×
24.05.2019
219.017.5dbe

Результат интеллектуальной деятельности: Способ газоанализа природного газа

Вид РИД

Изобретение

№ охранного документа
0002688886
Дата охранного документа
22.05.2019
Аннотация: Изобретение относится к области аналитического приборостроения и касается способа газоанализа природного газа (ПГ). При осуществлении способа производят однократную регистрацию спектров спонтанного комбинационного рассеяния (СКР) эталонных молекулярных газовых компонентов, входящих в состав ПГ. Затем регистрируют спектр СКР анализируемого ПГ и вычисляют вклады спектров СКР эталонных молекулярных газовых компонентов. Полученные результаты нормируют. Затем по величинам сдвига положения максимума полосы метана, находящейся вблизи 2917 см, определяют концентрацию входящего в состав ПГ гелия. На основе вычисленных нормированных результатов и полученной концентрации гелия определяют концентрации молекулярных компонентов. Технический результат заключается в повышении точности измерений. 3 ил.

Изобретение относится к области аналитического приборостроения и предназначено для компонентного анализа природного газа (ПГ) и газовых смесей на его основе.

Химический состав ПГ существенно различается в зависимости от его месторождения. Наряду с этим изменяется его теплотворная способность, а, следовательно, и стоимость. По этой причине определение с высокой степенью точности состава ПГ является для предприятий занимающихся его добычей и транспортировкой весьма актуальной задачей.

Наиболее распространенным методом определения химического состава ПГ, на сегодняшний день, является хроматографический анализ [Бузановский В.А., Овсепян А.М. Информационно-измерительные системы состава и свойств природного газа // Территория Нефтегаз, 2007, №8, С. 36-43]. Основными недостатками данного метода является относительно большое время анализа, необходимость иметь расходные материалы в виде газа-носителя (например, Не или Аr), необходимого для осуществления газохроматографического разделения, а также деградация со временем характеристик основных узлов (детекторов, колонок) и, связанная с этим, необходимость в периодической поверке градуировки прибора.

От перечисленных выше недостатков свободны оптические методы анализа состава природного газа. В частности, известен способ, основанный на лазерной абсорбционной спектроскопии [RU 2441219, 27.01.2012]. Однако данный способ имеет ряд собственных недостатков. В первую очередь к ним относится необходимость предварительной информации о составе анализируемого газа, а также необходимость иметь несколько лазеров работающих в различных диапазонах длин волн, что в итоге ведет к существенному удорожанию газоанализатора. Кроме того, данным способом невозможно определить концентрацию гелия и гомоядерных молекул (например, N2, Н2 и т.д.) входящих в состав ПГ, определение содержания которых принципиально важно.

Также известен способ анализа, основанный на использовании спектроскопии спонтанного комбинационного рассеяния света (СКР) [Бажанов Ю.В. и др. Количественный анализ газовых сред методом спектроскопии комбинационного рассеяния света // Аналитика и контроль, 1998, №3-4, С. 5-74]. Основным его преимуществом является отсутствие расходных материалов, а также контроль всех молекулярных составляющих природного газа с помощью одного лазера с фиксированной длиной волны. Суть данного метода заключается в облучении анализируемого ПГ линейно поляризованным монохроматическим излучением и одновременной регистрации его спектра СКР в диапазоне 0-4200 см-1, куда попадают полосы всех молекул. Далее процесс сводится к следующему. Составляется система уравнений где j - номер спектрального компонента, k - номер пиксела, - вклад j-го компонента в интенсивность регистрируемую k-м пикселом, dj - коэффициент сочетающий в себе сечение рассеяния j-го компонента σj, и аппаратную функцию пропускания оптических элементов, n - абсолютная концентрация молекул того сорта, частоте колебаний которого соответствует данная спектральная компонента, ik - интенсивность зарегистрированная k-м пикселом, - величина фона, J - интенсивность возбуждающего излучения. Данная система избыточна, поскольку имеет число уравнений равное общему числу пикселов, и число неизвестных равное полному числу компонент природного газа N. Поэтому из нее выделяют подсистему с N уравнениями, каждое из которых соответствует пикселу регистрирующему максимум одной из спектральных линий. Интенсивность возбуждающего излучения исключается путем перехода к относительным концентрациям и нормировке их суммы на 100%.

Основным недостатком данного подхода является необходимость в знании сечений рассеяния σj компонентов на выбранных пикселях с очень высокой точностью, что является весьма нетривиальной задачей. Помимо этого, данный способ не позволяет корректно учесть случайные флуктуации световых сигналов, что приводит к низкой точности анализа.

