×
24.05.2019
219.017.5e8c

Способ получения синтез-газа

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области получения синтез-газа путем термохимической переработки растительного и тяжелого углеводородного сырья. Способ включает нагрев тяжелого углеводородного сырья до 60-90°С, измельчение растительного сырья до размера частиц не более 200 мкм, пиролиз измельченного растительного сырья при 500-800°С с получением первого потока газа, смолы и полукокса, смешение смолы с тяжелым углеводородным сырьем, диспергирование смеси смолы с тяжелым углеводородным сырьем в присутствии водной суспензии сажи и воды с получением суспензии, которую подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см, временем обработки 1,0-3,0 ч и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт, временем обработки 1,0-8,0 ч при температуре 50-70°С, с образованием обработанной суспензии. Затем суспензию направляют на газификацию при 800-1400°С с получением второго потока газа и водной суспензии сажи, направляемой на диспергирование смеси смолы с тяжелым углеводородным сырьем. Диспергирование полученного при пиролизе полукокса в присутствии воды с получением суспензии и проведение газификации полученной суспензии с получением третьего потока газа и водной суспензии сажи. Далее смешение первого потока газа со вторым и третьим потоками газа после отделения водной суспензии сажи и очистки образованной газовой смеси с получением целевого синтез-газа. Техническим результатом изобретения является повышение соотношения Н:СО в синтез-газе при одновременном снижении сажеобразования. 3 пр.
Реферат Свернуть Развернуть

Изобретение относится к области получения синтез-газа путем термохимической переработки растительного и тяжелого углеводородного сырья.

Известен способ термохимической переработки биомассы для получения синтез-газа, заключающийся в загрузке измельченного сырья - биомассы в термохимический реактор, пиролизе биомассы без доступа воздуха до температуры термического разложения с образованием сопутствующих продуктов и синтез-газов, отводимых из реактора в циркулирующий поток и к потребителю. Процесс пиролиза в реакторе осуществляют при одновременном вводе в него теплоносителя на основе нагретых до температуры пиролиза газообразных продуктов, в качестве которых используют отводимые из циркулирующего потока синтез-газы, при этом используемый в процессе пиролиза теплоноситель дополнительно содержит пары воды и/или углекислый газ, последний из которых или воду вводят в поток газообразных продуктов до нагрева их до температуры пиролиза (RU 2464295, 2010).

Также известен способ получения газов из нефтяных остатков, включающий эмульгирование гудрона или битума с водой с образованием водно-гудроновой эмульсии, парокислородную газификацию эмульсии и очистку полученного синтез-газа (RU 41307, 2004).

Главным недостатком известных способов является использование в процессе получения синтез-газа только одного вида сырья, либо растительного происхождения, либо углеводородного.

Из известных технических решений наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ получения синтеза-газа из комбинированного сырья, состоящего из биомассы и тяжелой углеводородной фракции, заключающийся в смешивании биомассы с предварительно подогретой тяжелой углеводородной фракцией с получением смеси с заданной степенью влажности, измельчении полученной смеси и последующей подачей измельченной смеси в виде суспензии мелких частиц биомассы, диспергированных в тяжелой углеводородной фракции, на стадию газификации (RU 2455344, 2008).

Однако, указанный способ приводит к получению синтез-газа с соотношением Н2:СО не более 0,85-0,92 и не решает проблемы снижения сажеобразования.

Технической проблемой, на решение которой направлено настоящее изобретение, является повышение соотношения Н2:СО в синтез-газе при одновременном снижении сажеобразования.

