×
24.05.2019
219.017.5d96

Результат интеллектуальной деятельности: Способ получения полиэфирсульфонов

Вид РИД

Изобретение

№ охранного документа
0002688942
Дата охранного документа
23.05.2019
Аннотация: Изобретение относится к области получения полиэфирсульфонов, применяемых в качестве суперконструкционных полимерных материалов для 3D печати. Способ получения полиэфирсульфонов заключается в том, что проводят реакцию нуклеофильного замещения нуклеофильного агента дигалоидароматическим соединением в среде апротонного растворителя в присутствии щелочного агента карбоната калия в количестве 0,06 моль, и в реакционную смесь вводят гексахлорбензол в количестве 0,0001 и 0,01 моль. В качестве нуклеофильного агента используют диоксисоединение, выбранное из группы, включающей 4,4-диоксидифенил-2,2-дихлорэтилен, либо смесь 0,0125-0,025 моль 4,4-диоксидифенил-2,2-дихлорэтилена и 0,0125-0,025 моль 4,4-диоксидифенилпропана. В качестве дигалоидароматического соединения используют 0,025 моль 4,4-дихлордифенилсульфона. Изобретение позволяет получить полиэфирсульфоны заданной длины полимерной цепи с хорошими термическими и механическими характеристиками. 7 пр.

Изобретение относится к области получения полиэфирсульфонов - простых ароматических эфиров на основе ароматических диолов и 4,4'-дихлордифенилсульфона, применяемых в качестве суперконструкционных полимерных материалов для 3D печати.

3D печать очень часто называют «Третьей промышленной революцией», так как становится реальным то, что ранее было доступно только в человеческих фантазиях. 3D печать начинает плотно входить в нашу жизнь, полимерные материалы, используемые для 3D печати, с каждым разом подвергаются модификации, совершенствуются их свойства. Перспективным полимерным материалом для данного вида печати представляются ароматические полиэфиры, в частности полиэфирсульфоны. К сожалению, полиэфирсульфоны обладают существенным недостатком -высокие температуры переработки. Традиционные способы переработки связаны с необходимостью применения высоких давлений (до 1400 кг/см2) и температур (до 350°С), соответствующего технологического оборудования и энергозатрат. Сильное межмолекулярное взаимодействие, обусловливающее низкую деформируемость и текучесть в области температур размягчения, а также узкие температурные интервалы переработки существенно затрудняют переработку полиэфирсульфонов в изделия [Ваниев М.А., Кирюхин Н.Н., Огрель A.M. Способ переработки полимера // Патент РФ №2058339, 1996]. Для переработки в условиях 3D печати полиэфирсульфон должен обладать высокой стабильностью свойств, что обеспечивается условиями проведения самого синтеза (температурой, природой растворителя, инертной атмосферой), степенью блокировки концевых реакционноспособных групп, а также полнотой отмывки самого полимера от всех технологических примесей, какими являются растворитель, выделяющий низкомолекулярной продукт - галогенид щелочного металла, непрореагировавшие мономеры - соответствующие бисфенолы (бисфеноляты) и галоидароматические сульфонильные соединения [Артемов С.В. Способ получения поли- и сополиэфирсульфонов // Патент РФ №2005737, 1999]. В связи с этим создание экономически эффективных технологий получения полиэфирсульфонов, обладающих улучшенными характеристиками является в настоящее время достаточно актуальной задачей.

Известен способ получения ароматических полиэфиров реакцией нуклеофильного замещения эквимолекулярных количеств полиароматического нуклеофильного реагента с дигалоидароматическим соединением в среде апротонного растворителя при нагревании в присутствии щелочного агента, в качестве последнего используют K2CO3 в сочетании с эквимолекулярной смесью Na2S⋅9H2O и Al2O3 или SiO2 в количестве от 0,5 до 5,0 мол. на 1,0 моль K2CO3 [Болотина Л.М., Чеботарев В.П. Способ получения ароматических полиэфиров // Патент РФ №2063404, 1996].

