×
24.05.2019
219.017.5ea4

Результат интеллектуальной деятельности: Способ получения нанокапсул ципрофлоксацина гидрохлорида в конжаковой камеди

Вид РИД

Изобретение

№ охранного документа
0002688670
Дата охранного документа
22.05.2019
Аннотация: Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул ципрофлоксацина гидрохлорида в оболочке из конжаковой камеди. Способ характеризуется тем, что в суспензию конжаковой камеди в бензоле и 0,01 г препарата Е472с добавляют порошок ципрофлоксацина гидрохлорида, затем добавляют диэтиловый эфир, при этом соотношение количества ципрофлоксацина гидрохлорида и количества конжаковой камеди составляет 1:1, 1:3, 1:5 или 5:1, полученную суспензию нанокапсул отфильтровывают и сушат. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул и может быть использован в фармацевтической промышленности. 2 ил., 5 пр.

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат.2092155 МПК А61К 047/02, А61К 009/16 опубликован 10.10.1997 Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2095055 МПК А61К 9/52, А61К 9/16, А61К 9/10 Российская Федерация опубликован 10.11.1997 предложен способ получения твердых непористых микросфер включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от - 15 до - 50°С, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.

В пат. 2076765 МПК B01D 9/02 Российская Федерация опубликован 10.04.1997 предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.

Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.

В пат. 2101010 МПК А61К 9/52, А61К 9/50, А61К 9/22, А61К 9/20, А61К 31/19 Российская Федерация опубликован 10.01.1998 предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.

В пат. 2139046 МПК А61К 9/50, А61К 49/00, А61К 51/00 Российская Федерация опубликован 10.10.1999 предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.

Недостатками предложенного способа являются сложность и длительность процесса, использования высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.

В пат. 2159037 МПК A01N 25/28, A01N 25/30 Российская Федерация опубликован 20.11.2000 предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащие твердый агрохимический материал 0,1-55 мас. %, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас. % неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.

В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135 Описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием п-ксилилена включает следующие основные стадии: испарение димера п-ксилилена (170°С), термическое разложение его в пиролизной печи (650°С при остаточном давлении 0,5 мм рт.ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°С, остаточное давление 0,1 мм рт.ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-п-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.

Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.

В пат. WO/2010/076360 ES МПК B01J 13/00; А61К 9/14; А61К 9/10; А61К 9/12 опубликован 08.07.2010 предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастиц с существенно сфероидальной морфологи.

Недостатком предложенного способа является сложность и длительность процесса процесса.

В пат. WO/2010/119041 ЕР МПК A23L 1/00 опубликован 21.10.2010 предложен способ получения микрошариков, сожержащих активный компонент инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения, и последующее отверждение микрошариков в растворе анионный полисахарид с pH 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является тепло-денатурирующим, хотя и другие методы денатурации, также применимы, например, денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°C до 80°C, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, продкет подлежит фильтрации, который осуществляется через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронных размеров пор, например, от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG,. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.

Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), получение микрокапсул посредством денатурации белка, сложность выделения полученных денным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.

В пат. WO/2011/003805 ЕР МПК B01J 3/18; B65D 83/14; C08G 18/00 опубликован 13.01.2011 описан способ получения микрокапсул, которые подходят для использования в композициях образующих герметики, пены, покрытия или клеи.

Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промышленности.

В пат. 20110223314 МПК B05D 7/0020060101 B05D 007/00, В05С 3/0220060101 В05С 003/02; В05С 11/0020060101 В05С 011/00; B05D 1/1820060101 B05D 001/18; B05D 3/0220060101 B05D 003/02; B05D 3/0620060101 B05D 003/06 от 10.03. 2011 U S описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.

Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.

В пат. WO/2011/150138 US МПК C11D 3/37; B01J 13/08; C11D 17/00 опубликован 01.12.2011 описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.

Недостатками данного способа являются сложность исполнения и длительность процесса.