Указанная проблема решается описываемым способом получения синтез-газа из тяжелого углеводородного и растительного сырья, включающий нагрев тяжелого углеводородного сырья до 60-90°С, измельчение растительного сырья до размера частиц не более 200 мкм, пиролиз измельченного растительного сырья при 500-800°С с получением первого потока газа, смолы и полукокса, смешение смолы с тяжелым углеводородным сырьем, диспергирование смеси смолы с тяжелым углеводородным сырьем в присутствии водной суспензии сажи и воды с получением суспензии, которую подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см2, при температуре 50-70°С, времени обработки 1,0-3,0 ч и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт при температуре 50-70°С, времени обработки 1,0-8,0 ч с образованием обработанной суспензии, которую направляют газификацию при 800-1400°С с получением второго потока газа и водной суспензии сажи, направляемой на диспергирование смеси смолы с тяжелым углеводородным сырьем, диспергирование полученного при пиролизе полукокса в присутствии воды с получением суспензии, проведение газификации полученной суспензии при 800-1400°С с получением третьего потока газа и водной суспензии сажи, направляемой на диспергирование смеси смолы с тяжелым углеводородным сырьем, смешение первого потока газа со вторым и третьим потоками газа после отделения от первого и второго потоков водной суспензии сажи и очистки образованной газовой смеси с получением целевого синтез-газа.

Достигаемый технический результат заключается в реализации непрерывных деструктивных процессов на всех стадиях технологии во всем диапазоне температур, а также в расширении арсенала технологий получения синтез-газа из растительного и тяжелого углеводородного сырья.

Сущность способа заключается в следующем.

В качестве растительного сырья в описываемом способе возможно использовать любые остатки сельскохозяйственного производства, например, кукурузные кочерыжки и стебли, лузгу, жмых и шрот от переработки подсолнечника, стебли подсолнечника, рисовую шелуху, отходы производства льна и другие отходы, образующиеся при переработке сельскохозяйственного сырья растительного происхождения или их смеси.

Используемое тяжелое углеводородное сырье в рамках данной заявки представляет собой, в частности, разнообразные тяжелые нефтяные остатки (тяжелые нефтяные остатки (ТНО), такие, как, например, мазут, гудрон), тяжелые фракции нефти, вакуумные газойли, газойли в смеси с мазутом, битуминозная нефть, смолы пиролиза, асфальтосмолистые парафинистые отложения (АСПО), концентрированные нефтешламы с высоким содержанием нефтяной составляющей или их смесь.

Способ проводят следующим образом.

Проводят нагрев тяжелого углеводородного сырья до 60-90°С. Растительное сырье подвергают измельчению до степени помола не более 200 мкм, например, последовательно в дробилке до 1-3 мм и в мельнице до 100-200 мкм.

Измельченное растительное сырье подвергают пиролизу при 500-800°С, со скоростью подъема температуры ~10 град/мин и коэффициенте недостатка воздуха от 0,3-0,7 и получают первый поток газа, смолу и полукокс.

Далее полученную смолу смешивают с нагретым тяжелым углеводородным сырьем в соотношении, обеспечивающем получение текучей, при температуре смешения, среды и проводят диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем в присутствии водной суспензии сажи, образующейся в результате проведения последующей газификации, и воды с получением суспензии. Массовое соотношение тяжелого углеводородного сырья и смолы составляет, предпочтительно, 7-4:1. Количество воды (с учетом воды, содержащейся в водной суспензии сажи) составляет, предпочтительно, 10-30% от массы смеси.

Температура диспергирования составляет 60-90°С. Возможно проведение процесса непрерывно, в проточных условиях. Используют различные типы проточных диспергаторов. Скорость вращения дисков диспергатора, предпочтительно, составляет от 1400 до 6000 об в минуту. Зазор между дисками, предпочтительно, составляет 1,5-5,0 мм. При этом происходит не только гомогенизация компонентов смеси, но и активация последних, приводящая, в частности, к образованию новых макрорадикалов, способствующих ускорению течения процессов деструкции, а также активированию инертного компонента - воды. Таким образом, использование указанного процесса диспергирования (механоактивации) приводит, в том числе, к переводу используемой воды в мелкодисперсное активное состояние. При этом средний размер частиц воды, диспергированной в углеводородной смеси составляет 5-20 мкм.

Полученную в результате механоактивации суспензию подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см2 при температуре 50-70°С, времени обработки 1,0-3,0 ч и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт при температуре 50-70°С, времени обработки 1,0-8,0 ч.

Обработанную вышеуказанным образом суспензию подвергают газификации при 800-1400°С, содержании кислорода в дутье от 20 до 95% об. и коэффициенте недостатка воздуха, равном 0,3-0,5 и получают второй поток газа, содержащий сажу. Образуется также мелкозернистый зольный остаток.