Недостатками способа являются длительность процесса, использование высоких температур.

Известен способ получения поли- и сополиэфирсульфонов взаимодействием в инертной атмосфере ароматических бисфенолов и галоидароматических сульфонов в среде растворителя в присутствии щелочного агента при нагревании с последующим измельчением и экстракцией целевого продукта, в качестве щелочного агента используют избыток по отношению к ароматическим бисфенолам смеси карбоната и гидрокарбоната калия, а в качестве растворителя - диметилсульфон, реакционную массу по окончании синтеза непосредственно или после разбавления растворителем до соотношения реакционная масса : растворитель 1:5, преимущественно до 1:2, измельчают до частиц размером 0,01-5,5 мм, преимущественно 0,5-1,0 мм, и промывают экстрагентом при перемешивании. Смесь карбоната и гидрокарбоната калия берут в избытке до 50 мол. %, преимущественно до 6 мол. % [Артемов С.В. Способ получения поли- и сополиэфирсульфонов // Патент РФ №2005737, 1999].

Недостатками способа являются необходимость новых технологических операций по измельчению твердого раствора полимера, длительной его отмывки от растворителя и солей, сложность регенерации твердого растворителя - диметилсульфона.

Известен способ получения полиэфирсульфонов [Ли Чжунчжи, Ван Цзи, Ван Цзе. Синтез полиэфирсульфоновой смолы // Патент КНР №103613752, 2013], заключающийся во взаимодействии бисфенола А и 4,4/-дихлордифенилсульфона в молярном соотношении 1:1, N-метилпирролидон в качестве растворителя, в качестве дегидратирующего агента - хлорбензол и NaOH - солеобразующего агента. Реакцию регулируют, блокируя с помощью газообразного хлорметана концевые фенолятные группы. Процесс в целом проводят в среде инертного газа, например, азота. Количество NaOH составляет 1.01-1.10 моль по отношению к бисфенолу А. Скорость реакции можно сократить за счет остановки реакции с помощью хлорметана.

Недостатками способа являются применение газообразного блокатора растущей цепи, что усложняет техническое оснащение процесса, требует новых систем и условий барботирования.

Наиболее близким к предлагаемому техническому решению является способ получения полиэфирсульфона, приводящий к повышению температуры стеклования и кислородного индекса. Задача достигается за счет того, что в способе получения ароматических полиэфиров реакцией нуклеофильного замещения в среде апротонного растворителя при нагревании в среде в присутствии щелочного агента, состоящего из K2CO3 с добавкой 0,5% мол. до 5,0% мол. эквимолярной смеси Na2S⋅9H2O и Al2O3 или SiO2 на 1,9 моль K2CO3, в качестве полиароматического нуклеофильного реагента применяют фенолфталеин или смесь дифенилолпропана и фенолфталеина при их мольном соотношении от 90:10 до 1:99, а в качестве дигалоидароматического соединения - 4,4-дихлордифенилсульфон (ДХДС) или его смесь с 4,4'-бис-(хлорфенилсульфонил) дифенилом при их мольном соотношении от 99:1 до 1:99. Регулирование молекулярной массы получаемых полимеров осуществляют добавлением к мономерам либо моногалоидных соединений ряда диарилсульфонов (например, монохлордифенилсульфона), либо избытком дигалоидароматического соединения. Кислородный индекс полученных полимеров составляет 26-41%, приведенная вязкость 0,47-0,53 дл/г (при концентрации 1 г в 100 мл растворителя), температура стеклования полученных образцов 196-290°С, время реакции 4-12 часов и более, температура реакции 165-175°С. [Ловков С.С., Чеботарев В.П. Способ получения ароматических полиэфиров // Патент РФ №2394848. 2010]

Недостатками данного способа являются относительно низкая вязкость растворов полученных образцов, следовательно, молекулярный вес, что может привести к ухудшению механических характеристик полиэфира. Осуществление синтеза в N,N-диметилацетамиде не позволяет повышать температуру среды выше 170-175°С, а при этой температуре многие бисфенолы, применяемые для получения полиэфирсульфонов не достаточно активны. Избыток дигалоидного соединения, используемый для регулирования молекулярной массы полимера может привести к преждевременному обрыву цепи и блокировать рост полимерной молекулы на ранних стадиях.

