×
24.05.2019
219.017.5e80

Результат интеллектуальной деятельности: САМОХОДНЫЙ ПОИСКОВЫЙ ПОДВОДНЫЙ АППАРАТ

Вид РИД

Изобретение

Аннотация: Самоходный поисковый подводный аппарат имеет бортовую систему обнаружения, в состав которой входит устройство оптического обнаружения спутного вихревого следа подвижных морских объектов и вычислительное устройство, которое рассчитывает скоростной режим и траекторию движения самоходного поискового подводного аппарата для догона морского объекта после обнаружения его спутного вихревого следа, а двигательная установка имеет механизм переключения скорости движения. Обеспечивается возможность обнаружения морского объекта на значительном удалении по его спутному вихревому следу и сближения с ним вплотную.

Изобретение относится к области морской техники и может быть использовано для поиска морских объектов.

Известно, что для поиска морских объектов используют различные измерительные устройства, основанные на регистрации в водной среде материальных тел и присущих им физических полей. Из-за особенностей распространения в воде различных видов энергии наиболее широкое распространение получили гидроакустические средства поиска, основанные на законах распространения звука в воде.

Для поиска морских объектов и выполнения других задач в водной среде, в том числе физического воздействия на морские объекты, на флотах применяются различные подводные аппараты, такие, как торпеды, мины, необитаемые подводные аппараты, оснащенные средствами обнаружения [1, 2].

В общем случае подводные аппараты имеют корпус обтекаемой цилиндрической или иной формы, средства движения и энергообеспечения, гидроакустические и телевизионные средства поиска подводных объектов, навигационное оборудование, средства связи, отсек для полезной нагрузки, приборы управления [3, 4].

Известен самоходный поисковый подводный аппарат, принятый за прототип изобретения, представляющий собой торпеду, которая в качестве полезной нагрузки имеет боевую часть с зарядом взрывчатого вещества и взрывателем, бортовые системы управления и обнаружения цели, служащие для поиска, обнаружения и наведения на цель, сближения с ней вплотную или на дистанцию срабатывания неконтактного взрывателя, энергетическую установку, обеспечивающую работу приборов управления и органов движения, двигательную установку и движитель [5, 6]. Практическая торпеда в качестве полезной нагрузки вместо боевой части оснащается регистрирующей аппаратурой и устройствами для подъема ее из воды.

Торпеды различаются: по габаритам (калибр - 324, 400, 482, 533, 550 и более мм); по носителям - корабельные и авиационные; по способу управления - самонаводящиеся и телеуправляемые; по назначению - противокорабельные, противолодочные, универсальные; по типу энергосиловой установки - тепловые и электрические [7].

Для поиска цели в торпедах используются системы наведения. Как было отмечено выше, из-за особенностей распространения в воде различных видов энергии, наиболее широкое распространение получили гидроакустические средства поиска. Самонаводящиеся торпеды имеют в основном акустические автономные системы самонаведения, которые обнаруживают цель, определяют ее положение относительно продольной оси торпеды и вырабатывает необходимые команды для системы управления. В современных торпедах применяют системы самонаведения, которые обеспечивают наведение торпеды на цель по отраженным от нее звуковым импульсам (активные ССН) или по шуму от винтов и работающих механизмов (пассивные ССН).

Телеуправляемые торпеды оснащают системами телеуправления с проводной или оптоволоконной линиями связи. Команды управления формируются на корабле и в виде электрических сигналов подаются на торпеду. Точность наведения торпеды зависит от погрешностей работы гидроакустического комплекса корабля. При подходе к цели торпеду переводят в режим поиска цели и в режим самонаведения.

Универсальные торпеды применяются как по подводным лодкам, так и по надводным кораблям (судам). Их оснащают акустическими системами самонаведения в противолодочном и противокорабельном варианте, а также системой телеуправления. Универсальная торпеда имеет прочный корпус, обеспечивающий ее живучесть при стрельбе по подводной лодке, идущей на большой глубине [5].

Активные ССН торпед излучают и принимают звуковые импульсы в двух плоскостях: в горизонтальной - по курсу торпеды и в вертикальной - по ее глубине.