В описываемом способе процесс газификации может быть проведен традиционным способом при воздушном, воздушно-кислородном и кислородном дутье. При проведении газификации использование пара не рекомендуется вследствие наличия в используемой суспензии воды в мелкодисперсном состоянии. Указанная вода становится реакционно-активной в процессе газификации, так как способствует явлению микровзрыва, распыляет и активно газифицирует асфальто-смолистые, смолистые вещества, находящиеся в используемом сырье, что позволяет снизить смоло- и сажеобразование.

Полученный в результате газификации второй поток газа, содержащий сажу, пропускают через мокрый скруббер, где отделяют водную суспензию сажи. Указанную водную суспензию сажи направляют на диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем. Предпочтительно на диспергирование направляют все количество образованной водной суспензии сажи

Полученный при пиролизе полукокс подвергают диспергированию в присутствии воды с получением суспензии. Количество указанной воды составляет, предпочтительно, 10-30% от массы смеси. Температура диспергирования составляет, предпочтительно, 60-90°С. Возможно проведение процесса непрерывно, в проточных условиях. Используют различные типы проточных диспергаторов. Скорость вращения дисков диспергатора, предпочтительно, составляет от 1400 до 6000 об в минуту. Зазор между дисками, предпочтительно, составляет 1,5-5,0 мм. В результате получают суспензию, с размерами частиц полукокса 5-20 мкм

Затем полученную суспензию подвергают газификации при 800-1400°С, содержании кислорода в дутье от 20 до 95% об. и коэффициенте недостатка воздуха, равном 0,3-0,5 и получают третий потока газа, содержащий сажу.

В описываемом способе процесс газификации может быть проведен традиционным способом при воздушном, воздушно-кислородном и кислородном дутье. При проведении газификации использование пара не рекомендуется вследствие наличия в используемой суспензии воды в мелкодисперсном состоянии.

Полученный в результате газификации третий поток газа, содержащий сажу, пропускают через мокрый скруббер, где отделяют водную суспензию сажи. Указанную водную суспензию сажи направляют на диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем. Предпочтительно на диспергирование направляют все количество образованной водной суспензии сажи.

Далее проводят смешение вышеоговоренных первого потока газа, второго потока газа после отделения от него водной суспензии сажи и третьего потока газа после отделения от него водной суспензии сажи. Полученную смесь газов подвергают очистке по известным технологиям, в частности, от примесей, в том числе, от CO2, сероводорода, аммиака и роданидов с помощью моноэтаноламина с получением целевого синтез-газа.

В зависимости от типа дутья, состав газовой смеси после очистки меняется: с повышением количества кислорода с 20 до 95% уменьшается количество азота в газовой смеси с 55-60% до 1,5-3,0% и, соответственно, возрастает объемное соотношение Н2:СО до 2,2-2,5:1

Ниже приведены примеры, иллюстрирующие, но не ограничивающие изобретение.

Пример 1.

В качестве тяжелого углеводородного сырья используют тяжелый нефтяной остаток - мазут, в качестве растительного сырья - кукурузные кочерыжки.

Исходный мазут нагревают до 60°С. Кукурузные кочерыжки подвергают двухстадийному измельчению последовательно в дробилке до среднего размера 1-3 мм и мельнице до степени помола 150 мкм.

Измельченное растительное сырье подвергают пиролизу при температуре 700°С и атмосферном давлении. При пиролизе образуются первый поток газа, смола и полукокс.

Состав газа (без учета азота) следующий, об. %: Н2 - 12,3; СН4 - 39,9; С2Н6 - 1,0; СО - 22,4; - 24,5. Состав смолы: н.к. - 40°С; фракция н.к. - 180°С - 20,2%; 180-240°С - 28,7%; 240-300°С - 19,3%; 300-360°С - 13,3%; 360 - к.к. к.к. - 450°С - 18,5%. Выход продуктов, мас. %: полукокс - 50,0; вода - 21,5; смола - 12,0; газ + потери - 16,5.

