифицированных сорбентов, проводились дополнительные исследования мембранного электрода на стандартных растворах соляной кислоты и на растворах хлорида меди (II), приготовленных на 0,1 М растворе серной кислот (табл. 2, фиг.2 и табл. 3, фиг.3).

На фиг.2 представлены результаты калибровки ИСЭ АМБ-ЦН в соляной кислоте. На фиг.3 представлены результаты калибровки ИСЭ АМБ-ЦН в сернокислых растворах хлорида меди (II).

Таблица 2
Е, мВ 180 195 205 220 235 230
pH 1 2 3 4 5 6

Таблица 3
Е, мВ 175 195 200 215 230 232
pCCu 1 2 3 4 5 6

Следовательно, полученный нами электрод может быть предложен в качестве мембранного электрода для количественного определения меди (II) и альтернативного стеклянного водородного электрода.

Проверка селективности медьселективного электрода с мембраной АМБ-ЦН показал, что в ацетатном буфере заявленные составы обладают абсолютной селективностью к меди. Опытные данные не выявили чувствительности и селективности мембран к другим ионам (табл.4).

Таблица 4
Угловой коэффициент, мВ/pX
Мембрана (№ примера) Zn2+ Cd2+ Pb2+ Cu2+
АМБ-ЦН ПВХ ДОФ (1) 0±1 0±1 1±1 29±2
АМБ-ЦН ПВХ ДОФ (2) 1±1 0±1 0±1 30±2
АМБ-ЦН ПВХ ДОФ (3) 0±1 1±1 1±1 27±2

Приведенные данные лабораторных исследований подтверждают технический результат.

Преимущества предлагаемого способа:

- Существенная химическая устойчивость мембраны в различных реакционных средах: 6 М растворах кислот, щелочей; органических растворителей (этанол, ацетон, диоксан и т.д.)

- Повышение селективности (избирательности) мембраны к ионам меди (II) в присутствии переходных металлов, а также макро- и микрокомпонентов различных объектов.

- Существенное повышение коэффициента селективности к ионам меди в присутствии сопутствующих в объектах ионов переходных металлов до 10-5, дает большие возможности реального определения меди во многих технологических растворах, сточных водах, пищевых объектах.

- Высокая химическая устойчивость полученных мембран дает возможность определения ионов меди в сильнокислых средах (pH<0).

- Возможность контроля кислотности среды.

Литература

1. Никольский Б.П. Ионный обмен и ионометрия. - Л.: ЛГУ, 1979.

2. Никольский Б.П. Ионоселективные электроды. - Л.: ЛГУ, 1980.

3. Патент РФ №2315988, приоритет 28.08.2006, опублик. 27.01.2008. «Состав мембраны ионоселективного электрода для определения ионов свинца».

4. Татаева С.Д., Коренман Я.И. и др. Журнал «Сорбционные и хроматографические процессы». 2005, №5. С.696-703. «Сорбция меди (II) на анионитах с иммобилизованной формазановой группировкой».

Источник поступления информации: Роспатент

Showing 1-4 of 4 items.
20.01.2013
№216.012.1c71

Способ получения веществ, стимулирующих клеточное дыхание

Изобретение относится к получению содержащих динитрофенольный фрагмент 2-гидрокси-3,5-динитро-N-(салицилиден)-анилину или 2-гидрокси-3,5-динитро-N-(4-диметиламинобензилиден)-анилину, рассеивающих протонный градиент, создаваемый дыханием, и влияющих на окислительное фосфорилирование в...
Тип: Изобретение
Номер охранного документа: 0002472775
Дата охранного документа: 20.01.2013
27.06.2013
№216.012.5058

Способ получения материалов на основе y(ваве)cuo

Изобретение относится к способу получения материалов на основе сложного оксида Y(BaBe)CuO с широким спектром электрических свойств от высокотемпературных сверхпроводников до полупроводников, которые могут быть использованы в микроэлектронике; электротехнике; энергетике, например для получения...
Тип: Изобретение
Номер охранного документа: 0002486161
Дата охранного документа: 27.06.2013
17.04.2019
№219.017.1623