Двухплоскостные ССН используются в противолодочных и универсальных торпедах, а одноплоскостные - в противокорабельных. При этом задействуется либо горизонтальная плоскость, либо вертикальная, как, например, в подструйной ССН торпеды Мк45 F мод. 1 (США), работающей с кильватерным следом цели [6].

Наиболее сложными для поиска являются подвижные морские объекты и, в частности, подводные лодки. Подводные лодки представляют наибольшую опасность для военной и экономической инфраструктуры государств в глобальном и в региональном масштабе, так как они обладают высокой скрытностью и большим ударным потенциалом, включающим межконтинентальные баллистические ракеты, крылатые ракеты большой дальности, минное оружие и другие средства. Для эффективного противодействия им требуется широкое привлечение авиации, подводных лодок, надводных кораблей с применением торпедного оружия и поисковых подводных аппаратов. При этом эффективность действий этих сил и, в конечном счете, исход боевых столкновений сил и средств сторон, зависит от соотношения дальностей взаимного обнаружения. Известно, что авиация и надводные корабли обнаруживаются подводной лодкой заблаговременно, и только подводные лодки имеют между собой приблизительный паритет. Поэтому объектом изобретения являются торпеды, применяемые с подводных лодок.

Таким образом, главной задачей поиска морских объектов и, в частности, подводных лодок, является упреждение в их обнаружении. Применяемые для обнаружения морских целей акустические средства имеют в разных странах схожие характеристики и не обеспечивают существенных преимуществ какой-либо стороне. Это касается как дальностей обнаружения морских целей, так и их кильватерного следа. С учетом вышеизложенного, торпеды во всех вариантах их оснащения, а потому и подводные лодки - носители торпед, не имеют преимуществ в дальности обнаружения подводной цели, что является их главным недостатком.

Современные исследования водной среды показали, что в процессе взаимного смещения слоев воды из-за влияния струй и вихрей сплошность гидродинамических явлений дополнительно приводит к формированию поля акустических центров рассеяния в виде зоны сплошной возмущенности с плавным изменением интенсивности и местными локальными проявлениями всплесков. Нестационарные режимы вихревых течений образуют спутный вихревой след, тянущийся за материальным объектом, который может быть обнаружен в течение нескольких часов после своего появления высокочувствительными оптическими приборами [8].

Имеющиеся малогабаритные лазерные излучатели и высокочувствительные фотоприемники позволяют обнаруживать спутный вихревой след (СВС) после прохождения подводного объекта с помощью оптических средств и методов на расстоянии десятков и сотен км от него [9]. Применение данного метода и указанных средств позволяет в отличие от акустики, многократно повысить дальность обнаружения морской цели и значительно опередить ее в этом.

Известно устройство бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений, служащее для обнаружения СВС цели, которое основано на совместном использовании лазерной доплеровской анемометрии (ЛДА) и цифровой трассерной визуализации (PIV - Particle Image Velocimetry) [10]. Оно включает источник лазерного излучения (импульсный лазер с энергией не менее 120 мДж), приемник изображений засеянных частиц с двумя CCD-камерами с оптическими узкополосными фильтрами (CCD -charge-coupled device, прибор с зарядовой связью), процессор обработки изображений, лазерный анемометр с оптическим зондом, выполненный на аргоновом лазере и процессоре обработки доплеровских сигналов, и персональный компьютер.

Устройство позволяет исследовать кинематические характеристики потоков жидкости и газа, измерять скорости сопутствующих потоку частиц в фиксированной точке течения и по трекам частиц анализировать поля скорости потока в фиксированном сечении.

Применение ЛДА позволяет проводить только последовательные измерения скорости в пространстве, переходя от точки к точке исследуемого течения, а использование PIV (Particle Image Velocimetry) - получать мгновенное распределение скорости в исследуемом сечении и наблюдать мгновенную картину течения в пределах двумерной плоскости светового ножа. При диагностике осциллирующих вихревых течений совместное использование ЛДА для измерения скорости лазерным доплеровским анемометром и PIV для анализа структуры течения по трекам частиц позволяет существенно улучшить временное и пространственное разрешение измерений и обеспечивает высокую скорость обработки полученных изображений.