Задачей данного изобретения, совпадающей с техническим результатом, является создание полиэфирсульфонов заданной длины полимерной цепи, реакцией нуклеофильного замещения, с хорошими термическими и механическими характеристиками: высокие температура стеклования, значение показателя текучести расплава и кислородный индекс, стабильных в ходе высокотемпературной переработки.

Поставленная задача достигается путем получения полиэфирсульфонов реакцией нуклеофильного замещения полиароматических нуклеофильных агентов - 4,4/-диоксидифенил-2,2-дихлорэтилена, смеси диоксисоединений 0,0125-0,025 моль 4,4'-диоксидифенил-2,2-дихлорэтилена и 0,0125-0,025 моль 4,4'-диоксидифенилпропана, с дигалоидароматическим соединением - 0,025 моль 4,4'-дихлордифенилсульфоном в среде апротонного растворителя - 28 мл диметилсульфоксида и 25 мл толуола, в присутствии 0,06 моль щелочного агента карбоната калия и гексахлорбензола (ГХБ) в количестве от 0,0001-0,01 молей, причем ГХБ может выступать регулятором длины полимерной цепи за счет химического взаимодействия с концевыми фенолятными группами полимерной молекулы и при этом влиять на огнестойкость полученного полимера.

При малых добавках гексахлорбензола он выступает как один из мономеров и увеличивает молекулярный вес, а при больших количествах (0,01 и более моль) ГХБ обрывает полимерную цепь и служит ингибитором реакции поликонденсации.

Данное изобретение иллюстрируется следующими примерами.

Пример 1. В четырехгорлую колбу, снабженную мешалкой, ловушкой Дина-Старка, термометром и газоотводной трубкой, загружают 5,7073 г (0,025 моль) 4,4'-диоксидифенилпропана, 7,1792 г (0,025 моль) 4,4'-дихлордифенилсульфона, 7 г (0,06 моль) измельченного и высушенного карбоната калия, 28 мл диметилсульфоксида и 25 мл толуола, включают подачу газообразного азота. Температуру поднимают до 110°С и выдерживают при перемешивании в течение 45 минут. Далее поднимают температуру до 140°С, отгоняют воду в виде азеотропной смеси с толуолом. После полной отгонки воды температуру поднимают до 160°С, и выдерживают в течение 6 часов. Смесь охлаждают до комнатной температуры, разбавляют 25 мл диметилсульфоксида, отфильтровывают осадок хлористого натрия и осаждают полимер, прикапывая фильтрат в воду при интенсивном перемешивании. Осадок полиэфирсульфона отфильтровывают, промывают водой до отрицательной реакции на хлорид-ионы (проба нитратом серебра) и сушат при 90°С 2 часа, при 150°С - 3 часа, при 180°С - 4 часа.

Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,57 дл/г, кислородный индекс 25%, температура стеклования 190°С.

Полученный полимер имеет строение:

Пример 2. Способ осуществляют по примеру 1, только после выдерживания реакционной среды в течение 6 часов при температуре 160°С вводят 0,0285 г (0,0001 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 0,5 часа.

Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,78 дл/г, кислородный индекс 36%, температура стеклования 230°С.

Полученный полимер имеет строение:

Примечание. В данном примере ГХБ активирует рост полимерной цепи.

Пример 3. Способ осуществляют по примеру 1, только после выдерживания реакционной среды в течение 3-х часов при температуре 160°С вводят 0,0285 г (0,0001 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 0,5 часа.

Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,58 дл/г, кислородный индекс 33%, температура стеклования 210°С.

Примечание. В данном примере ГХБ активирует рост полимерной цепи.

Пример 4. Способ осуществляют по примеру 1, только после выдерживания реакционной среды в течение 3-х часов при температуре 160°С вводят 2,85 г (0,01 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 1 час.

Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,28 дл/г, кислородный индекс 33%, температура стеклования 190°С.Образуются концевые группы:

Примечание. В данном примере ГХБ ингибирует рост полимерной цепи

Пример 5. Способ осуществляют по примеру 1, только в качестве диоксисоединения в реакционную смесь вводят 7,02852 г (0,025 моль) 4,4'-диоксидифенил-2,2-дихлорэтилена. После выдерживания реакционной среды в течение 3-х часов при температуре 160°С вводят 0,0285 г (0,0001 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 1 час.

Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,82 дл/г, кислородный индекс 40%, температура стеклования 235°С.

Полученный полимер имеет строение

Примечание. В данном примере ГХБ активирует рост полимерной цепи.

Пример 6. Способ осуществляют по примеру 1, только в качестве диоксисоединения в реакционную смесь вводят смесь 3,51426 г (0,0125 моль) 4,4'-диоксидифенил-2,2-дихлорэтилена и 3,5896 г (0,0125 моль) 4,4'-диоксидифенилпропана. После выдерживания реакционной среды в течение 3-х часов при температуре 160°С вводят 0,0285 г (0,0001 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 1 час.

Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,87 дл/г, кислородный индекс 41%, температура стеклования 230°С.

Полученный полимер имеет строение:

Примечание. В данном примере ГХБ активирует рост полимерной цепи

Пример 7. Способ осуществляют по примеру 1, только, в качестве диоксисоединения в реакционную смесь вводят 7,02852 г (0,025 моль) 4,4'-диоксидифенил-2,2-дихлорэтилена. После выдерживания реакционной среды в течение 3-х часов при температуре 160°С вводят 2,85 г (0,01 моль) гексахлорбензола (ГХБ), увеличивают скорость перемешивания и выдерживают 1 час.

Приведенная вязкость 0,5%-ного раствора полимера в хлороформе при 20°С равна 0,42 дл/г, кислородный индекс 41%, температура стеклования 235°С.

Способ получения полиэфирсульфонов реакцией нуклеофильного замещения полиароматических нуклеофильных агентов, отличающийся тем, что в качестве нуклеофильных агентов используются: 4,4-диоксидифенил-2,2-дихлорэтилен, смеси диоксисоединений 0,0125-0,025 моль 4,4-диоксидифенил-2,2-дихлорэтилена и 0,0125-0,025 моль 4,4-диоксидифенилпропана с дигалоидароматическим соединением - 0,025 моль 4,4-дихлордифенилсульфона в среде апротонного растворителя в присутствии 0,06 моль щелочного агента карбоната калия, и в реакции используется гексахлорбензол в количестве 0,0001 и 0,01 моль.
Источник поступления информации: Роспатент

Showing 101-110 of 174 items.
02.10.2019
№219.017.cebb

Способ получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната с оксидами редкоземельных элементов

Изобретение относится к области получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната, легированных редкоземельными элементами для производства керамики, используемой в качестве активной среды твердотельного лазера, термостойкого высокотемпературного...
Тип: Изобретение
Номер охранного документа: 0002700062
Дата охранного документа: 12.09.2019
10.10.2019
№219.017.d411

Способ реализации и устройство чувствительного элемента для контроля параметров движения в составе многоуровневого многокристального модуля

Использование: для изготовлении узла пьезоэлектрического чувствительного элемента акселерометра. Сущность изобретения заключается в том, что устройство представляет собой многокристальный модуль, включающий несколько плат с размещенными на них электрическими элементами и интерпозерами, при этом...
Тип: Изобретение
Номер охранного документа: 0002702401
Дата охранного документа: 08.10.2019
12.10.2019
№219.017.d541

