×
24.05.2019
219.017.5e0e

Результат интеллектуальной деятельности: ДЕФЕКТОСКОПИЯ ТРЕЩИН В ТРУБЧАТЫХ ЭЛЕМЕНТАХ В СТВОЛАХ СКВАЖИН ПОД ВЫСОКИМ ДАВЛЕНИЕМ С ИСПОЛЬЗОВАНИЕМ АКУСТИЧЕСКОЙ ЭМИССИИ

Вид РИД

Изобретение

№ охранного документа
0002688810
Дата охранного документа
22.05.2019
Аннотация: Использование: для испытаний трубчатого компонента. Сущность изобретения заключается в том, что акустико-эмиссионный датчик помещают на трубчатый компонент, и компонент подвергается воздействию возрастающего давления при получении показаний. На некоторых компонентах, таких как поворотные разъемы, должен быть установлен датчик на каждом подвижном компоненте. Во время испытаний давление повышают не более чем в 1,5 раза от максимально допустимого рабочего давления. Сигналы обнаруживаются датчиками, и результаты отображаются графически и коррелируются на диаграммах каротажных показаний длительности времени в зависимости от амплитуды, и каротажных показаний энергии в зависимости от амплитуды для выявления развивающихся трещин. Посторонние шумы, такие как трение, коррозия или утечки, создадут другую диаграмму и могут быть отфильтрованы. Во избежание отказа в работе из-за дальнейшего применения высокого давления подозрительные компоненты утилизируются. Технический результат: обеспечение возможности надежно повторно проверить трубчатый компонент, который подвергался избыточному давлению, а также обеспечить возможность устанавливать предыдущие случаи избыточного давления в отношении данного трубчатого компонента. 12 з.п. ф-лы, 6 ил.

ОБЛАСТЬ ТЕХНИКИ

[1] Данная область техники представляет собой метод проведения испытаний с использованием акустической эмиссии для обнаружения трещин и утончения стенок в металлическом оборудовании и компонентах, находившихся в потоке под высоким давлением и возвратившихся после операций нагнетания под давлением или явлений с аномально высоким давлением, для определения того, произошло ли повреждение вследствие напряжений.

УРОВЕНЬ ТЕХНИКИ

[2] Металлическое оборудование, используемое в операциях нагнетания под давлением, периодически проверяют на наличие трещин на внешней поверхности и на резьбовых соединениях. В промышленном стандарте для обнаружения трещин используют магнитопорошковую дефектоскопию. Это очень субъективный тест, который иногда дает неточные результаты в зависимости от навыков и квалификации дефектоскописта. Другие способы включают ультразвуковое сканирование всей части с применением поперечной волны или рентгенографию. Оба способа являются дорогостоящими, занимают много времени и требуют участия высококвалифицированного специалиста, не говоря уже о вопросе использования ядерных источников.

[3] Для проверки нефтепромыслового металлического оборудования, работающего в зонах высокого давления, которое вернулось после проведения работ в условиях сильного давления и вибраций, или в случаях, когда на металлическое оборудование оказывалось давление, превышающее расчетные пределы, был необходим более объективный тест. Микротрещины развиваются в зонах с местами концентрации высокого напряжения, а затем распространяются до тех пор, пока не произойдет излом, иногда значительно ниже расчетных пределов. Отказ в работе из-за излома металлического оборудования приводит к производственным потерям, что влечет за собой расходы со стороны оператора и обслуживающей компании или, в худшем случае, приводит к ранениям или гибели людей. При акустической эмиссионной дефектоскопии быстро проверяют весь компонент на наличие трещин, и благодаря ей устраняется субъективная интерпретация результатов.

[4] Акустическая эмиссия представляет собой метод, который использовался для обнаружения трещин в режущих пластинах сверла в US 2013/0166214. Этот метод также используется для определения воздействия коррозии, как показано в US 7246516. Емкости под давлением можно контролировать с помощью акустических эмиссионных испытаний в ядерной энергетической промышленности, как показано в US 3855847. Тем не менее, этот метод контролирует емкость только в условиях непрерывной работы и при давлении значительно ниже расчетных уровней. Данное изобретение подразумевает быстрое наращивание давления выше расчетных пределов для принудительного открытия микротрещин для анализа. Это единственный надежный способ, позволяющий повторно проверить компонент, который подвергался избыточному давлению, а также дающий возможность устанавливать предыдущие случаи избыточного давления в связи с этим компонентом.