Способ концентрирования и определения меди, свинца и кадмия

Изобретение относится к области аналитической химии. Способ аналитического определения меди, свинца и кадмия в пробе включает контактирование пробы с цинкомом, предварительно нанесенным на высокоосновной анионит JRA-400 из водно-ацетоного раствора, и определение упомянутых элементов методом...
Тип: Изобретение
Номер охранного документа: 0002361660
Дата охранного документа: 20.07.2009
09.05.2019
№219.017.4f62

Способ очистки сточных вод от красителей

Изобретение относится к способам очистки сточных вод от красителей фотокаталитическим окислением под давлением кислорода и может быть использовано при очистке сточных вод от азокрасителей в текстильной промышленности. Для осуществления способа проводят очистку от азокрасителей в ячейке с...
Тип: Изобретение
Номер охранного документа: 0002404930
Дата охранного документа: 27.11.2010
Showing 1-6 of 6 items.
27.04.2013
№216.012.3a0b

Очистка сточных вод от тяжелых металлов

Изобретение может быть использовано для очистки воды в фармацевтической и пищевой отраслях промышленности. Способ очистки сточных вод от тяжелых металлов включает пропускание воды в динамическом режиме через колонку со смесью двух модифицированных сорбентов в соотношении 2:1. Первый сорбент...
Тип: Изобретение
Номер охранного документа: 0002480420
Дата охранного документа: 27.04.2013
27.07.2013
№216.012.5a98

Мембрана цинкселективного электрода

Изобретение относится к потенциометрическим методам анализа и контроля концентрации ионов в водных растворах и может быть использовано в химической, металлургической отраслях промышленности, в оптической химии и в практике научных исследований. Техническим результатом изобретения является...
Тип: Изобретение
Номер охранного документа: 0002488813
Дата охранного документа: 27.07.2013
10.04.2015
№216.013.3b8e

Способ группового извлечения тяжелых металлов и модифицированный сорбент для его осуществления

Изобретение относится к области аналитической химии, химической технологии и экологии. Предложен способ группового извлечения меди, цинка и кадмия, включающий сорбционное концентрирование металлов на амберлите IRA-400, модифицированном 2,7-бисазопроизводным хромотроповой кислоты. Амберлит...
Тип: Изобретение
Номер охранного документа: 0002546734
Дата охранного документа: 10.04.2015
20.01.2018
№218.016.1110

Мембрана свинецселективного электрода и способ ее получения

Изобретение относится к электрохимическим методам анализа, а в частности к ионометрии для определения активности (концентрации) ионов свинца в водных растворах. Мембрана свинецселективного электрода включает следующие соединения при определенном соотношении компонентов, мас.%: поливинилхлорид...
Тип: Изобретение
Номер охранного документа: 0002633939
Дата охранного документа: 19.10.2017
17.04.2019
№219.017.1623

Способ концентрирования и определения меди, свинца и кадмия

Изобретение относится к области аналитической химии. Способ аналитического определения меди, свинца и кадмия в пробе включает контактирование пробы с цинкомом, предварительно нанесенным на высокоосновной анионит JRA-400 из водно-ацетоного раствора, и определение упомянутых элементов методом...
Тип: Изобретение
Номер охранного документа: 0002361660
Дата охранного документа: 20.07.2009
05.02.2020
№220.017.fdea

Кадмий-селективный электрод

Предлагаемое изобретение относится к электрохимическим методам анализа, в частности изготовлению ионоселективного электрода на основе октадециламина для определения ионов кадмия. Оптимизацию состава мембраны ионоселективного электрода осуществляли за счет изменения массовых соотношений...
Тип: Изобретение
Номер охранного документа: 0002712920
Дата охранного документа: 03.02.2020
+ добавить свой РИД