Наиболее близким по принципу действия является способ [RU 2544264, 20.03.2015]. Он также основан на спектроскопии спонтанного комбинационного рассеяния света, однако, в отличие от способа описанного выше, до регистрации спектров СКР анализируемых образцов ПГ однократно регистрируются m спектров СКР эталонных газовых компонентов, входящих в состав ПГ, совместно с интегральной интенсивностью облучающего лазерного излучения Ii, i=1..m. Для получения относительных концентраций компонентов анализируемого ПГ регистрируется его спектр СКР из которого требуемые величины определяются по формуле , где аi - вклады спектров СКР эталонных газовых компонентов в зарегистрированный спектр СКР ПГ Jpix вычисленные с помощью метода наименьших квадратов из системы уравнений (pix соответствует номерам элементов используемого многоканального фотоприемника обеспечивающих регистрацию спектра в диапазонах 300-2500 см-1 и 3400-3750 см-1), Ni - величина абсолютной концентрации молекул сорта i в его эталонном спектре, определяемая из соотношения где k - коэффициент Больцмана, Pi, Тi - соответственно давление и температура эталонного газа i в кювете при регистрации его спектра СКР, Zi(Pii) -коэффициент сжимаемости газа i при давлении Pi и температуре Ti.

Основным недостатком данного способа является невозможность определения гелия в анализируемом ПГ. Это объясняется тем, что гелий не имеет спектра СКР, поскольку является не молекулярным, а атомарным газом. В свою очередь, неучет его содержания автоматически вносит погрешность в определяемые значения концентраций других компонентов, поскольку в указанном способе осуществляется нормировка вычисленных концентраций на 100%.

Задачей, на решение которой направлено изобретение, является создание способа газоанализа природного газа, основанного на спектроскопии СКР, позволяющего определять содержание как молекулярных компонентов ПГ, так и гелия. Технический результат -повышение точности измерений концентраций компонентов природного газа.

Указанный результат достигается следующим образом.

Осуществляется однократная регистрация спектров спонтанного комбинационного рассеяния (СКР) эталонных молекулярных газовых компонентов входящих в состав ПГ в диапазоне 0-4200 см-1, после этого в аналогичных условиях регистрируется спектр СКР анализируемого ПГ Jpix из которого вычисляются вклады ai спектров СКР эталонных молекулярных газовых компонентов с помощью метода наименьших квадратов из системы уравнений (pix соответствует номерам элементов используемого многоканального фотоприемника обеспечивающих регистрацию спектра в диапазонах 300-2500 см-1 и 3400-3750 см-1) и осуществляется их нормировка на 100% по формуле , где m - количество определяемых молекулярных газовых компонентов, Ii - интегральная интенсивность облучающего лазерного излучения при регистрации спектров эталонных газов i, Ni -величина абсолютной концентрации молекул сорта i в его эталонном спектре, определяемая из соотношения где k - коэффициент Больцмана, Pi, Тi - соответственно давление и температура эталонного газа i в кювете при регистрации его спектра СКР, Zi(Pi,Ti) -коэффициент сжимаемости газа i при давлении Pi и температуре Ti

На первом этапе, как и в прототипе, производится однократная регистрация спектров спонтанного комбинационного рассеяния (СКР) эталонных молекулярных газовых компонентов входящих в состав ПГ в диапазоне 0-4200 см-1. После этого в аналогичных условиях регистрируется спектр СКР анализируемого ПГ Jpix из которого вычисляются вклады ai спектров СКР эталонных молекулярных газовых компонентов с помощью метода наименьших квадратов из системы уравнений где m - количество определяемых молекулярных газовых компонентов, a pix соответствует номерам элементов используемого многоканального фотоприемника обеспечивающих регистрацию спектра в диапазонах 300-2500 см-1 и 3400-3750 см-1. После этого осуществляется нормировка полученных значений на 100% по формуле , где Ii - интегральная интенсивность облучающего лазерного излучения при регистрации эталонных спектров, N, - величина абсолютной концентрации молекул сорта i в его эталонном спектре, определяемая из соотношения где k - коэффициент Больцмана, Pi, Тi - соответственно давление и температура эталонного газа i в кювете при регистрации его спектра СКР, Zi(Pi,Ti) -коэффициент сжимаемости газа i при давлении Рi и температуре Тi. На втором этапе после вычисления значений bi, в анализируемой пробе ПГ определяется концентрация гелия (хНе) согласно соотношению , где νexp - положение максимума полосы метана находящейся вблизи частоты 2917 см-1 в зарегистрированном спектре СКР ПГ, ν0 - значение частоты данной полосы в чистом метане, di и dHe - величины сдвига данной полосы в результате присутствия в анализируемом ПГ компонентов i (i=1..m) и гелия приходящиеся на 1%. После этого вычисляются концентрации молекулярных компонентов (Xi) по формуле .