[5] Несмотря на длительное существование технологии акустических эмиссий, до сих пор она не применялась таким образом для испытания трубчатого металлического оборудования и компонентов на наличие микротрещин для определения того, подходит ли компонент для дальнейшего обслуживания. Кроме того, при акустической эмиссии можно выполнять сканирование всего корпуса на предмет утончения стенок под воздействием эрозионных и коррозионных жидкостей во время операций закачки. Применяемые в настоящее время способы обнаружения минимальной толщины стенок заключаются в использовании переносных ультразвуковых приборов для проведения выборочных проверок локальных областей, а не всей трубы, из-за чего остаются необнаруженными участки утончения стенки.

[6] В способе согласно данному патенту используют технологию акустической эмиссии для регистрации и анализа ударных волн, возникающих при открытии микротрещин под давлением во время испытаний. Элемент подвергается возрастающему повышению давления, вплоть до 150% от максимально допустимого рабочего давления. Данные собирают, оценивают и отображают на диаграммах, которые отслеживают каротажные показатели длительности времени в зависимости от амплитуды и каротажные показатели энергии в зависимости от амплитуды под воздействием сигналов, генерируемых одним или более датчиками, прикрепленными к металлическому оборудованию. Формы графиков показывают наличие и серьезность трещин, и данные могут быть дополнительно загружены и переданы через программу для предоставления надежного, объективного и последовательного отчета о том, пригоден ли этот компонент или нет. Дополнительный анализ корреляционных участков также будет определять минимальную толщину стенки по всему компоненту. Весь процесс занимает всего несколько минут. Эти и другие аспекты данного изобретения будут более понятны специалистам в данной области техники из обзора подробного описания предпочтительного варианта реализации изобретения и соответствующих графических материалов, при этом следует осознавать, что полный объем изобретения должен определяться прилагаемой формулой изобретения.

КРАТКОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

[7] Акустически-эмиссионный датчик помещают на трубчатый компонент, и компонент при получении показаний подвергается возрастающему давлению. На некоторых компонентах, таких как поворотные разъемы, должен быть установлен датчик на каждом подвижном компоненте. Во время испытаний давление повышают не более чем в 1,5 раза от максимально допустимого рабочего давления. Сигналы обнаруживаются датчиками, и результаты отображаются графически и коррелируются на диаграммах каротажных показаний длительности времени в зависимости от амплитуды и каротажных показаний энергии в зависимости от амплитуды для выявления развивающихся трещин.

Посторонние шумы, такие как трение, коррозия или утечки, создадут другую диаграмму и могут быть отфильтрованы. Во избежание отказа в работе из-за дальнейшего применения высокого давления подозрительные компоненты утилизируются.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

[8] На фиг. 1 проиллюстрированы места установки датчиков на вертлюжном соединении.

[9] На фиг. 2 проиллюстрированы места установки датчиков на соединительной муфте.

[10] На фиг. 3 проиллюстрировано место установки датчика в случае коленчатого патрубка.

[11] На фиг. 4 проиллюстрировано место установки датчика в случае крестообразного соединения.

[12] На фиг. 5 проиллюстрировано логарифмическое отображение каротажных показателей энергии в зависимости от амплитуды по каждому сигнальному импульсу в соответствии с испытанием.

[13] На фиг. 6 проиллюстрировано логарифмическое отображение каротажных показателей длительности времени в зависимости от амплитуды по каждому сигнальному импульсу в соответствии с испытанием.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ РЕАЛИЗАЦИИ ИЗОБРЕТЕНИЯ

[14] На фиг. 1 проиллюстрированы местоположения датчиков 10, 12, 14, 16 и 18 на всех относительно вращающихся компонентах вертлюжного соединения с несколькими соединениями. На фиг. 2 датчики могут располагаться вблизи любого конца или на противоположных концах 20 и 22. На фиг. 3 проиллюстрировано размещение датчика 24 в середине коленчатого патрубка. На фиг. 4 датчик 26 расположен посередине крестообразного соединения. Датчик должен быть установлен с использованием магнитных прижимов и адекватного средства акустического контакта, наносимого на датчик для улучшения передачи сигнала. Центр поверхности датчика должен быть непосредственно соединен с поверхностью металлического оборудования. Поверхность, контактирующая с поверхностью датчика, должна быть чистой и свободной от твердых частиц. Потеря сигнала может быть вызвана некоторыми типами красок или покрытий, помещением в кожух, геометрическими разрывами и шероховатостью поверхности. В некоторых случаях может потребоваться снизить потерю сигнала путем локального удаления коррозии, краски и тому подобного с поверхности металла.