Далее смешивают нагретый мазут и смолу (массовое соотношение компонентов составляет 7:1) Полученную смесь подвергают диспергированию (механоактиваций в диспергаторе) в присутствии водной суспензии сажи (содержание сажи 1,5% масс), образующейся в результате проведения последующего процесса газификации, и воды. Суммарное количество воды (с учетом воды, содержащейся в водной суспензии сажи) составляет 10% от массы смеси.

Температура диспергирования составляет 80°С. Диспергирование проводят при скорости вращения дисков диспергатора 3000 об/мин, зазоре между дисками 3 мм. Средний размер частиц воды, диспергированной в углеводородной составляющей составляет 5-20 мкм.

Полученную при диспергировании суспензию подвергают последовательно акустической обработке с частотой излучения 25 кГц, интенсивностью излучения 9 Вт/см2 при температуре 60°С, времени обработки 2,5 ч и затем электромагнитной обработке с частотой излучения 60 МГц, мощностью 0,2 кВт при температуре 60°С, времени обработки 6,0 ч.

Обработанную суспензию подвергают газификации при воздушном дутье. Газификацию проводят при коэффициенте недостатка воздуха 0,3 в пересчете на кислород, при температуре 800°С, без использования давления. Полученный в результате газификации второй поток газа, содержащий сажу, пропускают через мокрый скруббер, где отделяют водную суспензию сажи (количество сажи 1,2% масс). Все количество образованной водной суспензии сажи направляют на диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем.

Полученный при пиролизе полукокс подвергают диспергированию в присутствии воды с получением суспензии. Количество указанной воды составляет 10% от массы смеси. Температура диспергирования составляет 70-75°С. Процесс проводят непрерывно, в проточных условиях. Диспергирование проводят при скорости вращения дисков диспергатора 3000 об/мин, зазоре между дисками 3 мм. Средний размер частиц полукокса, составляет 5-20 мкм.

Затем полученную суспензию подвергают газификации при 800°С, при воздушном дутье. Газификацию проводят при коэффициенте недостатка воздуха 0,3 в пересчете на кислород, при атмосферном давлении с получением третьего потока газа, содержащего сажу.

Полученный в результате газификации третий поток газа, содержащий сажу, пропускают через мокрый скруббер, где отделяют водную суспензию сажи. Указанную водную суспензию сажи направляют на диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем. При этом на диспергирование направляют все количество образованной водной суспензии сажи

Далее проводят смешение вышеоговоренных первого потока газа, второго потока газа после отделения от него водной суспензии сажи и третьего потока газа после отделения от него водной суспензии сажи. Полученную смесь газов подвергают очистке по известным технологиям, в частности, от примесей, в том числе, от CO2, сероводорода, аммиака и роданидов с помощью моноэтаноламина с получением целевого синтез-газа.

Выход целевого продукта - синтез-газа (СО+ Н2) составляет 34,2%. Количество образующейся сажи составляет 1,2% масс.

Пример 2.

В качестве тяжелого углеводородного сырья используют мазут, в качестве растительного сырья - шелуху гречки.

Исходный мазут нагревают до 70-75°С.

Шелуху гречки подвергают двухстадийному измельчению последовательно в дробилке и мельнице до степени помола 170 мкм.

Измельченное растительное сырье подвергают пиролизу при температуре 600°С и атмосферном давлении. При пиролизе образуются первый поток газа, смола в количестве 15% масс и полукокс в количестве 45% масс.

Далее нагретый мазут и образующуюся при пиролизе смолу смешивают (массовое соотношение компонентов составляет 4:1, соответственно). Полученную смесь подвергают диспергированию (механоактивации) в присутствии водной суспензии сажи (содержание сажи 1,2%масс) и воды. Суммарное количество воды (с учетом воды, содержащейся в водной суспензии сажи) составляет 15% от массы смеси. При этом используют водную суспензию сажи, образующуюся в результате проведения последующей газификации.

Температура диспергирования составляет 80°С. Диспергирование проводят при скорости вращения дисков диспергатора 3000 об/мин, зазоре между дисками 3 мм. Средний размер частиц воды, диспергированной в углеводородной составляющей составляет 5-20 мкм.