Устройство бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений с совместным использованием ЛДА и PIV включает:

- источник лазерного излучения (лазер),

- приемник изображений засеянных частиц с двумя CCD-камерами с оптическими узкополосными фильтрами и процессором обработки изображений,

- лазерный анемометр с оптическим зондом, выполненный на аргоновом лазере,

- процессор обработки доплеровских сигналов.

Использование CCD-камер с частотным разрешением от 8 до 16 Гц позволяет проводить измерения мгновенного трехкомпонентного поля скорости в 8-16 точках периода пульсаций вихревой структуры, что существенно улучшает временное разрешение и точность измерений [10].

Указанное устройство, выполненное в малых габаритах и установленное в составе бортовой системы обнаружения морских объектов, позволит СППА обнаруживать их на больших удалениях, значительно упреждая их в этом.

Догон обнаруженного морского объекта вдоль СВС может быть обеспечен за счет изменения режима движения самоходного поискового подводного аппарата (СППА) на траектории с учетом показателя его ходового качества (ХК), определяемого по формуле [4, 12, 13]:

XK=DV2,

где D - дальность хода, V - скорость движения.

Некоторые современные торпеды имеют механизмы переключения скорости движения на дистанции, служащие им для снижения скорости в поисковом режиме и ее повышения до максимального значения на участке наведения. Однако показатель ходового качества многорежимных торпед в разных режимах движения не одинаков, так как КПД двигателя и движителя резко меняется при изменении числа оборотов вала [6].

Оценка ходовых качеств двухрежимной торпеды, например, Mk 48 (США) показывает, что ее скорость V1=55 уз соответствует дальности хода D1=38 км. При уменьшении скорости до V2=40 уз дальность ее хода D2 должна возрасти и достичь значения:

На самом деле дальность хода D2 торпеды Mk 48при скорости V2=40 уз составляет 50 км [14]. То есть, использование механизма переключения скорости движения СППА и ее уменьшение на 15 уз (27%) дает прирост дистанции на 12 км (32%).

Целью изобретения является разработка устройства самоходного поискового подводного аппарата, способного обнаруживать морской объект на значительном его удалении по спутному вихревому следу и после этого сближаться с ним вплотную.

Для достижения цели изобретения предлагается самоходный поисковый подводный аппарат, включающий отсек с полезной нагрузкой с боевой частью, зарядом взрывчатого вещества и взрывателем или регистрирующей аппаратурой и устройствами для подъема аппарата йз воды, бортовые системы управления и обнаружения морских объектов, служащие для их поиска, обнаружения и наведения, энергетическую установку, обеспечивающую работу приборов управления и органов движения, двигательную установку и движитель, отличающийся тем, что дополнительно в состав бортовой системы обнаружения включается устройство оптического обнаружения спутного вихревого следа морских объектов и вычислительное устройство, а двигательная установка имеет механизм переключения скорости движения.

Устройство оптического обнаружения спутного вихревого следа морского объекта, в качестве которого может быть использовано, например, устройство бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений, размещается в приборном отсеке СППА и обеспечивает обнаружение морского объекта по его спутному вихревому следу.

Вычислительное устройство рассчитывает скоростной режим и траекторию движения СППА для догона морского объекта после обнаружения его спутного вихревого следа.

Техническим результатом изобретения является устройство самоходного поискового подводного аппарата, способного обнаруживать морской объект на значительном удалении по его спутному вихревому следу и после этого сближаться с ним вплотную.

Источники информации, использованные при выявлении изобретения и составлении его описания:

1. Сурин В.В., Пелевин Ю.Н., Чулков В.Л. Противолодочные средства иностранных флотов. - М.: Воениздат, 1991.

2. Автономные подводные аппараты. Материалы сайта Института проблем морских технологий Дальневосточного отделения РАН, 2002.

3. Сиденко К.С., Илларионов Г.Ю. Подводная лодка и автономный необитаемый подводный аппарат // МРЭ, №2, 2008.