Предлагаемый способ основан на том, что положение полосы метана, расположенной вблизи 2917 см-1, имеет строгую зависимость от состава среды в которой находятся молекулы метана. В частности, в присутствии более тяжелых углеводородных соединений, таких как этан, пропан, бутан и т.п., данная полоса сдвигается в область меньших частот, а, к примеру, в окружении водорода или гелия данная полоса сдвигается в область больших частот. При этом величина сдвига практически линейно зависит от концентрации молекул каждого сорта. Таким образом, зная величину сдвига, которая приходится на единицу концентрации частиц (молекул и атомов) каждого сорта, а также их концентрации, можно вычислить положение указанной выше полосы метана. С другой стороны, поскольку гелий является доминирующим атомарным компонентом ПГ, зная положение данной полосы, концентрации всех молекулярных компонентов присутствующих в анализируемой пробе ПГ, а также величины сдвигов, приходящиеся на единицу концентрации для всех определяемых молекул, можно определить концентрацию гелия.

На фиг. 1 изображена схема устройства для осуществления предлагаемого способа (1 - лазер, 2 - светоделительная пластина, 3 - фотоприемник, 4 - линза, 5 - газовая кювета, 6 - манометр, 7 - измеритель температуры, 8 - ловушка лазерного излучения, 9 - объектив для сбора рассеянного света, 10 - светофильтр, 11 - спектральный прибор, 12 - электронный блок управления).

На фиг. 2 изображен спектр СКР полосы метана, расположенной в области 2917 см-1, в присутствии различных компонентов.

На фиг. 3 изображены зависимости положения данной полосы от типа окружающих частиц и их концентрации.

Способ осуществляется следующим образом. До проведения анализов образцов ПГ, единоразово, осуществляется регистрация спектров СКР отдельных компонентов природного газа i. Для этой цели возбуждающее линейно поляризованное излучение от лазера 1 попадает на светоделительную пластину 2, которая направляет часть излучения на фотоприемник 3, определяющий интегральную интенсивность излучения Ii в течение времени регистрации одного спектра. В свою очередь основная часть лазерного излучения фокусируется линзой 4 в центр кюветы 5 заполненной эталонным газовым компонентом i. Давление Pi и температура Тi газа в кювете контролируется манометром 6 и измерителем температуры 7 соответственно. Прошедшее сквозь кювету лазерное излучение поглощается ловушкой 8, а рассеянное излучение из центра кюветы под углом 90 градусов к возбуждающему излучению собирается объективом 9 и направляется сквозь светофильтр 10, ослабляющий свет на частоте лазерного излучения, на вход спектрального прибора 11 осуществляющего одновременную регистрацию спектра СКР в диапазоне 0-4200 см-1. Далее зарегистрированный спектр СКР эталонного газового компонента вместе с данными о его давлении и температуре при регистрации, а также с данными о соответствующей интегральной интенсивности возбуждающего излучения направляется в память электронного блока управления и согласно соотношению где k - коэффициент Больцмана, Zi(Pi,Ti) - коэффициент сжимаемости газа i при давлении Pi и температуре Тi вычисляется Ni - величина абсолютной концентрации молекул сорта i в его эталонном спектре. Данная процедура поочередно осуществляется для всех молекулярных компонентов природного газа.

После этого в кювету напускается анализируемый ПГ, проводится аналогичным образом регистрация его спектра СКР, за исключением того, что не контролируется его давление и температура, а также интенсивность возбуждающего излучения. В электронном блоке управления происходит вычисление предварительных относительных концентраций молекулярных компонентов bi анализируемого ПГ из его спектра СКР по формуле , где аi - вклады спектров СКР эталонных газовых компонентов в зарегистрированный спектр СКР ПГ Jpix вычисленные с помощью метода наименьших квадратов из системы уравнений где pix соответствует номерам элементов используемого многоканального фотоприемника обеспечивающих регистрацию спектра в диапазонах 300-2500 см-1 и 3400-3750 см-1.

После вычисления значений bj в анализируемой пробе ПГ определяется концентрация гелия (хНе) согласно соотношению , где νexp - положение максимума полосы метана находящейся вблизи частоты 2917 см-1 в зарегистрированном спектре СКР ПГ, ν0 - значение частоты данной полосы в чистом метане, di и dHe - величины сдвига данной полосы в результате присутствия в анализируемом ПГ компонентов i (i=1..m) и гелия приходящиеся на 1%. После этого вычисляются концентрации молекулярных компонентов (Xi) по формуле .