Полученную при диспергировании суспензию подвергают последовательно акустической обработке с частотой излучения 21,3 кГц, интенсивностью излучения 7,8 Вт/см2 при температуре 60°С, времени обработки 3 ч и затем электромагнитной обработке с частотой излучения 49,5 МГц, мощностью 0,25 кВт при температуре 60°С, времени обработки 4 ч.

Обработанную суспензию подвергают газификации при воздушном дутье. Газификацию проводят при коэффициенте недостатка воздуха 0,3 в пересчете на кислород, при температуре 1000°С, при атмосферном давлении. В качестве дутья используют воздух, обогащенный кислородом с содержанием кислорода 49,5%.

Полученный в результате газификации второй поток газа, содержащий сажу, пропускают через мокрый скруббер, с отделением водной суспензии сажи (количество сажи 1,2% масс). Все количество образованной водной суспензии сажи направляют на диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем.

Полученный при пиролизе полукокс подвергают диспергированию в присутствии воды с получением суспензии. Количество указанной воды составляет 10% от массы смеси. Температура диспергирования составляет 70-75°С. Процесс проводят непрерывно, в проточных условиях. Диспергирование проводят при скорости вращения дисков диспергатора 3000 об/мин, зазоре между дисками 3 мм. Средний размер частиц полукокса составляет 5-20 мкм.

Затем полученную суспензию подвергают газификации при 800°С, при воздушном дутье. Газификацию проводят при коэффициенте недостатка воздуха 0,3 в пересчете на кислород, при атмосферном давлении с получением третьего потока газа, содержащего сажу.

Полученный в результате газификации третий поток газа, содержащий сажу, пропускают через мокрый скруббер, где отделяют водную суспензию сажи. Указанную водную суспензию сажи направляют на диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем. При этом на диспергирование направляют все количество образованной водной суспензии сажи

Далее проводят смешение вышеоговоренных первого потока газа, второго потока газа после отделения от него водной суспензии сажи и третьего потока газа после отделения от него водной суспензии сажи. Полученную смесь газов подвергают очистке по известным технологиям, в частности, от примесей, в том числе, от CO2, сероводорода, аммиака и роданидов с помощью моноэтаноламина с получением целевого синтез-газа.

Выход целевого продукта - синтез-газа (СО+Н2) составляет 68%. Количество образующейся сажи составляет 1,2% масс.

Пример 3.

В качестве тяжелого углеводородного сырья используют гудрон, в качестве растительного сырья - лузгу подсолнечника.

Измельченное растительное сырье подвергают пиролизу при температуре 650°С и атмосферном давлении. При пиролизе образуются первый поток газа, смола (20%масс) и полукокс (40%масс).

Далее нагретый гудрон и образующуюся при пиролизе смолу, смешивают (массовое соотношение компонентов составляет 4:1, соответственно). Полученную смесь подвергают диспергированию (механоактивации в диспергаторе) в присутствии водной суспензии сажи (содержание сажи 1,7%). Суммарное количество воды (с учетом воды, содержащейся в водной суспензии сажи) составляет 20% от массы смеси.

Полученную при диспергировании суспензию подвергают последовательно акустической обработке с частотой излучения 23,5 кГц, интенсивностью излучения 5 Вт/см2 при температуре 60°С, времени обработки 1 час и затем электромагнитной обработке с частотой излучения 40 МГц, мощностью 0,6 кВт при температуре 60°С, времени обработки 8 ч.

Обработанную суспензию подвергают газификации при воздушном дутье. Газификацию проводят при коэффициенте недостатка воздуха 0,3 в пересчете на кислород, при температуре 1200°С без использования давления. В качестве дутья используют технический кислород.

Образующийся при газификации второй поток газа охлаждают, подвергают очистке с отделением водной суспензии сажи (количество сажи составляет 1,7. % масс). Все количество образованной водной суспензии сажи направляют на диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем.