4. Пантов Е.Н., Махин Н.Й., Шереметьев Б.Б. Основы теории движения подводных аппаратов. - Л.: Судостроение, 1973. - 209 с.

5. Торпеда. Военно-морской словарь /Гл. ред. В.Н. Чернавин. - М.: Воениздат, 1989. - 511 с. С. 431.

6. Косарев В.В., Садовников В.Н. Торпедное оружие: Методические указания для самостоятельной работы по дисциплине «Боевые средства флота и их боевое применение» / СПбГЭУ «ЛЭТИ»/. - СПб.: Изд-во СПбГЭТУ "ЛЭТИ", 2000. - 48 с. С. 13-21, 27-30.

7. Кузин В.П., Никольский В.И. Военно-морской флот СССР 1945-1991. -СПб.: Историческое Морское Общество, 1996. - 614 с.

8. Андронов П.Р., Гувернюк С.В, Дынникова Г.Я. Вихревые методы расчета нестационарных гидродинамических нагрузок. - М.: Изд-во Моск. унта, 2006. - 184 с., с. 18.

9. Системы лазерного сканирования для проведения подводных исследований. - URL: http://avia.pro/blog/sistemy-lazernogo-skanirovaniya-dlya-provedeniya-podvodnyh-issledovaniy - 2015-01 -31. - 2015.

10. Патент на полезную модель RU 121082. Устройство бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений / И.В. Наумов. М.: ФИПС, 2012. Бюл. №28

11. Коптев Б.А., Гусев А.Л. Тенденции развития зарубежного торпедного оружия // Морская радиоэлектроника, №3 (17), 2006, с. 58-63.

12. Костенко В.В., Михайлов Д.Н. Определение параметров энергосиловой установки автономного необитаемого подводного аппарата по заданной дальности хода. - Известия ЮФУ. Технические науки. - С. 70-73 с.

13. Стекольников Ю.И. Энергосиловые установки торпед: Учебное пособие / Военно-морская академия им. Н.Г.Кузнецова. - СПб.: ВМА, 2002. - 240 с.

14. Сариев К.С.Универсальная тяжелая торпеда Мк 48//Материалы Всероссийской научно-практической конференции «Морское подводное оружие. Перспективы развития». СПб.: ФГУП «Крыловский государственный научный центр», 2015. 125 с: ил. С. 105-111.

Самоходный поисковый подводный аппарат, в состав которого входят отсек с полезной нагрузкой, в качестве которой применяется боевая часть с зарядом взрывчатого вещества и взрывателем или регистрирующая аппаратура и устройства, обеспечивающие подъем аппарата из воды, бортовые системы управления и обнаружения морских объектов, энергетическая и двигательная установки, органы управления и движитель, отличающийся тем, что дополнительно в состав бортовой системы обнаружения включается устройство оптического обнаружения спутного вихревого следа подвижных морских объектов и вычислительное устройство, которое рассчитывает скоростной режим и траекторию движения самоходного поискового подводного аппарата для догона морского объекта после обнаружения его спутного вихревого следа, а двигательная установка имеет механизм переключения скорости движения.
Источник поступления информации: Роспатент

Showing 61-70 of 139 items.
29.11.2019
№219.017.e805

Система для подъема затонувших подводных лодок

Изобретение относится с судоподъемным средствам и предназначено для подъема затонувших подводных лодок, оборудованных подъемными обухами. Предложена система для подъема затонувшей подводной лодки, включающая размещенные на подводной лодке подъемные обухи, стыковочные узлы (обушки) для...
Тип: Изобретение
Номер охранного документа: 0002707472
Дата охранного документа: 26.11.2019
29.11.2019
№219.017.e81e

Устройство компенсации динамических нагрузок в буксирной линии

Изобретение относится к области буксировки объектов, в частности к устройствам, входящим в состав буксирной линии при буксировке в кильватер. Буксирная линия включает буксирный синтетический канат, одеваемый на канат утяжелитель расчетной массы, состоящий из соединяемых между собой половинок с...
Тип: Изобретение
Номер охранного документа: 0002707479
Дата охранного документа: 26.11.2019
13.12.2019
№219.017.ed0b

Способ определения распределения электрического напряжения по слоям изоляции электрической машины