Многокристальный модуль

Изобретение относится к электронной технике и может быть использовано при изготовлении многоуровневых многокристальных модулей в трехмерной сборке с повышенными эксплуатационными характеристиками. Многоуровневый многокристальный модуль содержит по меньшей мере две монтажные платы и две...
Тип: Изобретение
Номер охранного документа: 0002702705
Дата охранного документа: 09.10.2019
18.10.2019
№219.017.d767

Термоэмиссионный преобразователь с пассивным охлаждением для бортового источника электроэнергии высокоскоростного летательного аппарата с прямоточным воздушно-реактивным двигателем

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям (ТЭП), которые могут использоваться в составе бортовых источников электрической энергии для высокоскоростных летательных аппаратов (ВЛА) с прямоточными...
Тип: Изобретение
Номер охранного документа: 0002703272
Дата охранного документа: 16.10.2019
18.10.2019
№219.017.d79f

Пакетная сеть для мультипроцессорных систем и способ коммутации с использованием такой сети

Изобретение относится к области вычислительной техники. Техническим результатом является уменьшение задержки при передаче данных между ядрами и сокращение аппаратных ресурсов, а также расширение функциональных возможностей в части реализации прямого доступа в память любого абонента. Он...
Тип: Изобретение
Номер охранного документа: 0002703231
Дата охранного документа: 15.10.2019
24.10.2019
№219.017.d951

Способ электрического и механического соединения плат и интерпозеров в 3d электронных сборках

Изобретение относится к электронной технике и может быть использовано при изготовлении 3D сборок с гибридными электронными компонентами. Сущность: способ электрического и механического соединения плат в 3D электронных сборках заключается в реализации вертикальных линий коммутации за счет пайки...
Тип: Изобретение
Номер охранного документа: 0002703831
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.d975

Способ изготовления массивов регулярных субмикронных отверстий в тонких металлических пленках на подложках

Изобретение относится к области микро- и нанотехнологий и может быть использовано для изготовления упорядоченного массива субмикронных отверстий в тонких металлических пленках, предназначенных для создания устройств микроэлектроники, фотоники, наноплазмоники, а также квантовых вычислительных...
Тип: Изобретение
Номер охранного документа: 0002703773
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.da22

Устройство для возбуждения далеко бегущей плазмонной моды плазмонного волновода

Изобретение относится к плазмонной интегральной оптике и может быть использовано при конструировании интегральных схем различного назначения на основе плазмонных волноводов с далеко бегущей плазмонной модой. Технический результат изобретения - обеспечение эффективного возбуждения падающим...
Тип: Изобретение
Номер охранного документа: 0002703833
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.da4f

Средство для повышения работоспособности организма на основе α-циклодекстрина и его применение

Изобретение относится к фармацевтической промышленности, а именно к средству для повышения работоспособности организма. Средство для повышения работоспособности организма млекопитающего, которое содержит первый компонент, представляющий собой лиофилизированный порошок на основе...
Тип: Изобретение
Номер охранного документа: 0002704024
Дата охранного документа: 23.10.2019
26.10.2019
№219.017.dad7

Термоэмиссионный преобразователь для термоэмиссионной тепловой защиты кромки малого радиуса закругления крыла высокоскоростного летательного аппарата

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к использованию термоэмиссионных преобразователей (ТЭП) в составе систем тепловой защиты высокоскоростных летательных аппаратов (ВЛА). Согласно изобретению в термоэмиссионном...
Тип: Изобретение
Номер охранного документа: 0002704106
Дата охранного документа: 24.10.2019
Showing 91-98 of 98 items.
20.04.2023
№223.018.4eee