Полученный при пиролизе полукокс подвергают диспергированию в присутствии воды с получением суспензии. Количество указанной воды составляет 10% от массы смеси. Температура диспергирования составляет 70-75°С. Процесс проводят непрерывно, в проточных условиях. Диспергирование проводят при скорости вращения дисков диспергатора 3000 об/мин, зазоре между дисками 3 мм. Средний размер частиц полукокса составляет 5-20 мкм.

Затем полученную суспензию подвергают газификации при 800°С, при воздушном дутье. Газификацию проводят при коэффициенте недостатка воздуха 0,3 в пересчете на кислород, при атмосферном давлении с получением третьего потока газа, содержащего сажу.

Полученный в результате газификации третий поток газа, содержащий сажу, пропускают через мокрый скруббер, где отделяют водную суспензию сажи. Указанную водную суспензию сажи направляют на диспергирование (механоактивацию) смеси смолы с тяжелым углеводородным сырьем. Предпочтительно на диспергирование направляют все количество образованной водной суспензии сажи

Далее проводят смешение вышеоговоренных первого потока газа, второго потока газа после отделения от него водной суспензии сажи и третьего потока газа после отделения от него водной суспензии сажи. Полученную смесь газов подвергают очистке по известным технологиям, в частности, от примесей, в том числе, от CO2, сероводорода, аммиака и роданидов с помощью моноэтаноламина с получением целевого синтез-газа.

Выход целевого продукта - синтез-газа (СО+ Н2) составляет 92%, объемное соотношение Н2:СО в синтез - газе составляет 2,1:1 Количество образующейся сажи составляет 1,7% масс.

Использование при проведении описываемого способа получения синтез-газа иных режимных условий, не выходящих за рамки заявленных, приводит к аналогичным результатам, а использование указанных условий, отличных от заявленных, не приводит к желаемым результатам.

Таким образом, описываемый способ получения синтез-газа за счет проведения комплекса деструктивных процессов позволяет повысить соотношение Н2:СО в синтез-газе до 1,1-1,3 по сравнению с известным Н2:СО, равным 0,85-0,92 и снизить количество образующейся сажи - до 1,2-1,7% по сравнению с известным 2,5-4%. Кроме того, описываемый способ позволяет расширить арсенал технологий получения синтез-газа из растительного и тяжелого углеводородного сырья.

Способ получения синтез-газа из тяжелого углеводородного и растительного сырья, включающий нагрев тяжелого углеводородного сырья до 60-90°С, измельчение растительного сырья до размера частиц не более 200 мкм, пиролиз измельченного растительного сырья при 500-800°С с получением первого потока газа, смолы и полукокса, смешение смолы с тяжелым углеводородным сырьем, диспергирование смеси смолы с тяжелым углеводородным сырьем в присутствии водной суспензии сажи и воды с получением суспензии, которую подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см при температуре 50-70°С, времени обработки 1,0-3,0 ч и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт при температуре 50-70°С, времени обработки 1,0-8,0 ч с образованием обработанной суспензии, которую направляют на газификацию при 800-1400°С с получением второго потока газа и водной суспензии сажи, направляемой на диспергирование смеси смолы с тяжелым углеводородным сырьем, диспергирование полученного при пиролизе полукокса в присутствии воды с получением суспензии, проведение газификации полученной суспензии при 800-1400°С с получением третьего потока газа и водной суспензии сажи, направляемой на диспергирование смеси смолы с тяжелым углеводородным сырьем, смешение первого потока газа со вторым и третьим потоками газа после отделения от первого и второго потоков водной суспензии сажи и очистки образованной газовой смеси с получением целевого синтез-газа.
Источник поступления информации: Роспатент

Showing 51-60 of 471 items.
13.01.2017
№217.015.855b

Способ утилизации нефтесодержащих отходов

Изобретение относится к области охраны окружающей среды, в частности к технологическим процессам утилизации нефтесодержащих отходов и рециклизованных фильтровочных и поглотительных отработанных масс, и может быть использовано на предприятиях нефтегазового комплекса и на предприятиях по...
Тип: Изобретение
Номер охранного документа: 0002603150
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8572