Изобретение относится к контрольно-измерительной технике и может быть использовано для нахождения распределения электрического напряжения по слоям изоляции обмотки электрической машины для оценки изменения ее электрической прочности. Сущность: к обесточенной обмотке электрической машины и ее...
Тип: Изобретение
Номер охранного документа: 0002708685
Дата охранного документа: 11.12.2019
18.12.2019
№219.017.ee1e

Импульсный движитель для морских сред

Изобретение относится к основным элементам судового оборудования и может быть использовано в качестве подводного движителя для морских сред. Импульсный движитель для морских сред содержит по меньшей мере один корпус с каналом для впуска и выпуска воды, в котором установлены электроды для...
Тип: Изобретение
Номер охранного документа: 0002709082
Дата охранного документа: 13.12.2019
21.12.2019
№219.017.efee

Устройство для определения температурных линейных расширений твердых материалов

Изобретение относится к средствам измерения (дилатометрии) температурных линейных деформаций твердых материалов. Устройство содержит основание, в котором в верхней части по центральной оси выполнен Т-образный паз. С двух противоположных сторон основания установлены с возможностью продольного...
Тип: Изобретение
Номер охранного документа: 0002709601
Дата охранного документа: 18.12.2019
24.12.2019
№219.017.f17d

Плавучий командный модуль подледного/подводного робототехнического комплекса

Изобретение относится к робототехническим комплексам освоения Мирового океана, предназначенным для проведения в условиях наличия ледового покрова подводно-технических и спасательных работ. Плавучий командный модуль подледного/подводного робототехнического комплекса содержит прочные...
Тип: Изобретение
Номер охранного документа: 0002709982
Дата охранного документа: 23.12.2019
25.12.2019
№219.017.f24a

Способ передачи информации от подводного объекта на летательный аппарат

Изобретение относится к области радиотехники и может быть использовано в радиолокационных и гидроакустических системах при организации комбинированных каналов связи в морских условиях. Достигаемый технический результат – увеличение времени сеанса связи между движущимся подводным объектом и...
Тип: Изобретение
Номер охранного документа: 0002710026
Дата охранного документа: 24.12.2019
21.01.2020
№220.017.f7b8

Система погрузки оружия в пусковую установку корабля

Изобретение относится к системам погрузки оружия на корабли, в частности к системам погрузки ракет в транспортно-пусковых стаканах в вертикальные пусковые установки. В систему погрузки оружия, включающую вертикальную пусковую установку с крышкой, грузоподъемный кран, выносной пульт управления с...
Тип: Изобретение
Номер охранного документа: 0002711378
Дата охранного документа: 16.01.2020
22.01.2020
№220.017.f808

Способ защиты от воздушной ударной волны автомобиля

Изобретение относится к автотранспорту, может быть использовано в грузовых автомобилях с бронированной грузовой платформой. Способ защиты от воздушной ударной волны автомобиля с бронированной грузовой платформой под тентом кузова включает установку на автомобиль маскировочного укрытия. В...
Тип: Изобретение
Номер охранного документа: 0002711529
Дата охранного документа: 17.01.2020
22.01.2020
№220.017.f85e

Способ обработки сигналов с гиперболической частотной модуляцией

Способ обработки сигналов с гиперболической частотной модуляцией относится к области гидроакустики и может быть использован в гидролокационных системах при обнаружении цели и определении ее координат и параметров движения. При разработанном способе обработки сигналов с гиперболической частотной...
Тип: Изобретение
Номер охранного документа: 0002711420
Дата охранного документа: 17.01.2020
Showing 61-70 of 71 items.
23.05.2023
№223.018.6ceb

Ракета-планёр с радиогидроакустическим буем

Изобретение относится к средствам подводного наблюдения. Ракета-планер с радиогидроакустическим буем включает реактивный двигатель, стабилизатор, устройство отделения двигателя, устройство ввода данных, парашютную систему, поплавок, акустическую систему подводного наблюдения с источником тока,...
Тип: Изобретение
Номер охранного документа: 0002775417
Дата охранного документа: 30.06.2022
23.05.2023
№223.018.6cf6