Коэффициенты ν0, di и dHe могут быть определены из экспериментальных данных, полученных с помощью используемого СКР-газоанализатора. В частности для определения v0 достаточно зарегистрировать спектр чистого метана. Для определения коэффициентов dj необходимо зарегистрировать спектры бинарных смесей (метан+компонент i) с известными концентрациями. Далее в каждом полученном спектре необходимо определить частоту полосы метана ν' расположенную вблизи 2917 см-1. Величина di будет эквивалентна отношению ν'-ν0 к величине относительной концентрации компонента i. Аналогичным способом из спектра смеси метана с гелием определяется величина dHe. Необходимо отметить, что для повышения точности определения положения указанной полосы метана может быть использована ее аппроксимация гауссовым контуром.

Способ газоанализа природного газа (ПГ), заключающийся в том, что осуществляют однократную регистрацию спектров спонтанного комбинационного рассеяния (СКР) эталонных молекулярных газовых компонентов, входящих в состав ПГ в диапазоне 0-4200 см, после этого в аналогичных условиях регистрируют спектр СКР анализируемого ПГ J из которого вычисляют вклады спектров СКР эталонных молекулярных газовых компонентов с помощью метода наименьших квадратов из системы уравнений (pix соответствует номерам элементов используемого многоканального фотоприемника, обеспечивающих регистрацию спектра в диапазонах 300-2500 см и 3400-3750 см) и осуществляется их нормировка на 100% по формуле , где m - количество определяемых молекулярных газовых компонентов, I - интегральная интенсивность облучающего лазерного излучения при регистрации спектров эталонных газов i, N - величина абсолютной концентрации молекул сорта i в его эталонном спектре, определяемая из соотношения где k - коэффициент Больцмана, P, T - соответственно давление и температура эталонного газа i в кювете при регистрации его спектра СКР, Z(P, T) - коэффициент сжимаемости газа i при давлении P и температуре T, отличающийся тем, что после вычисления значений b в анализируемой пробе ПГ определяют концентрацию гелия (x) согласно соотношению , где ν - положение максимума полосы метана, находящейся вблизи 2917 см в зарегистрированном спектре СКР ПГ, ν - значение положения данной полосы в чистом метане, d и d - величины сдвига данной полосы в результате присутствия в анализируемом ПГ компонента i и гелия, приходящиеся на 1%, а после этого вычисляют концентрации молекулярных компонентов (x) по формуле .
Способ газоанализа природного газа
Способ газоанализа природного газа
Способ газоанализа природного газа
Способ газоанализа природного газа
Способ газоанализа природного газа
Способ газоанализа природного газа
Способ газоанализа природного газа
Способ газоанализа природного газа
Способ газоанализа природного газа
Источник поступления информации: Роспатент

Showing 11-19 of 19 items.
24.01.2019
№219.016.b361

Способ и устройство измерения мощности оптического излучения металлическим болометром

Изобретение относится к области измерительной техники и касается способа измерения мощности оптического излучения металлическим болометром. Способ включает в себя размещение на пути лучистого потока измерительного резистивного элемента в виде пленки из сплава, имеющего обратимое полиморфное...
Тип: Изобретение
Номер охранного документа: 0002677831
Дата охранного документа: 21.01.2019
21.03.2019
№219.016.eac0

Способ измерения характеристик солнечного излучения

Изобретение относится к области актинометрии и касается способа измерения характеристик солнечного излучения. Способ основан на измерении максимальных и минимальных значений солнечной радиации с помощью датчика, который имеет как минимум два измерительных элемента и маскирующий элемент...
Тип: Изобретение
Номер охранного документа: 0002682590
Дата охранного документа: 19.03.2019
08.05.2019
№219.017.4904

Кр-газоанализатор

Изобретение относится к области измерительной техники и касается КР-газоанализатора. Газоанализатор включает в себя непрерывный лазер, газовую кювету, два объектива, голографический фильтр, блокирующий излучение в области длины волны лазера, спектральный прибор, сопряженный с многоканальным...
Тип: Изобретение
Номер охранного документа: 0002686874
Дата охранного документа: 06.05.2019
01.09.2019
№219.017.c4fd

Способ поэлементной калибровки оптического измерителя линейных размеров

Изобретение относится к контрольно-измерительной технике и может быть использовано для калибровки оптического измерителя линейных размеров. Согласно заявленному способу калибровку осуществляют с помощью непрозрачного стержня круглого поперечного сечения, который горизонтально перемещают через...
Тип: Изобретение
Номер охранного документа: 0002698743
Дата охранного документа: 29.08.2019
12.09.2019
№219.017.ca92