В пат. WO/2011/104526 GB МПК B01J 13/00; B01J 13/14; С09В 67/00; C09D 11/02 опубликован 01.09.2011 предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на грамм диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых, изделий, по весу; и б) сшивания полиуретанового диспергатора при наличии твердой и жидкой среды, так как для инкапсуляции твердых частиц, которой полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.

Недостаткакми предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернил струйной печати, для фармацевтической промышленности данная методика неприменима.

В пат. WO/2011/056935 US МПК C11D 17/00; А61К 8/11; B01J 13/02; C11D 3/50 опубликован 12.05.2011 описан способ получения микрокапсул размером от 15 микрон. В качестве материала оболочки предложены полимеры группы, состоящей из полиэтилена, полиамидов, полистиролов, полиизопренов, поликарбонаты, полиэфиры, полиакрилатов, полимочевины, полиуретанов, полиолефинов, полисахаридов, эпоксидных смол, виниловых полимеров и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемым для материала сердечника и материалов в окружающей среде, в которой инкапсулируются агент выгода будет использоваться, чтобы обеспечивать выгоды, которые будут получены. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воска, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

В пат. WO/2011/160733 ЕР МПК B01J 13/16 опубликован 29.12.2011 описан способ получения микрокапсул, которые содержат оболочки и ядра нерастворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (А) и (В) нерастворимых в воде собираются вместе до образования эмульсии, затем добавляется к смеси бифункциональных аминов и нагревается до температуры не менее 60°С до формирования микрокапсул.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул ципрофлоксациона гидрохлорида в конжаковой камеди, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул ципрофлоксацина гидрохлорида, отличающийся тем, что в качестве оболочки нанокапсул используется конжаковая камедь, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - диэтилового эфира.

Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул антибиотиков конжаковой камеди, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - диэтилового эфира.

Результатом предлагаемого метода являются получение нанокапсул ципрофлоксацина гидрохлорида, в конжаковой камеди при 25°С в течение 15 минут. Выход нанокапсул составляет 100%.

ПРИМЕР 1 Получение нанокапсул ципрофлоксацина гидрохлорида в конжаковой камеди, соотношение ядро : оболочка 1:3

В суспензию 1,5 г конжаковой камеди в бензоле и 0,01 г препарата Е472 с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества, небольшими порциями добавляют 0,5 г порошка ципрофлоксацина гидрохлорида. Затем по каплям добавляют 5 мл диэтилового эфира. Полученную суспензию нанокапсул отфильтровывают и сушат. Получено 2 г белого порошка. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул ципрофлоксацина гидрохлорида в конжаковой камеди, соотношение ядро : оболочка 1:1

В суспензию 0,5 г конжаковой камеди в бензоле и 0,01 г препарата в качестве поверхностно-активного вещества, добавляют 0,5 г порошка ципрофлоксацина гидрохлорида. Затем по каплям добавляют 5 мл диэтилового эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 1 г белого порошка. Выход составил 100%.

ПРИМЕР 3 Получение нанокапсул ципрофлоксацина гидрохлорида в конжаковой камеди, соотношение ядро : оболочка 1:5

В суспензию 1,5 г конжаковой камеди в бензоле и 0,01 г препарата Е472 с в качестве поверхностно-активного вещества, добавляют 0,3 г порошка ципрофлоксацина гидрохлорида. Затем по каплям добавляют 5 мл диэтилового эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 1,8 г белого порошка. Выход составил 100%.

ПРИМЕР 4 Получение нанокапсул ципрофлоксацина гидрохлорида в конжаковой камеди, соотношение ядро : оболочка 5:1

В суспензию 0,5 г конжаковой камеди в бензоле и 0,01 г препарата Е472 с в качестве поверхностно-активного вещества, добавляют 2,5 г порошка ципрофлоксацина гидрохлорида. Затем по каплям добавляют 5 мл диэтилового этилового эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 3 г белого порошка. Выход составил 100%.

ПРИМЕР 5 Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.

Оптимальным разведением для разведения было выбрано 1: 100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length : Auto, Min Expected Size : Auto. длительность единичного измерения 215s, использование шприцевого насоса.