[15] После калибровки давление постепенно увеличивается, и результирующие сигналы воспринимаются и отображаются в различных форматах. Давление возрастает примерно в 1,5 раза от максимального допустимого рабочего давления для компонента. Шлейф на фиг. 5 указывает на развитие крупной трещины. Форма диаграммы на фиг. 6 вблизи вершины аналогично показывает шлейф как указание на крупную трещину. Второй и меньший шлейф ниже указывает на развитие небольших трещин. Каждый отдельный импульсный сигнал (красные точки на графиках) собирают и анализируют в отдельной программе для определения пригодности/непригодности.

[16] Специалистам в данной области техники будет понятно, что использованные компоненты, повторно используемые после других работ, могли подвергаться давлению или вибрации, которые стали причиной трещин и не могли бы быть обнаруженными во время внешнего визуального осмотра или внутри компонента с использованием бороскопа. Пропускание всех этих компонентов через рентгеновское излучение было бы нерентабельным и требовало бы применения дорогостоящих мер безопасности. Способ согласно данному изобретению позволяет устанавливать акустически-эмиссионный датчик на компонент и поднимать давление до уровня, не превышающего в 1,5 раза максимально допустимое рабочее давление, чтобы определить, существуют ли либо развиваются ли трещины в компоненте в той степени, при которой компонент следует утилизировать, поскольку он создает значительный риск ввиду возможного отказа в работе при его дальнейшем использовании. Трещины могут быть либо на поверхности, либо спрятаны коррозией, либо под поверхностью. Методика генерирования и анализа сигналов является новой в том смысле, что давление возрастает выше расчетного предела для открытия любых микротрещин, которые могли бы привести к отказу в работе и повторной сертификации металлического оборудования, которое подвергалось слишком высокому напряжению в поле. Испытания могут происходить в ремонтном цеху, когда компоненты возвращаются после выполнения операции. Трубчатые элементы, а также соединительные компоненты могут быть испытаны за несколько минут либо по отдельности, либо в виде колонны труб в сборе.

[17] Вышеприведенное описание является иллюстративным изложением предпочтительного варианта реализации изобретения, и специалисты в данной области техники могут делать много модификаций без отхода от сущности изобретения, объем которого должен определяться буквальным и эквивалентным объемом приведенной ниже формулы изобретения.


ДЕФЕКТОСКОПИЯ ТРЕЩИН В ТРУБЧАТЫХ ЭЛЕМЕНТАХ В СТВОЛАХ СКВАЖИН ПОД ВЫСОКИМ ДАВЛЕНИЕМ С ИСПОЛЬЗОВАНИЕМ АКУСТИЧЕСКОЙ ЭМИССИИ
ДЕФЕКТОСКОПИЯ ТРЕЩИН В ТРУБЧАТЫХ ЭЛЕМЕНТАХ В СТВОЛАХ СКВАЖИН ПОД ВЫСОКИМ ДАВЛЕНИЕМ С ИСПОЛЬЗОВАНИЕМ АКУСТИЧЕСКОЙ ЭМИССИИ
ДЕФЕКТОСКОПИЯ ТРЕЩИН В ТРУБЧАТЫХ ЭЛЕМЕНТАХ В СТВОЛАХ СКВАЖИН ПОД ВЫСОКИМ ДАВЛЕНИЕМ С ИСПОЛЬЗОВАНИЕМ АКУСТИЧЕСКОЙ ЭМИССИИ
ДЕФЕКТОСКОПИЯ ТРЕЩИН В ТРУБЧАТЫХ ЭЛЕМЕНТАХ В СТВОЛАХ СКВАЖИН ПОД ВЫСОКИМ ДАВЛЕНИЕМ С ИСПОЛЬЗОВАНИЕМ АКУСТИЧЕСКОЙ ЭМИССИИ
ДЕФЕКТОСКОПИЯ ТРЕЩИН В ТРУБЧАТЫХ ЭЛЕМЕНТАХ В СТВОЛАХ СКВАЖИН ПОД ВЫСОКИМ ДАВЛЕНИЕМ С ИСПОЛЬЗОВАНИЕМ АКУСТИЧЕСКОЙ ЭМИССИИ
Источник поступления информации: Роспатент

Showing 1-10 of 27 items.
10.05.2018
№218.016.3ef5

Применение гидроксикислоты для уменьшения потенциала локализованной коррозии слабодозируемых ингибиторов гидратообразования

Настоящее изобретение относится к способам и композициям для ингибирования коррозии металлов, конкретно нержавеющих и дуплексных сталей. Коррозия металлических трубопроводов составами ингибиторов гидратообразования, в частности локализованная коррозия, уменьшается, когда состав ингибитора...
Тип: Изобретение
Номер охранного документа: 0002648372
Дата охранного документа: 26.03.2018
17.08.2018
№218.016.7cdd