Способ утилизации нефтесодержащих отходов

Изобретение относится к области охраны окружающей среды, в частности к технологическим процессам утилизации нефтесодержащих отходов, отработанного силикагеля и отходов масложировой промышленности. Предварительно разогретые до температуры 80-85°С нефтесодержащие отходы перемешивают с отходами...
Тип: Изобретение
Номер охранного документа: 0002603149
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8748

Установка для газификации рисовой лузги

Изобретение относится к устройствам для газификации рисовой лузги с целью получения газа, пригодного для использования в газопоршневых генераторах. Установка для газификации рисовой лузги содержит реактор для газификации, сообщенный с узлом подготовки сырья, узлом подачи воздуха и узлом очистки...
Тип: Изобретение
Номер охранного документа: 0002603368
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.883a

Устройство для вычисления функций

Изобретение относится к устройству для вычисления функций. Технический результат заключается в повышении достоверности информации. Устройство содержит схему управления, блок сдвига, компаратор, сумматор, счетчик искомого угла, блок умножителей, генератор импульсов, цифровой функциональный...
Тип: Изобретение
Номер охранного документа: 0002602674
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.883d

Вафельное изделие профилактического назначения

Изобретение относится к пищевой промышленности, в частности к производству вафельных изделий. Вафельное изделие профилактического назначения включает вафельные листы, содержащие муку, меланж, масло растительное, питьевую соду, соль пищевую, лецитин, рисовые отруби RemyLive в количестве 15% от...
Тип: Изобретение
Номер охранного документа: 0002602441
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.887e

Глазурь функционального назначения

Изобретение относится к области пищевой промышленности. Глазурь функционального назначения включает подсластитель, молочный продукт, функциональный растительный продукт, предварительно растопленное какао-масло, эмульгатор-разжижитель в виде лецитина, при этом в качестве эмульгатора-разжижителя...
Тип: Изобретение
Номер охранного документа: 0002602443
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8899

Сокосодержащий напиток

Изобретение относится к области пищевой промышленности, в частности к производству сокосодержащего напитка, и может быть использовано на предприятиях консервной отрасли. Напиток включает следующие компоненты, мас. %: сок яблочный - 42,0-45,0, пектиновый экстракт из жома клубней топинамбура -...
Тип: Изобретение
Номер охранного документа: 0002602287
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.88eb

Способ подготовки семян подсолнечника к извлечению масла

Изобретение относится к производству растительных масел, в частности к способам подготовки семян подсолнечника к извлечению масла. Способ подготовки семян подсолнечника к извлечению масла предусматривает контроль перевейной фракции, которую осуществляют путем сепарирования на ситовой...
Тип: Изобретение
Номер охранного документа: 0002602291
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.895a

Сухая смесь для производства кексов функционального назначения

Изобретение относится к кондитерской промышленности и может быть использовано при производстве смесей для кексов профилактического назначения. Сухая смесь для производства кексов функционального назначения, включающая муку пшеничную, сахар-песок, меланж, аммоний углекислый, соль поваренную...
Тип: Изобретение
Номер охранного документа: 0002602439
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8961

Низкоуглеводный бисквитный полуфабрикат

Изобретение относится к пищевой промышленности и может быть использовано при производстве бисквитного полуфабриката и изделий из него. Низкоуглеводный бисквитный полуфабрикат, включающий муку, сладкий агент, меланж и растительный наполнитель, в качестве муки содержит смесь муки пшеничной и...
Тип: Изобретение
Номер охранного документа: 0002602288
Дата охранного документа: 20.11.2016
Showing 51-60 of 107 items.
11.01.2019
№219.016.aea3

Катализатор изомеризации ароматических углеводородов с-8

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен катализатор изомеризации ароматических углеводородов С-8, который состоит из носителя, содержащего, % масс.: цеолит типа ZSM-5 10,0-75,0; алюмосиликатные нанотрубки 5,0-70,0; гамма-оксид алюминия -...
Тип: Изобретение
Номер охранного документа: 0002676706
Дата охранного документа: 10.01.2019
19.01.2019
№219.016.b1cb