Способ получения нанокапсул ципрофлоксацина гидрохлорида в конжаковой камеди, характеризующиеся тем, что в суспензию конжаковой камеди в бензоле и 0,01 г препарата Е472с добавляют порошок ципрофлоксацина гидрохлорида, затем добавляют диэтиловый эфир, при этом соотношение количества ципрофлоксацина гидрохлорида и количества конжаковой камеди составляет 1:1, 1:3, 1:5 или 5:1, полученную суспензию нанокапсул отфильтровывают и сушат.
Способ получения нанокапсул ципрофлоксацина гидрохлорида в конжаковой камеди
Способ получения нанокапсул ципрофлоксацина гидрохлорида в конжаковой камеди
Источник поступления информации: Роспатент

Showing 221-230 of 672 items.
27.02.2016
№216.014.bf00

Способ получения нанокапсул антибиотиков в агар-агаре

Изобретение относится в области нанотехнологии, медицины, фармакологии и ветеринарной медицины. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование...
Тип: Изобретение
Номер охранного документа: 0002576236
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c10a

Способ получения нанокапсул антисептика-стимулятора дорогова (асд) 2 фракция

Изобретение относится в области нанотехнологии, в частности к способу получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в оболочке натрий карбоксиметилцеллюлозе, характеризующемуся тем, что АСД 2 фракция диспергируют в суспензию натрий карбоксиметилцеллюлозы в бензоле в...
Тип: Изобретение
Номер охранного документа: 0002576239
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c1d4

Способ получения нанокапсул кверцетина и дигидрокверцетина в хитозане

Изобретение относится в области нанотехнологии. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование кверцетина и дигидрокверцетина, оболочки нанокапсул...
Тип: Изобретение
Номер охранного документа: 0002574897
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c428

Способ получения нанокапсул бетулина

Изобретение относится в области нанотехнологии и пищевой промышленности. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование бетулина и оболочки...
Тип: Изобретение
Номер охранного документа: 0002574899
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c5dc

Способ получения нанокапсул флавоноидов шиповника

Изобретение относится к способу получения нанокапсул флавоноидов шиповника. Указанный способ характеризуется тем, что флавоноиды шиповника диспергируют в суспензию альгината натрия в бензоле в присутствии препарата Е472с при перемешивании, затем приливают хлороформ, полученный осадок...
Тип: Изобретение
Номер охранного документа: 0002578404
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c6b0

Способ получения нанокапсул цитокининов

Изобретение относится к нанотехнологии, в частности к растениеводству, и заключается в способе получения нанокапсул 6-аминобензилпурина, который характеризуется тем, что в качестве оболочки нанокапсул используют альгинат натрия, а в качестве ядра используют 6-аминобензилпурин, при осуществлении...
Тип: Изобретение
Номер охранного документа: 0002578403
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c85f

Способ получения нанокапсул рибофлавина

Изобретение относится к области нанотехнологии. Способ получения нанокапсул рибофлавина в оболочке из альгината натрия осуществляют физико-химическим методом осаждения нерастворителем, при этом рибофлавин диспергируют в суспензию альгината натрия в изопропаноле в присутствии препарата Е472с....
Тип: Изобретение
Номер охранного документа: 0002578411
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c8d0

Способ получения нанокапсул алкалоидов

Изобретение относится к области нанотехнологии, фармакологии, фармацевтики и ветеринарной медицины. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование...
Тип: Изобретение
Номер охранного документа: 0002578408
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.ca22

Способ получения нанокапсул флаваноидов шиповника

Изобретение относится к нанотехнологии, в частности к пищевой промышленности, и представляет собой способ получения нанокапсул флаваноидов шиповника, характеризующийся тем, что в качестве оболочки используется альгинат натрия, а в качестве ядра используются флаваноиды шиповника, при...
Тип: Изобретение
Номер охранного документа: 0002577692
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.ca51