Системы и способы для фиксации магнитных катушек в забойных линейных двигателях

Группа изобретений относится к области добычи нефти из скважин. Способ фиксации катушек обмоточного провода к опорному сердечнику в линейном двигателе, включающий обеспечение опорного сердечника, при этом опорный сердечник представляет собой полый элемент, выполненный с возможностью вмещать...
Тип: Изобретение
Номер охранного документа: 0002663983
Дата охранного документа: 14.08.2018
13.09.2018
№218.016.8757

Применение сверхвпитывающих полимеров для регулирования давления и отклоняющих применений

Настоящее изобретение относится к применению сверхвпитывающих полимеров для регулирования давления и отклоняющих применений при обработке подземного пласта, в том числе гидравлическим разрывом. Способ гидравлического разрыва подземного пласта, через который проходит ствол скважины, включает...
Тип: Изобретение
Номер охранного документа: 0002666800
Дата охранного документа: 12.09.2018
21.11.2018
№218.016.9ec9

Способ закачки в скважину водного флюида, содержащего обрабатывающий агент для модификации поверхности

Настоящее изобретение относится к обработке подземного пласта. Способ обработки кремнистого или содержащего оксиды металлов подземного пласта, через который проходит ствол скважины, включающий приготовление водного обрабатывающего флюида, содержащего обрабатывающий агент для модификации...
Тип: Изобретение
Номер охранного документа: 0002672690
Дата охранного документа: 19.11.2018
16.01.2019
№219.016.b037

Гидравлические инструменты, содержащие удаляемые покрытия, буровые системы и способы изготовления и использования гидравлических инструментов

Группа изобретений относится к области бурения скважин забойными двигателями. Гидравлический инструмент содержит статор, имеющий отверстие, выполненное в виде множества зубьев, ротор, имеющий по меньшей мере один зубец на наружной поверхности, причем ротор выполнен с возможностью вращения...
Тип: Изобретение
Номер охранного документа: 0002677185
Дата охранного документа: 15.01.2019
07.02.2019
№219.016.b76e

Системы и способы для создания скважинных электрических двигателей

Группа изобретений относится к электрическим двигателям удлиненной формы, в частности к насосам для добычи флюидов из скважин. Система содержит электрический привод, погружной электрический насос (ПЭН) и кабель силовой сети. ПЭН содержит насос и двигатель. Двигатель ПЭН имеет статор и по...
Тип: Изобретение
Номер охранного документа: 0002679064
Дата охранного документа: 05.02.2019
14.03.2019
№219.016.df9d

Жидкость гидроразрыва и способ обработки углеводородного пласта

Изобретение относится к обработке углеводородных пластов. Способ гидравлического разрыва подземного пласта (ГРПП) с проходящим через него стволом скважины, включающий получение композиции гидроразрыва, содержащей флюид-носитель и компонент сверхвпитывающего полимера (СВП), содержащего один или...
Тип: Изобретение
Номер охранного документа: 0002681761
Дата охранного документа: 12.03.2019
08.04.2019
№219.016.fe92

Вспомогательный элемент линии потока суспензии с запорным клапаном, активируемым растворимыми расходными трубами

Группа изобретений относится к скважинным операциям. Технический результат – закрытие перепускного канала без необходимости какого-либо вмешательства с поверхности скважины. Скважинный вспомогательный элемент линии потока содержит трубчатый элемент, содержащий первую концевую часть, вторую...
Тип: Изобретение
Номер охранного документа: 0002684260
Дата охранного документа: 04.04.2019
11.04.2019
№219.017.0b5e

Определение фракции связанного углеводорода и пористости посредством диэлектрической спектроскопии

Изобретение относится к геофизическим методам разведки и предназначено для оценки геологического пласта, содержащего пористую среду. Сущность: осуществляют множество оценок комплексной проницаемости на основании измерений с использованием электромагнитного прибора на множестве частот в стволе...
Тип: Изобретение
Номер охранного документа: 0002684437
Дата охранного документа: 09.04.2019
06.06.2019
№219.017.7463

Флюиды и способы для обработки нефтегазоносных пластов

Изобретение относится к обработке нефтегазоносных пластов и может быть использовано при временном закупоривании нефтегазоносного пласта. Предлагается флюид для временного закупоривания нефтегазоносного пласта, содержащий флюид-носитель и сшитый синтетический полимер, содержащий нестабильную...
Тип: Изобретение
Номер охранного документа: 0002690577
Дата охранного документа: 04.06.2019
+ добавить свой РИД