Кинетический ингибитор гидратообразования

Изобретение относится к составам для ингибирования образования газовых гидратов по кинетическому механизму в различных углеводородсодержащих жидкостях и газах, содержащих воду и гидратообразующие агенты, и может быть использовано в нефтегазовой отрасли для предотвращения образования техногенных...
Тип: Изобретение
Номер охранного документа: 0002677494
Дата охранного документа: 17.01.2019
16.02.2019
№219.016.bb04

Тормозная система тележки грузового вагона

Изобретение относится к области железнодорожного транспорта, а именно к автотормозному оборудованию железнодорожных транспортных средств. Тормозная система тележки грузового вагона содержит четыре тормозных блока, каждый из которых снабжен тормозным цилиндром со встроенным авторегулятором,...
Тип: Изобретение
Номер охранного документа: 0002680029
Дата охранного документа: 14.02.2019
11.03.2019
№219.016.d859

Способ захоронения техногенного диоксида углерода дымовых газов

Изобретение относится к способам захоронения парниковых газов, производимых тепловыми электростанциями, теплоэлектроцентралями и другими стационарными источниками газообразных продуктов сгорания минерального топлива - дымового газа. Обеспечивает повышение эффективности способа. Сущность...
Тип: Изобретение
Номер охранного документа: 0002393344
Дата охранного документа: 27.06.2010
29.03.2019
№219.016.ecf2

Низкотемпературная пластичная смазка

Изобретение относится к созданию низкотемпературной пластичной смазки, которая может быть использована в механизмах различного назначения, работающих при температуре от минус 60°С. Сущность: низкотемпературная пластичная смазка содержит, мас.%: загуститель 11,0-15,0, антиокислитель аминного...
Тип: Изобретение
Номер охранного документа: 0002682881
Дата охранного документа: 22.03.2019
29.03.2019
№219.016.ef2a

Присадка к дизельному топливу, дизельное топливо

Настоящее изобретение относится к составу присадки к дизельному топливу и дизельному топливу нефтяного или газоконденсатного происхождения, содержащему эту присадку. Присадка содержит до 50% алкил (С-С) нитрата и до 100 полимера этилена или его сополимера с альфа-олефинами С-С с мол. массой...
Тип: Изобретение
Номер охранного документа: 0002280068
Дата охранного документа: 20.07.2006
29.03.2019
№219.016.ef2b

Присадка к дизельному топливу, дизельное топливо

Настоящее изобретение относится к области нефте- и газохимии, конкретно к составу присадки к дизельному топливу и дизельному топливу, содержащему эту присадку. Присадка к дизельному топливу содержит до 75% алкил (C-C) нитрата, 0,1-15% алкилсукцинимида, где алкил C-C, и до 100 сополимера...
Тип: Изобретение
Номер охранного документа: 0002280067
Дата охранного документа: 20.07.2006
29.03.2019
№219.016.ef2d

Присадка к дизельному топливу, дизельное топливо

Настоящее изобретение относится к области нефте- и газохимии, конкретно к составу присадки к дизельному топливу и дизельному топливу нефтяного или газоконденсатного происхождения, содержащему эту присадку. Присадка к дизельному топливу содержит до 55 % алкил (С-С)нитрата, 0,1-15%...
Тип: Изобретение
Номер охранного документа: 0002280069
Дата охранного документа: 20.07.2006
10.04.2019
№219.017.0571

Способ получения биокатализатора для спиртового брожения

Способ получения биокатализатора спиртового брожения включает наращивание биомассы дрожжей Saccharomyces cerevisiae и ее иммобилизацию включением в гелевую матрицу путем смешения с раствором гелеобразующего материала с последующим его отверждением ионами Са. В качестве гелеобразующего материала...
Тип: Изобретение
Номер охранного документа: 0002361919
Дата охранного документа: 20.07.2009
10.04.2019
№219.017.0584

Способ обработки растительного масла

Изобретение относится к способу получения эфиров жирных кислот, которые могут быть использованы в качестве биодизеля - альтернативного биотоплива. Описывается способ обработки рапсового масла путем переэтерификации его этиловым спиртом с разделением полученных продуктов на фракции, полученным...
Тип: Изобретение
Номер охранного документа: 0002365625
Дата охранного документа: 27.08.2009
+ добавить свой РИД