Аппретированное углеродное волокно и полиэфирэфиркетонный композит на его основе

Изобретение относится к области производства конструкционных изделий специального назначения в аддитивных технологиях. Предложены аппретированное углеродное волокно, где аппрет представляет собой смесь 0,5–1,0 масс.% бис(4-аминофенил)сульфона и 3,5–3,0 масс.% полиэфирэфиркетона на основе...
Тип: Изобретение
Номер охранного документа: 0002793913
Дата охранного документа: 07.04.2023
21.05.2023
№223.018.68db

Люминесцентный способ определения тербия с нолицином

Изобретение относится к аналитической химии, в частности к способам люминесцентного определения тербия. Способ включает перевод тербия в люминесцирующее комплексное соединение с органическим реагентом (R) нолицином в соотношениях Тb:R=1:1 при рН=5,9±0,1, интенсивности люминесценции комплексов...
Тип: Изобретение
Номер охранного документа: 0002794672
Дата охранного документа: 24.04.2023
21.05.2023
№223.018.68dc

Люминесцентный способ определения тербия с нолицином

Изобретение относится к аналитической химии, в частности к способам люминесцентного определения тербия. Способ включает перевод тербия в люминесцирующее комплексное соединение с органическим реагентом (R) нолицином в соотношениях Тb:R=1:1 при рН=5,9±0,1, интенсивности люминесценции комплексов...
Тип: Изобретение
Номер охранного документа: 0002794672
Дата охранного документа: 24.04.2023
23.05.2023
№223.018.6f33

Биоразлагаемый материал

Изобретение относится к области создания биоразлагаемых композиционных материалов, предназначенных для изготовления изоляционных оболочек металлических жил проводов, используемых в кабельной промышленности. Описан биоразлагаемый материал на основе термопластичного крахмала, отличающийся тем,...
Тип: Изобретение
Номер охранного документа: 0002741986
Дата охранного документа: 01.02.2021
31.05.2023
№223.018.746a

Способ получения аппретированных углеродных волокон и полимерный композиционный материал

Изобретение относится к области производства конструкционных изделий в аддитивных технологиях. Предложены способ получения аппретированного углеродного волокна путём нанесения аппрета, представляющего собой 1-метил-3,4-диаминобензол 1,0-3,5 мас.%, на углеволокно из раствора с массовой...
Тип: Изобретение
Номер охранного документа: 0002796448
Дата охранного документа: 23.05.2023
01.06.2023
№223.018.74e1

Способ получения аппретированных углеволокон и наполненный ими полиэфиримидный композит

Изобретение относится к области производства конструкционных изделий в аддитивных технологиях. Предложены способ получения аппретированного углеродного волокна путём нанесения аппрета, представляющего собой смесь п-фенилендиамина 1-4 мас.% и олигофениленсульфона на основе...
Тип: Изобретение
Номер охранного документа: 0002796405
Дата охранного документа: 23.05.2023
01.06.2023
№223.018.74e7

Способ получения аппретированных стеклянных волокон и полимерный композиционный материал

Изобретение относится к области производства конструкционных изделий специального назначения в аддитивных технологиях. Предложены способ получения аппретированного стекловолокна путём нанесения аппрета, представляющего собой 3,4-толуилендиамин 1,0-3,5 мас.%, на стекловолокно из раствора с...
Тип: Изобретение
Номер охранного документа: 0002796406
Дата охранного документа: 23.05.2023
01.06.2023
№223.018.74f6

Способ получения аппретированных углеволокон и полимерные композиции на их основе

Изобретение относится к области производства конструкционных изделий в аддитивных технологиях. Предложены способ получения аппретированного углеродного волокна путём нанесения аппрета, представляющего собой смесь аморфного эфирэфиркетона 1,0-3,5 мас. % и 1,3-бис(аминоформил)бензола 3,5-1,0 мас....
Тип: Изобретение
Номер охранного документа: 0002796404
Дата охранного документа: 23.05.2023
+ добавить свой РИД