Ультразвуковой анемометр

Использование: для определения скорости ветра. Сущность изобретения заключается в том, что ультразвуковой 3D-анемометр состоит из блока генерации управляющих электрических импульсов, электронного вычислительного устройства, блока индикации параметров ветра и механической конструкции,...
Тип: Изобретение
Номер охранного документа: 0002699939
Дата охранного документа: 11.09.2019
04.07.2020
№220.018.2e58

Ультразвуковой 3d-анемометр с каналом контроля функционирования

Ультразвуковой 3D-анемометр с каналом контроля функционирования относится к измерительной технике, а именно к устройствам для определения скорости ветра, основанным на использовании акустического метода измерений. Устройство состоит из блока генерации электрических импульсов, блока...
Тип: Изобретение
Номер охранного документа: 0002725528
Дата охранного документа: 02.07.2020
24.07.2020
№220.018.35e2

Способ определения рассеянной и прямой радиации при кучевой облачности

Изобретение относится к области актинометрии и может быть использовано для определения рассеянной и прямой радиации при кучевой облачности. Сущность: измерения проводят с помощью одного незатененного пиранометра. Значения рассеянной радиации измеряют в те моменты, когда Солнце полностью закрыто...
Тип: Изобретение
Номер охранного документа: 0002727328
Дата охранного документа: 21.07.2020
20.04.2023
№223.018.4cd2

Способ детектирования кучевой облачности

Изобретение относится к области метеорологии и может быть использовано для детектирования кучевой облачности. Сущность: измеряют суммарную радиацию незатененным пиранометром. Затем с помощью 21-минутного скользящего окна определяют точки, для которых коэффициент вариации превышает пороговое...
Тип: Изобретение
Номер охранного документа: 0002758343
Дата охранного документа: 28.10.2021
20.04.2023
№223.018.4ce1

Кр-газоанализатор

Изобретение относится к области измерительной техники и касается газоанализатора комбинационного рассеяния. КР-газоанализатор содержит лазер, газовую кювету, два линзовых объектива, предназначенных для сбора рассеянного излучения, между которыми установлен светофильтр, блокирующий излучение в...
Тип: Изобретение
Номер охранного документа: 0002755635
Дата охранного документа: 17.09.2021
Showing 11-15 of 15 items.
14.11.2018
№218.016.9d37

Анализатор состава природного газа

Изобретение относится к области измерительной техники и касается анализатора состава природного газа. Анализатор содержит непрерывный лазер, поворотную призму, линзу, фокусирующую лазерное излучение в центре герметичной кюветы, ловушку лазерного излучения, два объектива, голографический фильтр,...
Тип: Изобретение
Номер охранного документа: 0002672183
Дата охранного документа: 12.11.2018
14.11.2018
№218.016.9d60

Кр-газоанализатор

Изобретение относится к области измерительной техники и касается газоанализатора комбинационного рассеяния. КР-газоанализатор включает в себя непрерывный лазер, поворотную призму, линзу, фокусирующую лазерное излучение в центре герметичной кюветы, оснащенной двумя окнами для пропускания...
Тип: Изобретение
Номер охранного документа: 0002672187
Дата охранного документа: 12.11.2018
08.05.2019
№219.017.4904

Кр-газоанализатор

Изобретение относится к области измерительной техники и касается КР-газоанализатора. Газоанализатор включает в себя непрерывный лазер, газовую кювету, два объектива, голографический фильтр, блокирующий излучение в области длины волны лазера, спектральный прибор, сопряженный с многоканальным...
Тип: Изобретение
Номер охранного документа: 0002686874
Дата охранного документа: 06.05.2019
10.07.2019
№219.017.b1b8

Регистрирующая кювета для фототермоакустического газоанализатора

Изобретение относится к измерительной технике и может быть использовано для количественного определения энергии падающего ИК-излучения в составе фототермоакустического газоанализатора. Кювета состоит из герметичной камеры, наполненной газом, поглощающим оптическое излучение. На противоположных...
Тип: Изобретение
Номер охранного документа: 0002460990
Дата охранного документа: 10.09.2012
20.04.2023
№223.018.4ce1

Кр-газоанализатор

Изобретение относится к области измерительной техники и касается газоанализатора комбинационного рассеяния. КР-газоанализатор содержит лазер, газовую кювету, два линзовых объектива, предназначенных для сбора рассеянного излучения, между которыми установлен светофильтр, блокирующий излучение в...
Тип: Изобретение
Номер охранного документа: 0002755635
Дата охранного документа: 17.09.2021
+ добавить свой РИД