Способ получения нанокапсул 2,4-дихлорфеноксиуксусной кислоты

Изобретение относится к нанотехнологии. Для получения оболочки нанокапсул 2,4-Д используют натрий карбоксиметилцеллюлозу методом осаждения нерастворителем с применением бензола в качестве осадителя. Изобретение позволяет упростить и ускорить процесс получения нанокапсул, а также увеличить их...
Тип: Изобретение
Номер охранного документа: 0002577598
Дата охранного документа: 20.03.2016
Showing 221-230 of 686 items.
12.01.2017
№217.015.5f46

Способ получения нанокапсул адаптогенов в пектине

Изобретение относится к области нанотехнологии и фармацевтики. Описан способ получения нанокапсул адаптогенов в оболочке из пектина. В качестве материала оболочки используется низкоэтерифицированный или высокоэтерифицированный яблочный или цитрусовый пектины. В качестве адаптогена используют...
Тип: Изобретение
Номер охранного документа: 0002590693
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.60a2

Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием

Изобретение относится в области нанотехнологии и фармацевтики. Описан способ получения нанокапсул с настойкой эхинацеи в оболочке из альгината натрия. Согласно способу настойку эхинацеи добавляют в суспензию альгината натрия в петролейном эфире в присутствии препарата Е472с в качестве...
Тип: Изобретение
Номер охранного документа: 0002590666
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6606

Способ получения нанокапсул креатина

Способ получения нанокапсул креатина в альгинате натрия, которые можно использовать в спортивном питании и животноводстве, относится к области нанотехнологии. Способ включает осаждение нанокапсул креатина петролейным эфиром из раствора альгината натрия в бутаноле в присутствии сложного эфира...
Тип: Изобретение
Номер охранного документа: 0002592202
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6613

Способ получения нанокапсул серы

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул серы. Согласно способу по изобретению серу добавляют в суспензию альгината натрия в бутаноле в присутствии препарата Е472с при перемешивании. Затем добавляют осадитель - серный эфир. Полученную суспензию нанокапсул...
Тип: Изобретение
Номер охранного документа: 0002592203
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6660

Способ получения нанокапсул серы

Изобретение относится к способу получения нанокапсул серы. Указанный способ характеризуется тем, что серу диспергируют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами...
Тип: Изобретение
Номер охранного документа: 0002592211
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.67ae

Способ получения нанокапсул адаптогенов в конжаковой камеди

Изобретение относится к способу получения нанокапсул адаптогенов. Указанный способ характеризуется тем, что экстракт элеутерококка или экстракт женьшеня добавляют в суспензию конжаковой камеди в бензоле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и...
Тип: Изобретение
Номер охранного документа: 0002591798
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.67fd

Способ получения нанокапсул экстракта зеленого чая

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул экстракта зеленого чая. Способ характеризуется тем, что качестве оболочки используется натрий карбоксиметилцеллюлоза, а в качестве ядра используется экстракт...
Тип: Изобретение
Номер охранного документа: 0002591802
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.69c6

Способ получения нанокапсул экстракта зеленого чая

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул экстракта зеленого чая. Способ характеризуется тем, что качестве оболочки используется каррагинан, а в качестве ядра используется экстракт зеленого чая, при...
Тип: Изобретение
Номер охранного документа: 0002591800
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6c8e

Способ получения нанокапсул адаптогенов в геллановой камеди

Изобретение относится к способу получения нанокапсул адаптогенов в геллановой камеди, характеризующемуся тем, что навеску адаптогенов: экстрактов элеутерококка, жень-шеня, лимонника китайского, родиолы розовой или аралии добавляют в суспензию геллановой камеди в изопропаноле, в присутствии 0,01...
Тип: Изобретение
Номер охранного документа: 0002597153
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6df6

Способ получения нанокапсул лекарственных растений, обладающих седативным действием

Изобретение относится к способу получения нанокапсул лекарственных растений, обладающих седативным действием. Указанный способ характеризуется тем, что настойку валерьяны, пустырника или пиона уклоняющегося добавляют в суспензию альгината натрия в петролейном эфире в присутствии сложного эфира...
Тип: Изобретение
Номер охранного документа: 0002597151
Дата охранного документа: 10.09.2016
+ добавить свой РИД