Способ разминирования фарватера

Изобретение относится к способам противоминного обеспечения. Предложен способ разминирования фарватера, при котором подрывают протяженный заряд взрывчатого вещества с применением электродетонаторов дистанционно или с помощью телеуправления, при этом определяют ширину прохода кораблей и судов,...
Тип: Изобретение
Номер охранного документа: 0002774088
Дата охранного документа: 15.06.2022
23.05.2023
№223.018.6cfe

Противоминный трубопроводный комплекс

Изобретение относится к противоминным средствам. Предложен противоминный трубопроводный комплекс, имеющий раздельные хранилища для каждого компонента жидкого бинарного взрывчатого вещества, трубопровод для перемещения компонентов жидкого бинарного взрывчатого вещества, смеситель, разъединитель...
Тип: Изобретение
Номер охранного документа: 0002774130
Дата охранного документа: 15.06.2022
24.05.2023
№223.018.6fa1

Ракета-планёр с самонаводящимся подводным снарядом

Предложена ракета-планер с самонаводящимся подводным снарядом. Техническим результатом является разработка ракеты, имеющей увеличенную дальность полета при небольших массогабаритных характеристиках для применения ее с малых кораблей и летательных аппаратов, а также создание средства поражения...
Тип: Изобретение
Номер охранного документа: 0002796086
Дата охранного документа: 16.05.2023
26.05.2023
№223.018.7007

Подводный ледобойный снаряд

Изобретение относится к устройствам для создания искусственных полыней во льду. Подводный ледобойный снаряд, имеющий корпус, внутри которого размещаются заряд взрывчатого вещества, взрыватель, источник питания, аппаратура управления, наружное оперение и рули с механизмами их поворота....
Тип: Изобретение
Номер охранного документа: 0002796236
Дата охранного документа: 18.05.2023
27.05.2023
№223.018.71e0

Мобильная система мониторинга подводной акватории

Изобретение относится к области судостроения и морской техники и касается разработки средств наблюдения за состоянием подводной акватории с помощью безэкипажного катера. Мобильная система мониторинга подводной акватории, содержащая безэкипажный катер, который включает в себя: жесткий корпус,...
Тип: Изобретение
Номер охранного документа: 0002796093
Дата охранного документа: 17.05.2023
05.06.2023
№223.018.76d3

Реактивный плавающий подводный снаряд

Изобретение относится к средствам обнаружения и поражения подвижных подводных объектов противника. Реактивный плавающий подводный снаряд, представляющий собой ракету, содержит ракетный двигатель с устройством его отделения и стабилизатор. Подводный снаряд, размещаемый в головной части ракеты,...
Тип: Изобретение
Номер охранного документа: 0002788510
Дата охранного документа: 20.01.2023
05.06.2023
№223.018.77ec

Способ пространственной ориентации подвижного подводного объекта

Изобретение относится к области морской техники, к способам пространственной ориентации подвижных объектов, и может быть использовано для навигации. Производят счисление пути с помощью бортовой инерциальной навигационной системы, уточняют текущие координаты. Используют информационную базу...
Тип: Изобретение
Номер охранного документа: 0002746287
Дата охранного документа: 12.04.2021
05.06.2023
№223.018.77f0

Способ защиты надводного корабля от торпеды

Изобретение относится к защите надводного корабля от поражения торпедами противника. Для защиты надводного корабля от торпеды, при котором обнаруживают торпеду противника с помощью гидроакустической станции корабля. Определяют ее координаты и параметры движения, выполняют кораблем...
Тип: Изобретение
Номер охранного документа: 0002746085
Дата охранного документа: 06.04.2021
06.06.2023
№223.018.784a

Способ защиты надводного корабля и судна от поражения торпедой

Изобретение относится к способам защиты надводных кораблей и судов от поражения торпедами противника. Для защиты надводного корабля и судна от поражения торпедой противника обнаруживают торпеду противника с помощью гидроакустической станции корабля или судна. Определяют ее координаты и...
Тип: Изобретение
Номер охранного документа: 0002733732
Дата охранного документа: 06.10.2020
+ добавить свой РИД